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Abstract (e.g., in speculative hardware). On a store, a TM system can

. o use eager version managemeahd put the new value in
.Transactlonal memory (T™) S|mp[|f|es parallel program- place, or uselazy version managemerio (temporarily)
ming by guaranteeing that transactions appear to execute|aave the old value in place.

atomically and in isolation Implementing these properties
includes providing dataersion managemeiior the simul-
taneous storage of both new (visible if the transaction com-

mits) and old (retained if the transaction aborts) values. yatection is calleceager if it detects offending loads or
Most (hardware) TM systems leave old values “in place” giqres immediately andzy if it defers detection until later
(the target memory address) and buffer new values else-(e_g_ when transactions commit).

where until commit. This makes aborts fast, but penalizes” 11,4 taxonomy in Table 1 illustrates which TM proposals

(the much more frequent) commits. _ use lazy versus eager version management and conflict
In this paper, we present a new implementation of trans- yatection.

actional memory, Log-based Transactional Memory
(LogTM), that makes commits fast by storing old values to a
per-thread log in cacheable virtual memory and storing new
values in place. LogTM makes two additional contributions.
First, LogTM extends a MOESI directory protocol to enable
both fast conflict detection on evicted blocks and fast com-
mit (using lazy cleanup). Second, LogTM handles aborts in
(library) software with little performance penalty. Evalua-

Conflict detectiorsignals an overlap between thgite
set(data written) of one transaction and the write satead
set (data read) of other concurrent transactions. Conflict

TCC. Hammond et al.sSTransactional Memory Coherence
and Consistency (TCQ)1] uses both lazy version manage-
ment and lazy conflict detection, similar to the fdatabase
management systems (DBM$sat use optimistic concur-
rency control (OCC) [16]. TCC buffers stores at the proces-
sor's L1 cache and overwrites the L2 cache and memory
only on commit. TCC detects conflicts with a pending trans-

tions running micro- and SPLASH-2 benchmarks on a 32- action only when other transactions commit (not when data

way multiprocessor support our decision to optimize for Is first stored).

commit by showing that only 1-2% of transactions abort. ~ LTM. Ananian et al.’'sLarge Transactional Memory (LTM)
[2] uses lazy version management and eager conflict detec-

1. Introduction tion. LTM keeps the old value in main memory and stores

The promise of plentiful thread support from chip multi- the new valge in cache, coercing the coherence protocol to
Processors is re-energizing interestriansactional memory ~ Store two different values at the same address. Repeated
(TM) [14] systems, implemented in software only [12, 13, tran;actlons which modify the same block, hqwever, require
18, 27] or, our focus, in hardware (with some software sup- & writeback of thg block once per transaction. On cache
port) [2, 11, 14, 25]. TM systems must provide transaction overflows, LTM spills the new values to an in-memory ha;h
atomicity (all or nothing) andisolation (the partially-com- table. In contrast to TCC, LTM uses eager conflict detection

plete state of a transaction is hidden from other transactionsjnvoked when conflicting loads or stores seek to execute.
[9]. Providing these properties requires datasion man-  LTM conflict detection is complicated by the cache overflow

agemengindconflict detectionwhose implementations dis-  CaSe- When the controller detects a potential conflict with an
tinguish alternative TM proposals. overflowed block, it must walk the uncacheable in-memory
Version managemehtndles the simultaneous storage of hash table before responding (and possibly aborting).
bothnewdata (to be visible if the transacti@ommit3 and VTM. Rajwar et al.sVirtual Transactional Memory (VTM)
old data (retained if the transacti@orty. At most one of [25] also combines lazy version management with eager
these values can be stored “in place” (the target memoryconflict detection. Memory always holds old values. On
address), while the other value must be stored “on the side’cache overflows, VTM writes the new (and a second copy of



states. On abort, LogTM must walk the log to restore val-
ues. We find aborts sufficiently rare that we use a trap han-
dler to perform them in (library) software. For ease of
implementation, the processor whose coherence request

Table 1: A Transactional Memory (TM) taxonomy

Version Management

Lazy Eager causes a conflict always resolves the conflict by waiting (to
reduce aborts) or aborting (if deadlock is possible). Cur-
- | R OCC DBMSs [16] none rently, LogTM does not permit thread movement or paging
B8 | I | Stanford TCC[11] within transactions, as do UTM and VTM.
“g 5 MIT LTM [2] CCC DBMSs [6] Contributions: In developing LogTM, we make the fol-
&) u% Intel/Brown VTM [25] | MIT UTM [2] lowing contributions:
(on cache conflicts) | LogTM [new] + We develop and evaluate a TM system that uses eager

version management to store new values “in place,”

old) values to an in-memory table (XADT). VTM does not

specify version management when data fits in cache, but

rather recommends other proposals [2, 11, 14, 24, 30].
UTM. Ananian et al’dJnbounded Transactional Memory

making commits faster than aborts. On commit, no data
moves (even when transactions overflow the cache).

» We efficiently allow cache evictions of transactional

data by extending a MOESI directory protocol to enable
(a) fast conflict detection on evicted blocks and (b) fast
commit by lazily resetting the directory state. LogTM
doesnotrequire log or hash table walks to evict a cache
block, detect a conflict, or commit a transaction, but
works best if evictions of transactional data are uncom-
mon.

