An examination of the relation between architecture and compiler
design leads to several principles which can simplify compilers
and improve the object code they produce.

Compilers and Computer Architecture

William A. Wulf
Carnegie-Mellon University

: The interactions between the design of a computer’s
instruction set and the design of compilers that generate
code for that computer have serious implications for
overall computational cost and efficiency. This article,
“which investigates those interactions, should ideally be
" based on comprehensive data; unfortunately, there is a
paucity of such information. And while there is data on
- the use of instruction sets, the relation of this data to com-
piler design is lacking. This is, therefore, a frankly per-
sonal statement, but one which is based on extensive ex-
perience. '
My colleagues and I are in the midst of a research effort
. aimed at automating the construction of production-
- quality compilers. (To limit the scope of what is already
an ambitious project, we have considered only algebraic
~ languages and conventional computers.) In brief, unlike
many compiler-compiler efforts of the past, ours involves
automatically generating all of the phases of a com-
piler—including the optimization and code generation
phases found in optimizing compilers. The only input to
- this generation process is a formal definition of the source
language and target computer. The formulation of com-
pilation algorithms that, with suitable parameters, are ef-
fective across a broad class of computer architectures has
" been fundamental to this research. In turn, finding these
algorithms has led us to critically examine many architec-
tures and the problems they pose. Much of the opinion
that follows is based on our experiences in trying to do
this, with notes on the difficulties we encountered.
Articles of this sort commonly begin by observing that
the cost of hardware is falling rapidly while the cost of
software is rising. The inevitable conclusion is that we
ought to find ways for the hardware to simplify the soft-
ware task. One area in which this might be done is in the
design of instruction sets that better reflect the needs of
high-level languages. Beiter instruction sets would both

July 1981

simplify compilers and improve the size and speed of the
programs they generate. This observation and conclusion
are absolutely correct. Tréated too simplistically, how-
ever, they lead to mistaken inferences. For instance, many
people have concluded that efficiency of the object code
from a compiler is nd longer important—or, at least, that
it will not be in the néar future, This is patently false. To
suggest why I believe it is false and to lay the groundwork
for much of what follows, let me illustrate with an exam-
ple. Today I use a timesharing systein that is five times
faster than the onié I used a decade ago; it also has eight
times the primary memory and vastly more secondary
storage. Yet, it supports about the same number of peo-
ple, and response is worse. The reason for this anomaly is
simply that our aspirations have grown much faster than
technology has been able to satisfy them. It now takes
more cycles, more memory, more disk—more every-
thing—to do what a typical user wants and expects. |
believe this is a good thing; despite its degraded perfor-
mance, the system is more responsive to my overall
rieeds—it’s more humane. Nonetheless, there is a
premium on the efficiency of the programs it executes.

The past is always our safest predictor of the future, at
least if we interpret it properly. Although hardware costs
will continue to fall dramatically and machine specds will
increase equally dramatically, we must assume that our
aspirations will rise even more. Because of this we are not
about to face either a cycle or memory surplus. For the
near-term future, the dominant effect will not be machine
cost or speed alone, but rather a continuing attempt toin-
crease the return from a finite resource—that is, a par-
ticular computer at our disposal. This isn’t a simple mat-
ter of ‘‘yankee thrift.”” Given any system, people will
want to improve it and make it more responsive to human
needs; inefficiencies that thwart those aspirations will not
be tolerated.

0018-9162/81/0700-0041300.75 © 1981 IEEE

42

The cost equation

Before discussing the mutual impact of compilers and
target-machine architectures, we need to clarify the ob-
jectives of the exercise. A number of costs, and conversely
benefits, are involved. They include

e designing (writing) compilers,

e designing the hardware architecture,

o designing the hardware implementation of that ar-
chitecture,

* manufacturing the hardware (i.e., replicating the im-
plementation),

¢ executing the compiler, and

® ¢xecuting the compiled programs.

