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Abstract

Transactional memory (TM) simplifies parallel program-
ming by guaranteeing that transactions appear to execute
atomically and in isolation. Implementing these properties
includes providing dataversion managementfor the simul-
taneous storage of both new (visible if the transaction com-
mits) and old (retained if the transaction aborts) values.
Most (hardware) TM systems leave old values “in place”
(the target memory address) and buffer new values else-
where until commit. This makes aborts fast, but penalizes
(the much more frequent) commits.

In this paper, we present a new implementation of trans-
actional memory, Log-based Transactional Memory
(LogTM), that makes commits fast by storing old values to a
per-thread log in cacheable virtual memory and storing new
values in place. LogTM makes two additional contributions.
First, LogTM extends a MOESI directory protocol to enable
both fast conflict detection on evicted blocks and fast com-
mit (using lazy cleanup). Second, LogTM handles aborts in
(library) software with little performance penalty. Evalua-
tions running micro- and SPLASH-2 benchmarks on a 32-
way multiprocessor support our decision to optimize for
commit by showing that only 1-2% of transactions abort.

1. Introduction

The promise of plentiful thread support from chip multi-
processors is re-energizing interest intransactional memory
(TM) [14] systems, implemented in software only [12, 13,
18, 27] or, our focus, in hardware (with some software sup-
port) [2, 11, 14, 25]. TM systems must provide transaction
atomicity (all or nothing) andisolation (the partially-com-
plete state of a transaction is hidden from other transactions)
[9]. Providing these properties requires dataversion man-
agementandconflict detection, whose implementations dis-
tinguish alternative TM proposals.

Version managementhandles the simultaneous storage of
bothnewdata (to be visible if the transactioncommits) and
old data (retained if the transactionaborts). At most one of
these values can be stored “in place” (the target memory
address), while the other value must be stored “on the side”

(e.g., in speculative hardware). On a store, a TM system c
use eager version managementand put the new value in
place, or uselazy version managementto (temporarily)
leave the old value in place.

Conflict detectionsignals an overlap between thewrite
set(data written) of one transaction and the write set orread
set (data read) of other concurrent transactions. Confl
detection is calledeager if it detects offending loads or
stores immediately andlazy if it defers detection until later
(e.g., when transactions commit).

The taxonomy in Table 1 illustrates which TM proposa
use lazy versus eager version management and con
detection.

TCC. Hammond et al.’sTransactional Memory Coherence
and Consistency (TCC)[11] uses both lazy version manage
ment and lazy conflict detection, similar to the fewdatabase
management systems (DBMSs)that use optimistic concur-
rency control (OCC) [16]. TCC buffers stores at the proce
sor’s L1 cache and overwrites the L2 cache and memo
only on commit. TCC detects conflicts with a pending tran
action only when other transactions commit (not when da
is first stored).

LTM. Ananian et al.’sLarge Transactional Memory (LTM)
[2] uses lazy version management and eager conflict det
tion. LTM keeps the old value in main memory and store
the new value in cache, coercing the coherence protoco
store two different values at the same address. Repea
transactions which modify the same block, however, requ
a writeback of the block once per transaction. On cac
overflows, LTM spills the new values to an in-memory has
table. In contrast to TCC, LTM uses eager conflict detectio
invoked when conflicting loads or stores seek to execu
LTM conflict detection is complicated by the cache overflo
case. When the controller detects a potential conflict with
overflowed block, it must walk the uncacheable in-memo
hash table before responding (and possibly aborting).

VTM. Rajwar et al.’sVirtual Transactional Memory (VTM)
[25] also combines lazy version management with eag
conflict detection. Memory always holds old values. O
cache overflows, VTM writes the new (and a second copy
1
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old) values to an in-memory table (XADT). VTM does not
specify version management when data fits in cache, but
rather recommends other proposals [2, 11, 14, 24, 30].

UTM. Ananian et al.’sUnbounded Transactional Memory
(UTM) [2] proposes using both eager version management
and eager conflict detection. This follows the example of
the vast majority of DBMSs that useconservative concur-
rency control (CCC)[6]. However, UTM’s implementa-
tion adds significant complexity, including a pointer per
memory block and a linked-list log of reads as well as
writes.

Ideally, transactional memory should use eager version
management and eager conflict deflection, because:
• Eager version management puts new values “in place,”

making commits faster than aborts. This makes sense
when commits are much more common than aborts,
which we generally find.

• Eager conflict detection finds conflicts early, reducing
wasted work by conflicting transactions. This makes
sense, since standard coherence makes implementing
eager conflict detection efficient (as LTM and VTM
find).

To this end, we proposeLog-based Transactional Mem-
ory (LogTM),which we argue makes eager conflict detec-
tion and eager version management practical in a TM
system built on a multiprocessor with private caches kept
coherent with a directory protocol. LogTM implements
eager version management by creating a per-threadtrans-
action log in cacheable virtual memory, which holds the
virtual addresses and old values of all memory blocks
modified during a transaction. LogTM detects in-cache
conflicts using a directory protocol and read/write bits on
cache blocks (like many other proposals). LogTM novelly
extends the directory protocol (e.g., with a “sticky-M”
state) to perform conflict detection even after replacing
transactional data from the cache. In LogTM, a processor
commits a transaction by discarding the log (resetting a
log pointer) and flash clearing the read/write bits. No other
work is needed, because new values are already in place
and, in another innovation, LogTM lazily clears “sticky”

states. On abort, LogTM must walk the log to restore va
ues. We find aborts sufficiently rare that we use a trap ha
dler to perform them in (library) software. For ease o
implementation, the processor whose coherence requ
causes a conflict always resolves the conflict by waiting (
reduce aborts) or aborting (if deadlock is possible). Cu
rently, LogTM does not permit thread movement or pagin
within transactions, as do UTM and VTM.