(UTM) [2] proposes using both eager version management
and eager conflict detection. This follows the example of
the vast majority of DBMSs that usmnservative concur-
rency control (CCC)[6]. However, UTM’s implementa-
tion adds significant complexity, including a pointer per
memory block and a linked-list log of reads as well as
writes.

Ideally, transactional memory should use eager version® We handle aborts via a log walk by (library) software
management and eager conflict deﬂection’ because: with little performance penalty, since simulation results
. Eager version management puts new values “in p|ace," with micro- and SPLASH-2 benchmarks on Solaris 9

making commits faster than aborts. This makes sense  confirm that aborts are much less common than com-

when commits are much more common than aborts, mits.

which we generally find.

» Eager conflict detection finds conflicts early, reducing
wasted work by conflicting transactions. This makes
sense, since standard coherence makes implementing
eager conflict detection efficient (as LTM and VTM
find).

To this end, we propodeng-based Transactional Mem-
ory (LogTM),which we argue makes eager conflict detec-
tion and eager version management practical in a T™M 2.1. Version management
system built on a multiprocessor with private caches kept  p defining feature of LogTM is its use @ager version
coherent vyith a directory protocol. .LogTM implements managementwherein new values are stored “in place,”
eager version management by creating a per-thieas- e old values are saved “on the side.” LogTM saves old
action login cacheable virtual memory, which holds the values in abefore-image loglike most DBMSs [6]. Spe-
virtual addresses and old values of all memory blocks cifically, LogTM saves old values in per-thread log in
modified during a transaction. LogTM detects in-cache c5cheaple virtual memondn creation, each thread allo-
conflicts using a directory protocol and read/write bits on ates virtual memory for its log and informs the LogTM
cache blocks (like many other proposals). LogTM novelly gy tem of its start and end. On a store within a transaction,
extends the directory protocol (e.g., with a “sticky-M" | 54TM hardware appends to the log the virtual address of
state) to perform conflict detection even after replacing ne stored block and the blockisid value. To suppress
transactional data from the cache. In LogTM, a processorequndant log writes, LogTM augments the state of each
commits a transaction by discarding the log (resetting a .ached block with avrite (W) bit [2, 11, 14] that tracks
log pqinter) and flash clearing the read/write bits. Nq other \ynether a block has been stored to (and logged). Redun-
work is needed, because new values are already in placgyant |og entries may still arise in the (uncommon) case that
and, in another innovation, LogTM lazily clears “sticky” 4 pock with the W bit set gets both written back to mem-

2. LogTM: Log-based Transactional Memory

LogTM builds upon a conventional shared memory
multiprocessor: each processor has two (or more) levels of
private caches kept coherent by a MOESI directory proto-
col [5]. This section describes LogTM’s eager version
management (Section 2.1), eager conflict detection (Sec-
tion 2.2), and other specifics (Section 2.3 and Section 2.4).
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Figure 1. Execution of a Transaction with Two Alternative Endings
Part (a) displays a logical view of a thread that has just begun a transaction by incrementiigat:t . We
assume that the thread’s log begins at virtual addve@9s1000 (all numbers in hexadecimal), but is empty
(LogPtr=LogBase ). LogTM divides the virtual addresg4) space into data blocks whose value in this
example is given as a two-digit word and seven dashes (for the other eight-byte words of a 64-byte block).
Each data block has associated régdaqd write (§ bits. Circles indicate changes from the previous snap-

shot. Section 2.2 explains the purpose of the R bits.

Part (b) shows a load from virtual address 00 setting the biBdkits
Part (c) shows a store to virtual address cO setting the blokisand logging its virtual address and old data

[ — ).

(c) store r2, (c0)
[* assume r2=56 */

VA DATA BLK RW
00 17 === 10 [
40 -[—23 oo [T]

LogPtr

TMcount

() abort transaction
/* ALTERNATIVE to (
[*(d) --> (f) */
VA DATA BLK

e)*/
RW

00 12

LogPtr "1€UU""""T")

TMcount m

Part (d) shows a read-modify write of address 78 that sets the fbak@Wbits and logs its virtual address

(40) and old data (

Part (e) shows a transaction commit that decrenfévitount,
andR andWhits.

LogPtr

23).

and, becaus&Mcount is now zero, resets

Part (f) shows an alternative execution where, after part (d), something triggers a conflict that results in abort.
The abort handler restores values from the log before resettiig/it@unt , LogPtr , andR/\Whits.



ory and re-fetched in the same transaction (due to a subtle
interaction with conflict detection (Section 2.2)). CPU
Writing log entries generates less overhead than one
might expect. Log writes will often be cache hits, because
the log is cacheable, thread private, and most transactions
write few blocks. A single entry micro-TLB effectively
pre-translates the log’s virtual address. A small hardware
log buffer reduces contention for the L1 cache port and
hides any L1 cache miss latencies. Since the log is not
needed until abort time, these writes can be delayed in a
hardware log write buffer and either discarded on a com-

User
Registers

Register
Checkpoint
. ——————

Begin PC
Handler PC

Possible_Cycle | |
|

Overflow
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Log Pointer
TMCount
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mit, or performed on an abort or when resources fill. Pro-  Directory Tag | Statd Sharer List
cessors with the ability to buffer four blocks would avoid —
almost all log writes for most of our workloads (Section 3
3.3). L2 Tag | Staff R\W| Data
. . . | |
The principle merit of LogTM’s eager version manage- |
ment is fast commits. To commit, a LogTM processor L1D 1
. . Ta Stal R Data
flash clears its cache’s W bits and resets the thread’s log g
pointer (to discard the transaction’s log).