The relative importance of these costs is, of course,
installation- and application-dependent—one cannot
make statements about their relative importance without
more specific information. Nonetheless, there are some
general observations that bear on what follows.

First, note that only the fourth item, the cost of the
replication of hardware, has decreased dramatically.
While standardized MSI and LSI chips have worked to
decrease the cost of hardware design, the engineering of
complete processors on a single chip has worked to in-
crease it again. Designing irregular structures at the chip
level is very expensive.

Designing irregular structures at the chip level
is very expensive.

Second, all of the design activities (compilers, architec-
tures, and implementations) are one-time costs. From the
customer’s perspective, they are amortized over the
number of units sold. Thus, it makes sense todesign an ar-
chitecture more responsive to compilation problems only
if the reduction in the cost of writing the compiler, ex-
ecuting it, or executing the code generated by it, offsets
theincreasein the cost of design. Often this is easily done,
as will be discussed later. However, we must remember
that it is still more expensive to design hardware than to
design software that does the same job, unless the job is
very simple. This explains why it doesn’t make sense, for
example, to move the entire compiler into hardware.

Third, both software and architectures have a life
substantially longer than that of the hardware technology
for which they are initially implemented. Despite the
predictable decline in hardware costs, too often architec-
tures have been designed to cater to the anomalies of the
technology prevalent at the time they were designed. In ef-
fect, there has been a confusion between the second and
third costs listed above.

Finally, the last two items—the costs of compiling and
executing programs—are not strictly comparable to those
preceding them. Dollar costs can be assigned to these, of
course. Often, however, the correct measure is not in
terms of dollars but in terms of things that cannot be dong
as a consequence of compilation or execution inefficien-
cies. A typical installation can only occasionally acquirea
new computer {and suffer the trauma of doing so). Be-

tween acquisitions the available computer is a fixed and
finite resource. Hence inefficiencies in compilation and
execution manifest themselves as decreased productivity,
unavailable functionality, and similar costs. Although
difficult to measure, these costs are the first-order effects
noticed by users once a machine has been acquired.

Some general principles

Principles that would improve the impedence match
between compilers and a target computer have been
followed in many contemporary architectures:

® Regularity. If something is done in one way in one
place, it ought to be done the same way everywhere,
This principle has also been called the *‘law of least
astonishment’’ in the language design community.

¢ Orthogonality. 1t should be possible to divide the
machine definition (or language definition) into a set
of separate concerns and define each in isolation
from the others. For example, it ought to be possible
todiscuss data types, addressing, and instruction sets
independently.

* Composability. 1f the principles of regularity and or-
thogonality have been followed, then it shouid also
be possible to compose the orthogonal, regular no-
tions in arbitrary ways. It ought to be possible, for
example, to use every addressing mode with every
operator and every data type.

However, these principles have not been completely
followed, and the deviations from them present the com-
piler writer with some of his worst problems.

I will have a few more principles to suggest below.
Before doing so, however, let me comment on the
preceding ones.

Although many compiler optimizations are cast in
terms of esoteric-sounding operations such as flow
analysis and algebraic simplification—in fact these tech-
niques are simply aiméd at performing an enormous case
analysis. The objective is to determine the best object
code for a given source program. Because the case analy-
sis is so enormous, the various optimization algorithms
attempt 10 glean information and/or shape the intermedi-
ate form(s) of the program in a manner that allows the
final case analysis and code selection to be done rapidly
and thoroughly.