Contributions: In developing LogTM, we make the fol-
lowing contributions:
• We develop and evaluate a TM system that uses eag

version management to store new values “in place,”
making commits faster than aborts. On commit, no da
moves (even when transactions overflow the cache).

• We efficiently allow cache evictions of transactional
data by extending a MOESI directory protocol to enabl
(a) fast conflict detection on evicted blocks and (b) fa
commit by lazily resetting the directory state. LogTM
doesnot require log or hash table walks to evict a cach
block, detect a conflict, or commit a transaction, but
works best if evictions of transactional data are uncom
mon.

• We handle aborts via a log walk by (library) software
with little performance penalty, since simulation result
with micro- and SPLASH-2 benchmarks on Solaris 9
confirm that aborts are much less common than com-
mits.

2. LogTM: Log-based Transactional Memory

LogTM builds upon a conventional shared memor
multiprocessor: each processor has two (or more) levels
private caches kept coherent by a MOESI directory prot
col [5]. This section describes LogTM’s eager versio
management (Section 2.1), eager conflict detection (S
tion 2.2), and other specifics (Section 2.3 and Section 2.

2.1. Version management

A defining feature of LogTM is its use ofeager version
management, wherein new values are stored “in place,
while old values are saved “on the side.” LogTM saves o
values in abefore-image log, like most DBMSs [6]. Spe-
cifically, LogTM saves old values in aper-thread log in
cacheable virtual memory. On creation, each thread allo-
cates virtual memory for its log and informs the LogTM
system of its start and end. On a store within a transactio
LogTM hardware appends to the log the virtual address
the stored block and the block’sold value. To suppress
redundant log writes, LogTM augments the state of ea
cached block with awrite (W) bit [2, 11, 14] that tracks
whether a block has been stored to (and logged). Red
dant log entries may still arise in the (uncommon) case th
a block with the W bit set gets both written back to mem

Table 1: A Transactional Memory (TM) taxonomy

Version Management

Lazy Eager

C
on

fli
ct La

zy OCC DBMSs [16]
Stanford TCC [11]

none

E
ag

er MIT LTM [2]
Intel/Brown VTM [25]
(on cache conflicts)

CCC DBMSs [6]
MIT UTM [2]
LogTM [new]
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Figure 1.  Execution of a Transaction with Two Alternative Endings
Part (a) displays a logical view of a thread that has just begun a transaction by incrementing itsTMcount . We
assume that the thread’s log begins at virtual address (VA) 1000 (all numbers in hexadecimal), but is empty
(LogPtr=LogBase ). LogTM divides the virtual address (VA) space into data blocks whose value in this
example is given as a two-digit word and seven dashes (for the other eight-byte words of a 64-byte block).
Each data block has associated read (R) and write (W) bits. Circles indicate changes from the previous snap-
shot. Section 2.2 explains the purpose of the R bits.

Part (b) shows a load from virtual address 00 setting the block’sR bit.

Part (c) shows a store to virtual address c0 setting the block’sWbit and logging its virtual address and old data
(34 --------).

Part (d) shows a read-modify write of address 78 that sets the block’sR andW bits and logs its virtual address
(40) and old data (------- 23).

Part (e) shows a transaction commit that decrementsTMcount, and, becauseTMcount  is now zero, resets
LogPtr  andR andW bits.

Part (f) shows an alternative execution where, after part (d), something triggers a conflict that results in abort.
The abort handler restores values from the log before resetting theTMcount , LogPtr , andR/W bits.

VA  DATA BLK  R W

1000

  c0 34 -------  0 0

  40 ------- 23  0 0

  00 12 -------  0 0

1040
1080

 (a) begin_transaction

 LogBase  1000

 LogPtr   1000

 TMcount  1

VA  DATA BLK  R W

1000 c0 34----- -

  c0 56 -------  0 1

  40 ------- 23  0 0

  00 12 -------  1 0

1040 -
1080

 (c) store r2, (c0)

 LogBase  1000

 LogPtr   1048

TMcount 1

   /* assume r2=56 */

VA  DATA BLK  R W

1000

  c0 34 -------  0 0

  40 ------- 23  0 0

  00 12 -------  1 0

1040
1080

 (b) load r1, (00)

 LogBase  1000

 LogPtr   1000

 TMcount 1

     /* r1 gets 12 */

VA  DATA BLK  R W

1000 c0 34------

  c0 56 -------  0 1

  40 ------- 24  1 1

  00 12 -------  1 0

1040 -40 ------
1080 -23

 (d) load r3, (78)

 LogBase  1000

 LogPtr   1090

 TMcount 1

     r3 = r3 + 1
     store r3, (78)

VA  DATA BLK  R W

1000 c0 34------

  c0 56 -------  0 0

  40 ------- 24  0 0

  00 12 -------  0 0

1040 -40 ------
1080 -23

 (e) commit transaction

 LogBase  1000

 LogPtr   1000

 TMcount  0

VA  DATA BLK  R W

1000 c0 34------

  c0 34 -------  0 0

  40 ------- 23  0 0

  00 12 -------  0 0

1040 -40 ------
1080 -23

 (f) abort transaction

 LogBase  1000

 LogPtr   1000

 TMcount  0

 /* ALTERNATIVE to (e) */
    /* (d) --> (f) */
3
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ory and re-fetched in the same transaction (due to a subtle
interaction with conflict detection (Section 2.2)).