A drawback of eager version management is that aborts o
are slower. To abort, LogTM must “undo” the transaction c % LogTM-specific state
by writing old values back to their appropriate virtual ~ Figure 2. LogTM hardware overview: the circled
addresses from the log before resetting the W bits. Since a 2aréas indicate added state for LogTM in the
block may be logged more than once, “undo” must pro- proce.ssor,_ caches and cache Con_tr_oner'
ceed from the end of the log back to the beginning (last-in- tratéd in Figure 3-c, after receiving a request from the
first-out). Section 2.3 describes LogTM’s conflict handler diréctory, a processor checks its local state to detect a pos-

interface that allows abort sequencing to be done by Sible conflict. o _
(library) software. A contribution of LogTM is its graceful handling of

To make LogTM more concrete, Figure 1 and its cap- conflict detection even after transactions overflow the
tion “animate” a transaction on LogTM (a-d) with two cache. The key step is extending the directory protocol to

alternative endings: commit (e) and abort (f). forward all potentially conflicting requests to the appropri-
] ] ate processors, even after cache replacements. The process
2.2. Conflict detection works as follows: a processor P replaces a transactional

Conceptually, LogTM performs eager conflict detection block and sets a per-processor overflow bit (like VTM's
in several steps: (a) the requesting processor sends a coheXADT overflow count), the extended directory protocol
ence request to the directory, (b) the directory respondscontinues to forward potentially conflicting requests to P,
and possibly forwards the request to one or more proces-Which nacks to signal a (potential) conflict. Thus, LogTM
sors, (c) each responding processor examines some locatonservatively detects conflicts with slightly-augmented
state todetecta conflict, (d) the responding processors coherence hardware. LogTM's solution daex require a
eachack (no conflict), ornack (conflict) the request, and data structure insertion for a cache replacement (like LTM,
(e) the requesting processelsolvesany conflict (See Sec- UTM, and VTM), a data structure walk to provide a coher-
tion 2.3). ence response (LTM), or data structure clean up at commit

For in-cache blocks, LogTM follows others [2, 11, 14] (LTM, UTM, and VTM).
to augment each cache block with a read (R) bit (see Fig- Specifically, if processor P replacansactionalblock
ure 2), as well as the W bit discussed above. LogTM setsB (i.e., B's R or W bit is set) the directory must continue to
the R bit for each block read during a transaction (see Fig-forward processor Q’s conflicting requests to P. LogTM’s
ure 3-b) and flash clears all R bits, along with the W bits, replacement behavior depends on B’s valid MOESI state:

when a transaction ends. LogTM only sets an R bit for \, p replaces B using a transactional writeback, transi-
valid blocks (MOESI statesModified (M), Owned (O),  tjoning the directory to a new statsticky-M@P” (Figure
Exclusive (E)or Shared (S)and a W bit for blocks inthe  3-d). when Q requests B, the directory in “sticky-M@P”
M state. This ensures that standard directory protocols will forwards the request to P. P has no record of B, but infers

properly forward all potentially-conflicting requests to the the (potential) conflict from the forwarded request (Figure
appropriate processor(s) for conflict detection. As illus- 3.g).
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Figure 3. LogTM Conflict Detection Examples: in-cache detection (a)-(c), and out-of-cache detection (d)-(f).

This example illustrates LogTM'’s conflict detection (but elides version management). The example shows the state
for one block at the directory and in processors P’s and Q’s private caches. Processor P writes the block and
replaces it in a transaction that eventually commits (f). The state of the block includes the cache state and R/W bits
in caches and an owner or sharer list at the directory. In addition to the state for the block, each processor maintains
a TMcount and an overflow bit.

(a) Begin transaction:Processor P begins a transaction, incrementing its TMcount; the block is valid at the direc-
tory only.

(b) P stores the block:Not finding the block in its cache, P sends a get exclusive (GETX) request to the directory
(step). The directory responds with data (the “old” version of this block). When the data arrives, the store com-
pletes creating the “new” version of the data and setting the R and W bits for the block in P’s ca¢he Bstep

sends an ACK to the directory to confirm that it received the datal(3tep

(c) In-cache transaction conflict:In stepld, Q issues a get-shared (GETS) request to the directory. Il step
directory forwards the request to P. In stépP detects the conflict (the W bit is set) and nacks the request. When Q
receives the NACK, it resolves the conflict (not shown). Q sends a NACK to the directory to signal that its request
has completed unsuccessfully (stép

(d) Cache overflow:In stepld, P informs the directory that it intends to update the data value at memory (currently
[old]) by sending a put-exclusive (PUTX) request; In stéphe directory acknowledges the request (ACK). In step

O, P writes the new data back to memory (WB_XACT) and sets its overflow bit. After the writeback, the block is in
state | at P, but P remains the owner of the block at the directory (the “sticky-M” state); memory has the new data.
(e) Out-of-cache conflictiIn stepld, Q re-issues its request from part (c), which the directory again forwards to P
(stepd). Upon receiving a forwarded request for a block not present in its cache, P checks its overflow bit. In step
O, since the overflow bit is set, P assumes a conflict, and nacks Q’s request, signalling a conflict. Asin (c), Q sends
a NACK to the directory to signal that its request has completed unsuccessfullyXstep