Writing log entries generates less overhead than one
might expect. Log writes will often be cache hits, because
the log is cacheable, thread private, and most transactions
write few blocks. A single entry micro-TLB effectively
pre-translates the log’s virtual address. A small hardware
log buffer reduces contention for the L1 cache port and
hides any L1 cache miss latencies. Since the log is not
needed until abort time, these writes can be delayed in a
hardware log write buffer and either discarded on a com-
mit, or performed on an abort or when resources fill. Pro-
cessors with the ability to buffer four blocks would avoid
almost all log writes for most of our workloads (Section
3.3).

The principle merit of LogTM’s eager version manage-
ment is fast commits. To commit, a LogTM processor
flash clears its cache’s W bits and resets the thread’s log
pointer (to discard the transaction’s log).

A drawback of eager version management is that aborts
are slower. To abort, LogTM must “undo” the transaction
by writing old values back to their appropriate virtual
addresses from the log before resetting the W bits. Since a
block may be logged more than once, “undo” must pro-
ceed from the end of the log back to the beginning (last-in-
first-out). Section 2.3 describes LogTM’s conflict handler
interface that allows abort sequencing to be done by
(library) software.

To make LogTM more concrete, Figure 1 and its cap-
tion “animate” a transaction on LogTM (a-d) with two
alternative endings: commit (e) and abort (f).

2.2.  Conflict detection

Conceptually, LogTM performs eager conflict detection
in several steps: (a) the requesting processor sends a coher-
ence request to the directory, (b) the directory responds
and possibly forwards the request to one or more proces-
sors, (c) each responding processor examines some local
state todetecta conflict, (d) the responding processors
eachack (no conflict), ornack (conflict) the request, and
(e) the requesting processorresolvesany conflict (see Sec-
tion 2.3).

For in-cache blocks, LogTM follows others [2, 11, 14]
to augment each cache block with a read (R) bit (see Fig-
ure 2), as well as the W bit discussed above. LogTM sets
the R bit for each block read during a transaction (see Fig-
ure 3-b) and flash clears all R bits, along with the W bits,
when a transaction ends. LogTM only sets an R bit for
valid blocks (MOESI states:Modified (M), Owned (O),
Exclusive (E),or Shared (S))and a W bit for blocks in the
M state. This ensures that standard directory protocols will
properly forward all potentially-conflicting requests to the
appropriate processor(s) for conflict detection. As illus-

trated in Figure 3-c, after receiving a request from th
directory, a processor checks its local state to detect a p
sible conflict.

A contribution of LogTM is its graceful handling of
conflict detection even after transactions overflow th
cache. The key step is extending the directory protocol
forward all potentially conflicting requests to the appropr
ate processors, even after cache replacements. The pro
works as follows: a processor P replaces a transactio
block and sets a per-processor overflow bit (like VTM’
XADT overflow count), the extended directory protoco
continues to forward potentially conflicting requests to
which nacks to signal a (potential) conflict. Thus, LogTM
conservatively detects conflicts with slightly-augmente
coherence hardware. LogTM’s solution doesnot require a
data structure insertion for a cache replacement (like LTM
UTM, and VTM), a data structure walk to provide a cohe
ence response (LTM), or data structure clean up at comm
(LTM, UTM, and VTM).

Specifically, if processor P replacestransactionalblock
B (i.e., B’s R or W bit is set) the directory must continue t
forward processor Q’s conflicting requests to P. LogTM
replacement behavior depends on B’s valid MOESI stat

M. P replaces B using a transactional writeback, tran
tioning the directory to a new state “sticky-M@P” (Figure
3-d). When Q requests B, the directory in “sticky-M@P
forwards the request to P. P has no record of B, but infe
the (potential) conflict from the forwarded request (Figur
3-e).

Tag     State    R/W       Data

CPU

L1 D

L2

Register
Checkpoint

 Log Base
 Log Pointer
  TMCount

 PC  Begin PC
  Handler PC

Directory

Cache Controller   Timestamp

 Possible_Cycle
  Overflow

LogTM-specific state

Figure 2. LogTM hardware overview: the circled
areas indicate added state for LogTM in the
processor, caches and cache controller.

Tag     State    Sharer List

Registers
User

Tag     State    R/W       Data
4
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Idle [old]

Directory

I (- -) [none]P

(a)

TMcount: 1
Overflow: 0
begin_transaction

M@P  [old]

Directory

M (R W) [new]P

(b)

TMcount: 1
Overflow: 0

G
ETX

DAT
A

AC
K

M@P [old]

Directory

M (R W) [new]P

(c)

TMcount: 1
Overflow: 0

Q
TMcount: 1

Overflow: 0

G
ETS

Fwd_
GETS

NACK
conflict!

N
AC

K

M@P [new]

Directory

I (- -) [ ]P

(d)

TMcount: 1
Overflow: 1

PUTX

ACK

W
B_X

ACT

sticky
M@P [new]

Directory

I (- -) [ ]P

(e)

TMcount: 1
Overflow: 1

Q
TMcount: 1

Overflow: 0
G

ETS

Fwd_
GETS

NACK

conflict!
N

AC
K

sticky
E@Q [new]

Directory

I (- -) [ ]P

(f)

TMcount: 0
Overflow: 0

Q
TMcount: 1

Overflow: 0

G
E

TS

Fwd_
GETS

A
C

K

I (- -) [ ] E (R -) [new]

CLE
AN

DATA

I (- -) [ ]

commit_transaction

➋
➊

➌

➊
➋

➌

➍

➊

➋
➌

➊➋

➌

➊

➋
➌

➍
➎

➍

Figure 3. LogTM Conflict Detection Examples: in-cache detection (a)-(c), and out-of-cache detection (d)-(f).
This example illustrates LogTM’s conflict detection (but elides version management). The example shows the st
for one block at the directory and in processors P’s and Q’s private caches. Processor P writes the block and
replaces it in a transaction that eventually commits (f). The state of the block includes the cache state and R/W b
in caches and an owner or sharer list at the directory. In addition to the state for the block, each processor mainta
a TMcount and an overflow bit.
(a) Begin transaction:Processor P begins a transaction, incrementing its TMcount; the block is valid at the dire
tory only.
(b) P stores the block:Not finding the block in its cache, P sends a get exclusive (GETX) request to the director
(step➊). The directory responds with data (the “old” version of this block). When the data arrives, the store com
pletes creating the “new” version of the data and setting the R and W bits for the block in P’s cache (step➋). P
sends an ACK to the directory to confirm that it received the data (step➌).
(c) In-cache transaction conflict:In step➊, Q issues a get-shared (GETS) request to the directory. In step➋, the
directory forwards the request to P. In step➌, P detects the conflict (the W bit is set) and nacks the request. When Q
receives the NACK, it resolves the conflict (not shown). Q sends a NACK to the directory to signal that its reque
has completed unsuccessfully (step➍).
(d) Cache overflow:In step➊, P informs the directory that it intends to update the data value at memory (currently
[old]) by sending a put-exclusive (PUTX) request; In step➋, the directory acknowledges the request (ACK). In step
➌, P writes the new data back to memory (WB_XACT) and sets its overflow bit. After the writeback, the block is in
state I at P, but P remains the owner of the block at the directory (the “sticky-M” state); memory has the new da
(e) Out-of-cache conflict:In step➊, Q re-issues its request from part (c), which the directory again forwards to P
(step➋). Upon receiving a forwarded request for a block not present in its cache, P checks its overflow bit. In st
➌, since the overflow bit is set, P assumes a conflict, and nacks Q’s request, signalling a conflict. As in (c), Q sen
a NACK to the directory to signal that its request has completed unsuccessfully (step➍).
(f) Lazy clear of the sticky-M state:P commits its transaction by decrementing its TMcount. Since TMcount is
now zero, P flash clears the R and W bits in its cache and resets the overflow bit. The block is still in the sticky
state at the directory. In step➊, Q once again retries its request, which is again forwarded to P by the directory (step
➋). This time, P’s overflow bit is clear. In step➌, P responds indirectly by sending a clean-up (CLEAN) message to
the directory. This message informs the directory that it has valid data, which it sends to Q (step➍). Finally, Q
informs the directory that its load completed successfully and the block is left in state E@Q (step➎).
5



f a

or
ce
nd

-

it
si-
d

d

s:

t
e.
e

-

S. P silently replaces B, leaving P in the directory’s sharer
list. Conceptually, we consider the directory in “sticky-S”
but the actual state is unchanged. When Q requests B
exclusively, the directory naturally forwards invalidations
to all sharers, enabling P to detect the (potential) conflict.

O. P writes B back to the directory, which adds P to the
sharer list. When Q requests B exclusively, behavior is the
same as for the S replacement above.

 E. P behaves the same as the O replacement above. Alter-
natively, P could silently replace E state blocks, but on a
forwarded request it must assume it was previously in M,
resulting in more false conflicts.

LogTM makes commits very fast: a committing pro-
cessor simply resets its overflow bit and log pointer, and
flash clears its cache’s R and W bits. The processor does
not walk data structures to find replaced blocks (like LTM
and VTM), but insteadlazily clears the sticky states. This
means that processor Q’s request for block B may be for-
warded to processor P even after P has committed the
transaction that overflowed.

Coherence requests forwarded by “sticky” directory
states are only potential conflicts. Forwarded requests that
arrive while P is not in a transaction clearly result from a
“stale” sticky state from an earlier transaction. The same is
true if P is in a transaction, but has not overflowed (over-
flow = 0). In both cases, P clears the “sticky” state by
sending a CLEAN message to the directory. The directory
then responds to processor Q’s request with the already
valid data (Figure 3-f). False conflicts only arise when pro-
cessor Q accesses (writes) a block in “sticky-M@P”
(“sticky-S@P”) and processor P is currently executing a
later transaction that has also overflowed. Processor P
must conservatively assume that the “sticky” state origi-
nated during the current transaction and represents an
actual conflict (Figure 3-e).

LogTM’s approach of lazily cleaning up sticky states
makes the most sense if transactions rarely overflow the
cache (as in our current benchmarks). If overflow occurs
more frequently, LogTM’s single overflow bit can be
replaced by a more accurate filter (e.g., a per-set bit [2] or
Bloom filter [25]). If overflows become the norm, other
approaches may be preferred.

A subtle ambiguity arises when a processor P fetches a
block B in “sticky-M@P” during a transaction. This case
could arise from a writeback and re-fetch during thesame
transaction, requiring only that P set the R and W bits.
Alternatively, the writeback could have occurred in anear-
lier transaction, requiring that P treat this fetch as the first
access to B (and thus log the old value on the first store).
LogTM handles this case conservatively, having P set B’s
R and W bits and (perhaps redundantly) logging B’s old
value.