(f) Lazy clear of the sticky-M state:P commits its transaction by decrementing its TMcount. Since TMcount is

now zero, P flash clears the R and W bits in its cache and resets the overflow bit. The block is still in the sticky-M
state at the directory. In stép, Q once again retries its request, which is again forwarded to P by the directory (step
0). This time, P’s overflow bit is clear. In stép, P responds indirectly by sending a clean-up (CLEAN) message to

the directory. This message informs the directory that it has valid data, which it sends to[@.(Bteplly, Q

informs the directory that its load completed successfully and the block is left in state E@IQ) (step



S. P silently replaces B, leaving P in the directory’s sharer
list. Conceptually, we consider the directory istitky-3

but the actual state is unchanged. When Q requests B
exclusively, the directory naturally forwards invalidations
to all sharers, enabling P to detect the (potential) conflict.

Table 2: LogTM Interface

User Interface
begin_transaction() Requests that subsequent
dynamic statements form a transaction. Logically saves &

copy of user-visible non-memory thread state (i.e., architgc-
O. P writes B back to the directory, which adds P to the | tural registers, condition codes, etc.). _
sharer list. When Q requests B exclusively, behavior is the gomm'tg“anstaﬁpog“(), : End? SUSCGSSfU' tlgff‘“sa‘a“o“
egun by matchingegin_transaction . Discards
same as for the S replacement above. any transaction state saved for potential abort.
E. P behaves the same as the O replacement above. Alter{ abort_transaction() Transfers control to a previ-
natively, P could silently replace E state blocks, but on a ously-registered conflict handler which should undo and dis-
forwarded request it must assume it was previously in M, | ¢ard work since ladiegin_transaction() and
resulting in more false conflicts (usually) restarts the transaction.
LogTM makes commits very fast: a committing pro- System/Library Interface
cessor simply resets its overflow bit and log pointer, and | initialize_transactions(Thread*
flash clears its cache’s R and W bits. The processor does }hre%d_StéUCtv IAF’FjreSS Iog_ba;e, Address |
not walk data structures to find replaced blocks (like LTM | l09_bound) Initiates a thread's transactional support,
including allocating virtual address space for a thread’s log.

and VTM), but insteadazily clears the sticky states. This
means that processor Q’s request for block B may be for-

As for each thread’s stack, page table entries and physical

memory may be allocated on demand and the thread fails

if it

warded to processor P even after P has committed the| exceeds the large, but finite log size. (Other options are pgssi-
transaction that overflowed. ble if they prove necessary.) We expect this call to be wrapped
Coherence requests forwarded by “sticky” directory with a user-level thread initie_ltioD call (e.g., for P-Threads)
. . register_conflict_handler(void (*)
states are only potential conflicts. Forwarded requests that| .onfiict handler) Registers a function to be called
arrive while P is not in a transaction clearly result from a | when transactions conflict or are explicitly aborted. Conflit
“stale” sticky state from an earlier transaction. The same is | handlers are registered on a per-thread basis. The registered
true if P is in a transaction, but has not overflowed (over- ha”"'”;“‘}“'l‘lj assume tthe ngE[)Wing.f[:)tl'ﬁ-CtC)nditior:.S anc:) t
— il ensure the following post-conditions if the transaction abqrts:
flow ~ 0). In both cases, P clears _the sticky St_a'{e by Conflict Handler Prg-‘éonditionQVIemory blocks written by
sending a CLEAN message to the directory. The directory | the thread (a) have new values in (virtual) memory, (b) aré
then responds to processor Q’s request with the already| still isolated, and (c) have their (virtual) address and pre-wiite
valid data (Figure 3-f). False conflicts only arise when pro- | values inthe log. If a block is logged more than once, its fifst
cessor Q accesses (writes) a block in “sticky-M@P” | entry pushed on the log must contain its pre-transaction vajue.
(“sticky-S@P”) and processor P is currently executing a Igﬁ-lr?]grilgg/iﬁ?éggztgtreecord of pre-transaction user-visible
later transaction that has also overflowed. Processor P| aport post-conditionstf conflict resolution resulted in abort
must conservatively assume that the “sticky” state origi- | the handler calledndo_log_entry() to pop off every
nated during the current transaction and represents an| log entry then calledomplete_abort(restart)
actual conflict (Figure 3-e).
LogTM’s approach of lazily cleaning up sticky states Low-Level Interface e (o
9 PP . y - g up undo_log_entry() Reads a block’s (virtual) address and
makes the most sense if transactions rarely overflow the | pre-write data from the last log entry, writes the data to the
cache (as in our current benchmarks). If overflow occurs | address, and pops the entry off of the log.
more frequently, LogTM’'s single overflow bit can be | complete_abort(bool restart) Ends isolation on
replaced by a more accurate filter (e.g., a per-set bit [2] or | &ll memory blocks. Either restores thread's non-memory
Bloom filter [25]). If overflows become the norm, other state from lasbegin_transaction() ; and resumes exer
: ’ cution there, or returns to conflict handler to handle error con-

approaches may be preferred.
A subtle ambiguity arises when a processor P fetches a

ditions or switch user-level threads.