2.3.  LogTM specifics

 Interface. Table 2 presents LogTM’s interface in three
levels. Theuser interface(top) allows user threads to
begin, commitandabort transactions. All user-level mem-
ory references between begin and commit are part o
transaction executed withstrong atomicity [3]—i.e.,
atomic and isolated from all other user threads whether
not they are in transactions. The system/library interfa
(middle) lets thread packages initialize per-thread logs a

Table 2: LogTM Interface

User Interface
begin_transaction()  Requests that subsequent
dynamic statements form a transaction. Logically saves a
copy of user-visible non-memory thread state (i.e., architec-
tural registers, condition codes, etc.).
commit_transaction()  Ends successful transaction
begun by matchingbegin_transaction() . Discards
any transaction state saved for potential abort.
abort_transaction()  Transfers control to a previ-
ously-registered conflict handler which should undo and dis
card work since lastbegin_transaction()  and
(usually) restarts the transaction.

System/Library Interface
initialize_transactions(Thread*
thread_struct, Address log_base, Address
log_bound)  Initiates a thread’s transactional support,
including allocating virtual address space for a thread’s log.
As for each thread’s stack, page table entries and physical
memory may be allocated on demand and the thread fails if
exceeds the large, but finite log size. (Other options are pos
ble if they prove necessary.) We expect this call to be wrappe
with a user-level thread initiation call (e.g., for P-Threads).
register_conflict_handler(void (*)
conflict_handler)  Registers a function to be called
when transactions conflict or are explicitly aborted. Conflict
handlers are registered on a per-thread basis. The registere
handler should assume the following pre-conditions and
ensure the following post-conditions if the transaction abort
Conflict Handler Pre-conditions: Memory blocks written by
the thread (a) have new values in (virtual) memory, (b) are
still isolated, and (c) have their (virtual) address and pre-write
values in the log. If a block is logged more than once, its firs
entry pushed on the log must contain its pre-transaction valu
The log also contains a record of pre-transaction user-visibl
non-memory thread state.
Abort Post-conditions:If conflict resolution resulted in abort,
the handler calledundo_log_entry()  to pop off every
log entry then calledcomplete_abort(restart)

Low-Level Interface
undo_log_entry() Reads a block’s (virtual) address and
pre-write data from the last log entry, writes the data to the
address, and pops the entry off of the log.
complete_abort(bool restart) Ends isolation on
all memory blocks.  Either restores thread’s non-memory
state from lastbegin_transaction() , and resumes exe-
cution there, or returns to conflict handler to handle error con
ditions or switch user-level threads.
6
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register a handler to resolve conflicts (discussed below).
Conflicts may result in transaction abort, which LogTM
handles in software by “undoing” the log via a sequence of
calls using the low-level interface (bottom). In the com-
mon case, the handler can restart the transaction with user-
visible register and memory state restored to their pre-
transaction values. Rather than just restart, a handler may
decide to execute other code after rolling back the transac-
tion, (e.g., to avoid repeated conflicts).

Operating System Interaction.LogTM’s model is that
transactions pertain to user-visible state (e.g., registers and
user virtual memory) being manipulated by user threads
running in a single virtual address space on top of a com-
mercial operating system (OS). Currently, the OS operates
outside of user-level transactions. Thus, the OS never stalls
or aborts due to user-level transactions, but cannot cur-
rently use transactions itself.

The current LogTM implementation still has consider-
able OS limitations. LogTM transactions may only invoke
the trivial subset of system calls which do not require an
“undo,” such assbrk invoked bymallocand SPARC TLB
miss traps. LogTM does not currently handle transactional
data that are both paged out and paged back in within the
same transaction, or thread switching/migration, as do
UTM and VTM.

Processor Support.LogTM extends each processor with
a transaction nesting count (TMcount) and log pointer
(shown in Figure 2). TMcount allows the first, outer trans-
action to subsume subsequent, inner transactions. The pro-
cessor also implements the user-level instructionsbegin,
commitandabort to directly support the LogTM interface.
Instructionbeginincrements the TMcount. If the processor
was previously not in transaction mode (i.e., TMcount =
0), it checkpoints the thread’s architectural registers to a
shadow register file. Although logically part of the log,
lazy update semantics effectively allow register check-
points to remain in the shadow copy indefinitely. Instruc-
tion commit decrements TMcount. If now zero, the
processor commits the outermost transaction, resetting the
overflow bit and flash clearing the cache’s R and W bits.
Instruction abort triggers a trap to the software conflict
handler, which aborts the transaction. On completion of
the abort, the handler resets the TMcount, overflow bit,
and log pointer.

Conflict Resolution.When two transactions conflict, at
least one transaction must stall (risking deadlock) or abort
(risking live-lock). The decision can be made quickly, but
myopically, by hardware, or slowly, but carefully, by a
software contention manager [26]. Ultimately, a hybrid
solution might be best, where hardware seeks a fast resolu-
tion, but traps to software when problems persist.

Recall that when a LogTM processor Q makes a cohe
ence request, it may get forwarded to processor P todetect
a conflict. P then responds to Q with an ack (no conflict)
a nack (conflict). If there is a conflict, processor Q mu
resolveit on receiving the nack. Q could always abort it
transaction, but this wastes work (and power). Altern
tively, Q may re-issue its request (perhaps after a back
delay) in the hope that P had completed its conflictin
transaction. Q cannot wait indefinitely for P, howeve
without risking deadlock (e.g., if P is waiting on Q).