block B in “sticky-M@P" during a transaction. This case 5 3 LogTM specifics

could arise from a writeback and re-fetch during saene

transaction, requiring only that P set the R and W bits. Interface. Table 2 presents LogTM's interface in three

Alternatively, the writeback could have occurred inesar-

levels. Theuser interface(top) allows user threads to

lier transaction, requiring that P treat this fetch as the first ©€gin commitandabort transactions. All user-level mem-

access to B (and thus log the old value on the first store).Ory references between begin and commit are part of a
LogTM handles this case conservatively, having P set B’s transaction executed wittstrong atomicity [3]—i.e.,

R and W bits and (perhaps redundantly) logging B's old atomic and isolated from all other user threads whether or
value. not they are in transactions. The system/library interface

(middle) lets thread packages initialize per-thread logs and



register a handler to resolve conflicts (discussed below). Recall that when a LogTM processor Q makes a coher-
Conflicts may result in transaction abort, which LogTM ence request, it may get forwarded to processordetect
handles in software by “undoing” the log via a sequence of a conflict. P then responds to Q with an ack (no conflict) or
calls using the low-level interface (bottom). In the com- a nack (conflict). If there is a conflict, processor Q must
mon case, the handler can restart the transaction with userresolveit on receiving the nack. Q could always abort its
visible register and memory state restored to their pre-transaction, but this wastes work (and power). Alterna-
transaction values. Rather than just restart, a handler mayively, Q may re-issue its request (perhaps after a backoff
decide to execute other code after rolling back the transac-delay) in the hope that P had completed its conflicting
tion, (e.g., to avoid repeated conflicts). transaction. Q cannot wait indefinitely for P, however,

Operating System Interaction.LogTM’s model is that  Withoutrisking deadlock (e.g., if P is waiting on Q).
transactions pertain to user-visible state (e.g., registers and 10 guarantee forward progress and reduce aborts, the
user virtual memory) being manipulated by user threads current LogTM implementation logically orders transac-
running in a single virtual address space on top of a com-tions using TLR’s distributed timestamp method [24].
mercial operating system (OS). Currently, the OS operates-09TM only traps to the conflict handler when a transac-
outside of user-level transactions. Thus, the OS never stalldion (a) could introduce deadlock and (b) is logically later

or aborts due to user-level transactions, but cannot cur-than the transaction with which it conflicts. LogTM
rently use transactions itself. detects potential deadlock by recognizing the situation in

The current LogTM implementation still has consider- which one transaction is both waiting for a logically earlier
able OS limitations. LogTM transactions may only invoke transaction and causing a logically earlier transaction to
the trivial subset of system calls which do not require an Wait. This is implemented with a per-processor
“undo,” such assbrkinvoked bymallocand SPARC TLB possible_cycle flag, which is set if a processor sends a
miss traps. LogTM does not currently handle transactional nack to a logically earlier transaction. A processor triggers
data that are both paged out and paged back in within the? conflict only if it receives a nack from a logically earlier
same transaction, or thread switching/migration, as dotransaction while itpossible_cycle  flag is set.

UTM and VTM. 2.4. Generalizing LogTM

Pr(t)cessort_Supportt._LogTM e;<te_|[1|\(jls eacth pr%cTssor W'tth LogTM implementations may also relax some of the
a transaction nesting count (TMcount) and log pointer concrete assumptions made above. First, Section 2.2

(shpwn in Figure 2). TMcount aI!OWS the first, puter rans- yescribes LogTM using a system with private cache hier-
action to subsume subsequent, inner transactions. The Proz,chies and full-mapped directory protocol. The LogTM
cessor also implements the user-level instructibegin

tandab directl he LoaTM interf approach extends easily tocaip multiprocesso(CMP)
Comm't‘?‘” a ‘.’”_to Irectly support the LogTM Interface. o6 the shared L2 cache tracks where blocks are cached
Instructionbeginincrements the TMcount. If the processor

iousl Lin t " de (ie. TM ‘= in per-core L1 caches, effectively acting as a directory.
was previously not in ransaf: lon mode (ie., vicount = Second, the LogTM implementation uses the directory to
0), it checkpoints the thread's architectural registers to filter coherence requests when transactions overflow.

shadow register file. Although logically part of the log, Alternative LogTM implementations could use other

Iaz_y tuE{)date sc_amanttrllcs ﬁﬁgctwely aI_IO\(;v fr_egtlslterl Cr;eCk' coherence protocols (e.g., snooping), extended with appro-
boints 1o remain In the shadow copy Indefinitely. Instruc- priate filters to limit false conflicts. Third, LogTM uses

tion commit decrements TMcount. If now zero, the hardware to save user-visible register state and restore it

processor commits the outermost transaction, resetting th%n transaction abort (Section 2.3). This could also be done
overflow bit and flash clearing the cache’s R and W bits. by the compiler or run-time support

Instruction abort triggers a trap to the software conflict
handler, which aborts the transaction. On completion of
the abort, the handler resets the TMcount, overflow bit, simple, but rigid policy may result in convoys (e.g., if a

and log pointer. transaction gets pre-empted) or priority inversion (e.g., if a
Conflict Resolution.When two transactions conflict, at |ogically earlier transaction holds a block needed by a
least one transaction must stall (risking deadlock) or aborthigher priority, but logically later transaction). Future
(risking live-lock). The decision can be made quickly, but work will investigate having the (software) conflict han-
myopically, by hardware, or slowly, but carefully, by a dler invoke an application-level contention manager that
software contention manager [26]. Ultimately, a hybrid jmplements more flexible policies. To do this, LogTM
solution might be best, where hardware seeks a fast resoluneeds a few additional mechanisms, such as allowing a
tion, but traps to software when problems persist. processor P to abort another thread’s transaction, particu-
larly one that is not actively running on a processor.