To guarantee forward progress and reduce aborts,
current LogTM implementation logically orders transac
tions using TLR’s distributed timestamp method [24
LogTM only traps to the conflict handler when a transa
tion (a) could introduce deadlock and (b) is logically late
than the transaction with which it conflicts. LogTM
detects potential deadlock by recognizing the situation
which one transaction is both waiting for a logically earlie
transaction and causing a logically earlier transaction
wait. This is implemented with a per-processo
possible_cycle flag, which is set if a processor sends
nack to a logically earlier transaction. A processor trigge
a conflict only if it receives a nack from a logically earlie
transaction while itspossible_cycle  flag is set.

2.4. Generalizing LogTM

LogTM implementations may also relax some of th
concrete assumptions made above. First, Section
describes LogTM using a system with private cache hie
archies and full-mapped directory protocol. The LogTM
approach extends easily to achip multiprocessor(CMP)
where the shared L2 cache tracks where blocks are cac
in per-core L1 caches, effectively acting as a director
Second, the LogTM implementation uses the directory
filter coherence requests when transactions overflo
Alternative LogTM implementations could use othe
coherence protocols (e.g., snooping), extended with app
priate filters to limit false conflicts. Third, LogTM uses
hardware to save user-visible register state and restor
on transaction abort (Section 2.3). This could also be do
by the compiler or run-time support.

Finally, the current LogTM implementation uses times
tamps to prioritize transactions and resolve conflicts. Th
simple, but rigid policy may result in convoys (e.g., if a
transaction gets pre-empted) or priority inversion (e.g., if
logically earlier transaction holds a block needed by
higher priority, but logically later transaction). Future
work will investigate having the (software) conflict han
dler invoke an application-level contention manager th
implements more flexible policies. To do this, LogTM
needs a few additional mechanisms, such as allowing
processor P to abort another thread’s transaction, parti
larly one that is not actively running on a processo
7
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Because LogTM stores the old values in the user pro-
gram’s address space, these mechanisms appear possible.
A sufficiently robust software contention manager may
also obviate the low-level timestamp mechanism.

3. Evaluation

This section describes the simulation of LogTM and a
baseline system using spin locks (Section 3.1) and com-
pares them using a microbenchmark (Section 3.2) and par-
allel applications from the SPLASH-2 suite [32] (Section
3.3).

3.1. Target System & Simulation Model

LogTM and the baseline system share the same basic
SPARC/Solaris multiprocessor architecture, summarized
in Table 3. Each system has 32 processors, each with two
levels of private cache. A MOESI directory protocol main-
tains coherence over a high-bandwidth switched intercon-
nect. Though single-issue and in-order, the processor
model includes an aggressive, single-cycle non-memory
IPC. The detailed memory system model includes most
timing intricacies of the transactional memory extensions.

Some TM systems advocate special transactional load
instructions for data likely to be stored soon [14]. This
support avoids obtaining read permission and then later
write permission (with implications on both traffic and
conflicts). The LogTM implementation obtains a similar
effect using awrite set predictorthat tracks the addresses
of 64 blocks recently loaded and then stored within a
transaction.

The simulation framework usesVirtutech Simics[17] in
conjunction with customized memory models built on
Wisconsin GEMS[19, 31]. Simics, a full-system func-
tional simulator, accurately models the SPARC architec-
ture but does not support transactional memory. Support
for the LogTM interface was added using Simics “magic”
instructions: special no-ops that Simics catches and passes

to the memory model. To implement thebegininstruction,
the memory simulator uses a Simics call to read th
thread’s architectural registers and create a checkpo
During a transaction, the memory simulator models th
log updates. After an abort rolls back the log, the regist
checkpoint is written back to Simics, and the threa
restarts the transaction.

3.2. Microbenchmark Analysis

This section uses a shared-counter micro-benchmark
show that LogTM performs well under high contention
despite frequent conflicts. Figure 4 illustrates a simpl
multi-threaded program that generates high contention
a shared variable. Each thread repeatedly tries to ato
cally fetch-and-increment a single shared counter a
update some private state with a random think tim
between accesses (avg. 2.5µs). This delay generates
opportunities for parallelism and allows improved perfo
mance with multiple threads.

For comparison, thebegin_transaction() and
commit_transaction() calls translate to test-and-test
and-set locks with exponential backoff (EXP), MCS lock
[21], or LogTM transactions (LogTM). Figure 5 displays
the execution times for 10,000 iterations of the share

Table 3. System model parameters

System Model Settings

Processors 32, 1 GHz, single-issue, in-order, non-
memory IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB 80-cycle latency

Directory Full-bit vector sharer list; migratory
sharing optimization;

 Directory cache, 6-cycle latency

Interconnection
Network

Hierarchical switch topology, 14-cycle
link latency

for(i=0; i<10000; ++i){

begin_transaction();

     new_total = total.count + 1;

  private_data[id].count++;

  total.count = new_total;

commit_transaction();

think();

}

Figure 4. Shared-counter microbenchmark (main
loop)
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Figure 5. Execution time for LogTM transactions,
test-and-test-and-set locks with exponential backoff
(EXP) and MCS locks (MCS).
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counter micro-benchmarks for varying number of threads.
For locks, results confirm that MCS locks are slower than
EXP with little contention (less than 15 threads), but faster
under high contention.

In contrast, the LogTM implementation fulfills the
potential of transactional memory by always performing
better than either lock implementation and consistently
benefiting from more threads. Moreover, more detailed
analysis (not shown) reveals that, for this simple micro-
benchmark, LogTM never wastes work by aborting a
transaction, but rather stalls transactions when conflicts
occur.