Finally, the current LogTM implementation uses times-
tamps to prioritize transactions and resolve conflicts. This



Table 3. System model parameters for(i=0; i<10000; ++i){
begin_transaction();

new_total = total.count + 1;

System Model Settings

Processory 32, 1 GHz, single-issue, in-order, npn- private_data[id].count++;
memory IPC=1 total.count = new_total;
L1 Cache 16 kB 4-way split, 1-cycle latency commit_transaction();
- think();
L2 Cache| 4 MB 4-way unified, 12-cycle latendy ) 0
Memory 4 GB 80-cycle latency Figure 4. Shared-counter microbenchmark (main
loop)

Directory Full-bit vector sharer list; migratory
sharing optimization;
Directory cache, 6-cycle latency

Interconnection| Hierarchical switch topology, 14-cyclg
Network link latency

60 —

Because LogTM stores the old values in the user pro-

gram’s address space, these mechanisms appear possible. II\E/I)E:PS
A sufficiently robust software contention manager may —+— LogTM

also obviate the low-level timestamp mechanism.

3. Evaluation

Execution Time (in millions of cycles)
8
|

This section describes the simulation of LogTM and a \HH"'H"‘H"‘HH-#H-G-HQ-H-H
baseline system using spin locks (Section 3.1) and com- O L L B e
pares them using a microbenchmark (Section 3.2) and par- 10 20 30
allel applications from the SPLASH-2 suite [32] (Section Benchmark Threads (on 32 processors)

3.3). Figure 5. Execution time for I__ogTM trans_actions,
test-and-test-and-set locks with exponential backoff
3.1. Target System & Simulation Model (EXP) and MCS locks (MCS).

LogTM and the baseline system share the same basid® the memory model. To implement t.begininstruction,
SPARC/Solaris multiprocessor architecture, summarizedN€ memory simulator uses a Simics call to read the
in Table 3. Each system has 32 processors, each with tWOthread’s architectural registers and create a checkpoint.
levels of private cache. A MOESI directory protocol main- During a transaction, the memory simulator models_ the
tains coherence over a high-bandwidth switched intercon-1°9 upda-tes.. After. an abort rolls bgcl_< the log, the register
nect. Though single-issue and in-order, the processorcNeCkpoInt is written back to Simics, and the thread
model includes an aggressive, single-cycle non-memoryreswlrtS the transaction.

IPC. The detailed memory system model includes most3.2. Microbenchmark Analysis
timing intricacies of the transactional memory extensions. . . .

Some TM systems advocate special transactional load This section uses a shared-counter mlqro-benchmgrk 0
instructions for data likely to be stored soon [14]. This shovv_ that LogT™ perf.orms yvell undgr high conter_mon,
support avoids obtaining read permission and then IaterdespIte frequent conflicts. Figure 4 |IIu§trates a S|.mple,
write permission (with implications on both traffic and mqu-threade_d program that generates high contention fqr
conflicts). The LogTM implementation obtains a similar a shared variable. Each thread repeatedly tries to atomi-

effect using awrite set predictorthat tracks the addresses cally fetch-and-increment a single shared counter and

of 64 blocks recently loaded and then stored within a update some private state with a random think  time
transaction. between accesses (avg. 245). This delay generates

The simulation framework usaértutech Simicg17] in opportunities for parallelism and allows improved perfor-

conjunction with customized memory models built on ma'?g;a Vggg]m;rligzlr? trl:]eeids'. ¢ . and
Wisconsin GEMJ19, 31]. Simics, a full-system func- P ' egin_transaction()

tional simulator, accurately models the SPARC architec- Z\cr)\rgzgftlrggizc\:\;ﬁ?\oex on:r?tlilzl thZilc?ftfe(é;g;SKAagg'ltgis
ture but does not support transactional memory. Support b ’

for the LogTM interface was added using Simics “magic” [21], or Lotg_]TMt.transa]\cctloFg (gl(_)(())g_'lt'M).t.Flguref 5thd|sptl]ays d
instructions: special no-ops that Simics catches and passetahe execution times for 11, lerations ot the share



Table 4. SPLASH-2 Benchmarks and Inputs

Synchronization

Benchmark Input Methods
Barnes 512 bodies locks on tree nodps o
]
Cholesky 14 task queue locks g

Ocean| contiguous par barriers

titions, 258
Radiosity room task queue & buffe
locks

BARNES CHOLESKY OCEAN RADIOSITY RAYTRACE RAYTRACE WATER
-BASE -OPT

Raytrace-| small image work list & counter

Base (teapot) locks ) )
Figure 6. SPLASH performance comparison:
Raytrace- small work list & counter execution time of “transactionized” SPLASH
Opt | image(teapot) locks benchmarks on LogTM normalized to the
performance of the benchmarks with lock-based
Water N- | 512 molecules barriers synchronization on the baseline system
Squared