3.3. SPLASH Benchmarks

This section evaluates LogTM on a subset of the
SPLASH-2 benchmarks. The benchmarks described in
Table 4 use locks in place of, or in addition to, barriers.
The results show that LogTM improves performance rela-
tive to locks.

The LogTM version of the SPLASH-2 benchmarks
replaces locks with begin_transaction() and
commit_transaction() calls. Barriers and other syn-
chronization mechanisms are not changed. The SPLASH-
2 benchmarks use PARMACS library locks, which use
test-and-test-and-set locks but yield the processor after a
pre-determined number of attempts (only one for these
experiments). Raytrace has two versions: Raytrace-Base
and Raytrace-Opt, which eliminates false sharing between
two transactions.

Figure 6 shows the speedup from using LogTM trans-
actions versus locks for the SPLASH-2 benchmarks, run-
ning 32 user threads on a 32-way multiprocessor. All
LogTM versions are faster than the lock-based ones. Some
speedups are modest (Water 4% faster, Ocean 12%, and

Barnes 13%). Other speedups are good (Cholesky 2
and Radiosity 33%). Finally, Raytrace speedup is “o
scale” with Raytrace-Base speeding up 2.7x and Raytra
Opt 4.2x!

These speedups occur because LogTM (and other T
systems) enablecritical section parallelism(an oxymo-
ron) by allowing multiple threads to operate concurrent
in the same critical section. For example, LogTM allow
an average of 3.2 concurrent threads in Raytrace-Bas
most frequently-executed critical section, as measured
dividing the sum of each thread’s cycles in the critical se
tion by the total cycles when one or more threads was
the critical section. Raytrace-Opt increases the critical se
tion parallelism to 5.5. In contrast, lock-based critical se
tion parallelism is always one.

LogTM makes two central design decisions tha
assume that commits occur much more frequently th
aborts. First, by writing new values in place, eager versio
management makes commits faster than aborts. Seco
LogTM traps to software to handle conflicts and abo
transactions. The results in column four of Table 5 suppo
these decisions: only 1-2% of transactions end in an ab
for all benchmarks, except Barnes, in which 15% of tran
actions abort.

LogTM makes aborts less common by using stalls
resolve conflicting transactions when deadlock is not po
sible (Section 2.3). Column three of Table 5 shows th
fraction of transactions that stalled before committing
while column four gives the fraction that aborted. Th
fraction of transactions that conflicted with at least on
other transaction is the sum of columns three and four. F
several benchmarks (e.g., Cholesky, Radiosity, and Ra
trace-Opt), LogTM stalls transactions 2–5 times mo
often than it aborts them. Raytrace-Base stalls nearly 25
of all transactions!

Table 4. SPLASH-2 Benchmarks and Inputs

Benchmark Input Synchronization
Methods

Barnes 512 bodies locks on tree nodes

Cholesky 14 task queue locks

Ocean contiguous par-
titions, 258

barriers

Radiosity room task queue & buffer
locks

Raytrace-
Base

small image
(teapot)

work list & counter
locks

Raytrace-
Opt

small
image(teapot)

work list & counter
locks

Water N-
Squared

512 molecules barriers

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p 

BARNES

1.13

CHOLESKY

1.23

OCEAN

1.12 

RADIOSITY

1.33

RAYTRACE
 -BASE

2.68

RAYTRACE
 -OPT

4.18

WATER

1.04

Figure 6. SPLASH performance comparison:
execution time of “transactionized” SPLASH
benchmarks on LogTM normalized to the
performance of the benchmarks with lock-based
synchronization on the baseline system
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Stalling a transaction wastes less work than aborting it,
but represents lost opportunity. A potential third alterna-
tive is to switch to another thread, perhaps making
progress on another transaction. Such an action requires
additional enhancements to LogTM, such as the software
contention manager discussed in Section 2.4. Figure 7 pre-
sents the cumulative stall distribution (in cycles) and
shows that while many stalls are shorter than a typical
software context switch, the distribution has a heavy tail.
An enhanced LogTM implementation might stall for a
while in hardware before trapping to a software contention
manager to possibly abort and switch threads.

The Raytrace-Base stall behavior also reveals a limita-
tion of TM systems that build on cache coherence:Reduc-
ing false sharing with TM is even more important that
reducing it with locks.With TM, false sharing creates
(apparent) conflicts that can stall or abort entire transac-
tions. Raytrace-Opt eliminates most false sharing in Ray-
trace-Base by moving two global variables (ray identifier

and free list pointer) to different blocks. This optimization
improved the lock-based Raytrace’s performance a lit
and LogTM Raytrace’s a lot (due to eliminating conflict
between a frequent but short transaction that accesses
ray identifier and a less frequent but long transaction th
accesses the free list pointer). LogTM shares this limit
tion with other transactional memory implementations [2
14, 25], except TCC [11], which optionally tracks transac
tions’ read and write sets at word or byte granularity.

These experiments also alleviate two concerns abo
LogTM’s eager version management. First, LogTM mu
read a data block before writing it to the log. This read
extra work if the data would not otherwise be read. Fort
nately, the final column of Table 5 shows that (except fo
Barnes) most data blocks are read before written within
transaction. Thus, LogTM does not usually add the cost
an additional read. Second, writing LogTM’s log could
significantly increase cache write bandwidth. Fortunate
because the log does not need to be valid until an ab
occurs, a LogTM implementation could use ak-block log
write bufferto elide log writes for transactions that writek
or fewer blocks (Section 2.1). Table 6 shows the cumul
tive distribution of transaction write-set size. A four-entr
buffer eliminates all log writes for committed transaction
in Cholesky, Ocean, Raytrace, and Water and all but 3
for Radiosity. A 16-entry buffer eliminates all but 0.4% o
Radiosity’s writes and all but 5% of Barnes’s.