Barnes 13%). Other speedups are good (Cholesky 23%
counter micro-benchmarks for varying number of threads. and Radiosity 33%). Finally, Raytrace speedup is “off
For locks, results confirm that MCS locks are slower than scale” with Raytrace-Base speeding up 2.7x and Raytrace-
EXP with little contention (less than 15 threads), but faster Opt 4.2x!

under high contention. These speedups occur because LogTM (and other TM

In contrast, the LogTM implementation fulfills the systems) enableritical section parallelism(an oxymo-
potential of transactional memory by always performing ron) by allowing multiple threads to operate concurrently
better than either lock implementation and consistently in the same critical section. For example, LogTM allows
benefiting from more threads. Moreover, more detailed an average of 3.2 concurrent threads in Raytrace-Base’s
analysis (not shown) reveals that, for this simple micro- most frequently-executed critical section, as measured by
benchmark, LogTM never wastes work by aborting a dividing the sum of each thread’s cycles in the critical sec-
transaction, but rather stalls transactions when conflictstion by the total cycles when one or more threads was in
occur. the critical section. Raytrace-Opt increases the critical sec-
3.3. SPLASH Benchmarks t?on parallelism to 5.5. In contrast, lock-based critical sec-

tion parallelism is always one.

This section evaluates LogTM on a subset of the | ogTM makes two central design decisions that
SPLASH-2 benchmarks. The benchmarks described inassume that commits occur much more frequently than
Table 4 use locks in place of, or in addition to, barriers. aports. First, by writing new values in place, eager version
The results show that LogTM improves performance rela- management makes commits faster than aborts. Second,

tive to locks. LogTM traps to software to handle conflicts and abort
The LogTM version of the SPLASH-2 benchmarks transactions. The results in column four of Table 5 support

replaces locks with begin_transaction() and  these decisions: only 1-2% of transactions end in an abort

commit_transaction() calls. Barriers and other syn-  for all benchmarks, except Barnes, in which 15% of trans-

chronization mechanisms are not changed. The SPLASH-actions abort.
2 benchmarks use PARMACS Iibrary locks, which use LogT™M makes aborts less common by using stalls to
test-and-test-and-set locks but yield the processor after gesolve conflicting transactions when deadlock is not pos-
pre-determined number of attempts (only one for thesesible (Section 2.3). Column three of Table 5 shows the
experiments). Raytrace has two versions: Raytrace-Basdraction of transactions that stalled before committing,
and Raytrace-Opt, which eliminates false sharing betweenyhile column four gives the fraction that aborted. The
two transactions. fraction of transactions that conflicted with at least one
Figure 6 shows the speedup from using LogTM trans- other transaction is the sum of columns three and four. For
actions versus locks for the SPLASH-2 benchmarks, run-several benchmarks (e.g., Cholesky, Radiosity, and Ray-
ning 32 user threads on a 32-way multiprocessor. All trace-Opt), LogTM stalls transactions 2-5 times more

LogTM versions are faster than the lock-based ones. Someyften than it aborts them. Raytrace-Base stalls nearly 25%
speedups are modest (Water 4% faster, Ocean 12%, angf all transactions!



Table 5: Selected transactional data Table 6: Cumulative distribution of write set sizes (in
64-byte blocks)

=
c 5 < © © (N <t
o] (="; *g g g Benchmark M v v ¥ v 3
Benchmark 8 & S B T2 > S N N g |2
[ S < [ B =
#* > X o Q y [
N &4 x Barnes| 44.5 85. 95.0 953 100 %5
S
Cholesky | 100f 100 10d 100 10p 3
(¢
Barnes 3,067 4.89 15.8 5.50 2719 Ocean 100 104 100 100 100 1
4
Cholesky 22,309 45 2.0y 1.68 82|3 Radiosity | 97.0| 99.6 99.4 100 100 d7
. 52 . (]
Ocean| 6693 030 05 0112 190 Raytrace-Basd 100 10p 100 100 1p0 |3
Radiosity | 279,750 3.9 1.08 1.64 827 Raytrace-Opt| 104 10 100 100 1do 3
Raytrace-Base 48,285 24(7 1.24 1.p6 99.9 Water 100 100 100 100 10b b
Raytrace-Opt| 47,884 2.04 0.41 1.97 99.9
Water| 35308 00d 011 1.98 9ls gnd free list pointer) to different bloc,ks. This optlmlzatlgn
improved the lock-based Raytrace’s performance a little

and LogTM Raytrace’s a lot (due to eliminating conflicts
between a frequent but short transaction that accesses the
ray identifier and a less frequent but long transaction that
accesses the free list pointer). LogTM shares this limita-
tion with other transactional memory implementations [2,

2 60 1y ,,’/ Eﬁrwz( 14, 25], except TCC [11], which optionally tracks transac-
2 ! -7 — chan y tions’ read and write sets at word or byte granularity.