4. Discussion and Related Work

We developed and evaluatedLog-based Transactional
Memory (LogTM)that (a) always stores new values “in
place,” to make commits faster than aborts, (b) extends
MOESI directory protocol to enable fast conflict detectio
and transaction commits, even when data has been evic
from caches, and (c) handles aborts in software, since th
are uncommon. LogTM is most-closely related to TCC

Table 5: Selected transactional data
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Barnes 3,067 4.89 15.3 5.50 27.9

Cholesky 22,309 4.54 2.07 1.68 82.3

Ocean 6,693 0.30 0.52 0.112 100

Radiosity 279,750 3.96 1.03 1.64 82.7

Raytrace-Base 48,285 24.7 1.24 1.96 99.9

Raytrace-Opt 47,884 2.04 0.41 1.97 99.9

Water 35,398 0.00 0.11 1.98 99.6

20000 40000 60000

Stall Duration (in cycles)
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Figure 7. Stall distribution

Table 6: Cumulative distribution of write set sizes (in
64-byte blocks)

Benchmark

 %
 <

 4

%
 <

 8

%
 <

 1
6

%
 <

 3
2

%
 <

 6
4

M
ax

Barnes 44.5 85.7 95.0 95.3 100 55

Cholesky 100 100 100 100 100 3

Ocean 100 100 100 100 100 1

Radiosity 97.0 99.6 99.6 100 100 67

Raytrace-Base 100 100 100 100 100 3

Raytrace-Opt 100 100 100 100 100 3

Water 100 100 100 100 100 2
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LTM, UTM, and VTM, but we see substantial differences
in both version management and conflict detection.

TCC. Whereas TCC version management keeps new data
in a speculative cache until commit, when they are written
through to a shared L2 cache, LogTM can operate with
writeback caches and generates no traffic at commit. In
TCC’s lazy conflict detection, other transactions learn
about transaction T’s conflicting store when T commits,
not earlier when the store is executed. In contrast, LogTM
uses eager conflict detection to detect conflicts when the
store is executed to facilitate earlier corrective action.

LTM. Like LogTM, LTM keeps new data in cache when it
can. However, when a transaction overflows a set in the
cache, LTM stores new values in an uncacheable in-mem-
ory hash table. On commit, LTM copies overflowed data to
its new location. In contrast, LogTM allows both old and
new versions to be cached (often generating no memory
traffic) and never copies data on commit. Whereas an LTM
processor must search a table in uncacheable memory on
an incoming request to any set that has overflowed a block
during the transaction, a LogTM processor needs check
only local state allowing it to respond immediately to a
directory request.

UTM. Like LogTM, UTM version management stores
new values in place and old values in a log. UTM’s log is
larger, however, because it contains blocks that are targets
of both loads and stores, whereas LogTM’s log only con-
tains blocks targeted by stores. UTM uses this extra log
state to provide more complete virtualization of conflict
detection, allowing transactions to survive paging, context
switching and thread migration. UTM’s conflict detection
must, however, walk the log on certain coherence requests,
and clean up log state on commit, while LogTM uses a
simple directory protocol extension (that does not even
know the location of the log) and uses lazy cleanup to opti-
mize commits.

VTM. VTM takes most in-cache TM systems and adds a
per-address-space virtual mode that handles transactions
after cache evictions, paging, and context switches. In this
mode, VTM performs version-management lazily (in con-
trast to LogTM’s eager approach). Both virtualized VTM
and LogTM do eager conflict detection, but VTM uses
low-level PAL or micro-code, while LogTM continues to
use coherence hardware. In contrast to VTM (and UTM),
however, LogTM handles (infrequent) cache evictions, but
not paging or context switches.

In addition, other work informs and enriches recent
work on (hardware) TM systems. Early TM work showed
the way, but exposed fixed hardware sizes to programmers
[14, 15, 30]. The 801 minicomputer [4] provided lock bits
on memory blocks for conflict detection. Thread-level
speculation work developed version management and con-

flict detection mechanisms for a different purpose:achiev-
ing serial semantics[1, 7, 8, 10, 22, 28, 29, 33, 34]. In fact,
both Garzarán et al. [7] and Zhang et al. [33, 34] use t
mechanism of undo logs for this different purpose. Othe
speculatively turn explicit parallel synchronization (e.g
locks) into implicit transactions when resources are suf
cient [20, 23, 24], but fall back on explicit synchronization
otherwise. Finally, many researchers seek all software T
solutions [12, 13, 18, 27].

5. Conclusions and Future Work

LogTM is a promising approach to providing hardwar
(assisted) transactional memory. LogTM optimizes for th
expected common case of small (i.e., in-cache) trans
tions, yet efficiently supports dynamically infrequent larg
transactions. LogTM also optimizes for the expected com
mon case that transactions commit, using eager vers
management and software abort handling.

Looking forward, LogTM presents several challenge
and opportunities. Challenges include the need for bet
virtualization to support paging, context switches, an
other operating system interactions without undue runtim
overhead or complexity. This work also identifies the cha
lenge that false sharing presents to all TM systems bas
on cache coherence. Opportunities include generalizi
LogTM to a true hardware-software hybrid where hard
ware implements mechanisms and software sets polici
LogTM’s log structure also lends itself to a straight-for
ward extension to nested transactions. Finally, LogTM
implemented in a full-system simulation environment an
is available under GPL in the GEMS distribution [19].
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