= 40 g Radiosity These experiments also alleviate two concerns about
P — — —. RT-base LogTM’s eager version management. First, LogTM must

204 L7 —— RT-opt read a data block before writing it to the log. This read is
1’,’ Water extra work if the data would not otherwise be read. Fortu-

0 I . I . I nately, the final column of Table 5 shows that (except for
20000 40000 60000 Barnes) most data blocks are read before written within a
Stall Duration (in cycles) transaction. Thus, LogTM does not usually add the cost of

Figure 7. Stall distribution an additional read. Second, writing LogTM’s log could

¢ significantly increase cache write bandwidth. Fortunately,

but represents lost opportunity. A potential third alterna- P€c@use the log does not need to be valid until an abort
tive is to switch to another thread, perhaps making occurs, a LogTM implementation could usé-dlock log

progress on another transaction. Such an action requireg‘”ite bufferto elide Iog writes for transactions that wrke
additional enhancements to LogTM, such as the software®" fewer blocks (Section 2.1). Table 6 shows the cumula-

contention manager discussed in Section 2.4. Figure 7 pre—t've d|str.|bl.Jt|on of transaction write-set size. A four entry
. o . buffer eliminates all log writes for committed transactions

sents the cumulative stall distribution (in cycles) and .
. . in Cholesky, Ocean, Raytrace, and Water and all but 3%

shows that while many stalls are shorter than a typical

o ) . 0
software context switch, the distribution has a heavy tail. for Radiosity. A 16-entry buffer eliminates all but 0.4% of

An enhanced LogTM implementation might stall for a Radiosity's writes and all but 5% of Bames's.
while in hardware before trapping to a software contention 4. Discussion and Related Work
manager to possibly abort and switch threads.

The Raytrace-Base stall behavior also reveals a limita-
tion of TM systems that build on cache cohereriReduc-
ing false sharing with TM is even more important that
reducing it with locks.With TM, false sharing creates
(apparent) conflicts that can stall or abort entire transac-
tions. Raytrace-Opt eliminates most false sharing in Ray-
trace-Base by moving two global variables (ray identifier

Stalling a transaction wastes less work than aborting i

We developed and evaluatédg-based Transactional
Memory (LogTM)that (a) always stores new values “in
place,” to make commits faster than aborts, (b) extends a
MOESI directory protocol to enable fast conflict detection
and transaction commits, even when data has been evicted
from caches, and (c) handles aborts in software, since they
are uncommon. LogTM is most-closely related to TCC,

10



LTM, UTM, and VTM, but we see substantial differences flict detection mechanisms for a different purpoaehiev-
in both version management and conflict detection. ing serial semanticfl, 7, 8, 10, 22, 28, 29, 33, 34]. In fact,

TCC. Whereas TCC version management keeps new datd?0th Garzaran et al. [7] and Zhang et al. [33, 34] use the
in a speculative cache until commit, when they are written Mechanism of undo logs for this different purpose. Others
through to a shared L2 cache, LogTM can operate with speculatively turn explicit parallel synchronization (e.g.,
writeback caches and generates no traffic at commit. Inlocks) into implicit transactions when resources are sulffi-
TCC's lazy conflict detection, other transactions learn Cient[20, 23, 24], but fall back on explicit synchronization
about transaction T's conflicting store when T commits, other_W|se. Finally, many researchers seek all software TM
not earlier when the store is executed. In contrast, LogTM Solutions [12, 13, 18, 27].

uses eager conflict detg_ctlon to Fietect con_fllcts yvhen the5_ Conclusions and Future Work

store is executed to facilitate earlier corrective action.
LTM. Like LogTM, LTM keeps new data in cache when it ) . 2
can. However, when a transaction overflows a set in the(aSS'Sted) transactional memory. Lo_gTM_ optimizes for the
cache, LTM stores new values in an uncacheable in—mem-e_XpeCteOI common case of small (|_.e., m_-cache) transac-
ory hash table. On commit, LTM copies overflowed data to tions, ye_t efficiently supports ij_nammally infrequent large
its new location. In contrast, LogTM allows both old and transactions. LogTM alsp opt|m|zes_for the expected com-
new versions to be cached (often generating no memorymon case that transactions commit, using eager version
traffic) and never copies data on commit. Whereas an LTM maCagEme?t and('jsoflitwa_:_elzvlabort hatndlmg. | chall
processor must search a table in uncacheable memory on -90KINg forward, LogTIV presents several challenges

an incoming request to any set that has overflowed a blocka_nd oppo_rtumnes. Challenge; include the negd for better
virtualization to support paging, context switches, and

during the transaction, a LogTM processor needs check . : ; . .
only local state allowing it to respond immediately to a other operating syste_m mte_ractlons W'thOUt L.”.]due runtime
directory request. overhead or complex_lty. This work also identifies the chal-

i . lenge that false sharing presents to all TM systems based
UTM. Like LogTM, UTM version management stores on cache coherence. Opportunities include generalizing
new values in place and old values in a log. UTM's 109 is | 45T\ to a true hardware-software hybrid where hard-
larger, however, because it contains blocks that are targets, 5.0 implements mechanisms and software sets policies.
of both loads and stores, whereas LogTM's log only con- | 4q1\s jog structure also lends itself to a straight-for-
tains blocks targeted by stores. UTM uses this extra 109,y5rq extension to nested transactions. Finally, LogTM is
state to provide more complete virtualization of conflict implemented in a full-system simulation environment and

detection, allowing transactions to survive paging, context i qvailable under GPL in the GEMS distribution [19].
switching and thread migration. UTM's conflict detection

must, however, walk the log on certain coherence requests6. Acknowledgments
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