Viewing a compiler’s task as a large case analysis helps to
explain why regularity, orthogonality, and composability
are so important to simplifying the task. Every deviation
from these principles manifests itself as an ad hoc case to
be considered. And, alas, the consideration of a special
case is not limited to the code selection process; because
every preparatory phase requires certain information in-
termediate representations, the manifestations of the
anomaly creép back through nearly all of them. I will try
to illustrate this with more examples in the next section.
For the moment, however, consider the genre of general-
register machines. The name suggests that the registers are
all “‘general’’—i.e., that they can be used for any of the
purposes to which registers are put on the machine. In
fact, however, almost no machine actually treats all the

COMPUTER

registers uniformly—multiplicands must be in ‘‘even”
registers, or double precision operands must be in even-
odd pairs, or a zero in an indexing field of an instruction
denotes no indexing (and hence the zeroth register cannot
be uséd for indexing), or some operations can be performed
only between registers while others can be performed only
between a register and memory, or any of many other
variations. Each of these distinctions is a viplation of one
or more of the principles above and results in additional
complexity.
Some additional, more specific principles are

® QOne vs. all. There should be precisely one way to do
something, or all ways should be possible.

* Provide primitives, not solutions. It is far better to
provide good primitives from which solutions to
code generation problems can be synthesized than to
provide the solutions themselves.

Both of these alsorelate to the simplicity (or complexity)
of the compiler’s case analysis. Consider the “‘one-vs.-
all”” principle. Either of these extreme positions implies
that the compiler need not do any case analysis. If, forex-
ample, the only conditional branching instructions are
ones that test for EQUALITY and LESS THAN, there is
only one way to generate code for each of the six relations.
Alternatively, if there is a direct implementation of all six
relations, there is an obvious coding for each. Difficulties
arise, however, if only three or four of the six are provided.
For example, the compiler must decide whether, by com-
muting operands, there is a cheaper implementation of
some of the remaining relations. Unfortunately, this is
not a simple decision—it may imply determining whether
side-effect semantics are violated, whether there is an in-
teraction with register allocation, and so on.

Now consider the ‘‘provide primitives, not solutions”’
principle. In what I believe to be an honest attempt to help
compiler writers, some modern architectures have pro-
vided direct implementations of high-level concepts such
as FOR and CASE statements and PROCEDURE calls.
In many, if not most cases, these turn out to be more trou-
ble than they are worth. Invariably they either support on-
ly one language well, or are so general that they are ineffi-
cient for special cases—thus forcing the compiler to per-
form even more analysis to discover the common cases
where a more efficient implementation is possible. The
problem arises from a ‘‘semantic clash’’ between the
language and high-level instructions; by giving too much
semantic content to the instruction, the machine designer
has made it possible to use the instruction only in limited
contexts. Again, I will try to illustrate the problem in the
following section.

The last three principles are even more blatantly my
opinion than those listed earlier:

o Addressing. Address computations are paths! Ad-
dressing is not limited to simple array and record ac-
cesses! The addressing modes of a machine should be
designed to recognize these facts.

o Environment support. Allmodern architectures sup-
port arithmetic and logical computations reasonably
well. They do not do nearly as well in supporting the
run-time environments for programs—stack frames,
displays or static/dynamic links, exceptions, pro-

July 1981

cesses, and so on. The writer should provide such
run-time support.

e Deviations. The writer should deviate from these
principles only in ways that are implementation-
independent.

The first two of these principles, addressing and en-
vironment support, are among the most difficult to deal
with—and among the most likely to run afoul of the
earlier ‘‘primitives, not solutions” principle. The con-
scientious designer must remember that different lan-
guages impose different constraints on the notions of pro-
cedures, tasks, and exceptions. Even things as mundane
as case and iteration statements and array representations
are dictated by the semantics of the Janguage and may dif-
fer from one language to another.

1 will have more to say about these points later, but let
me illustrate some of the issues with the problem of ad-
dressing. In my experience, effective use of implicit addres-
sing is the most important aspect of generating good code.
It is often the most difficult to achieve. In general, access-
ing a datum from a data structure involves following a
path whose length is arbitrary (but is known at compile
time). Each step along the path is an addition (indexing in-
to arrays or records) or an indirection (through pointers
of various sorts). Typical computers supply a fixed and
finite menu—a collection of special cases—of such path

Some architectures have provided direct
implementations of high-level concepts. In
many cases these turn out to be more trouble
than they are worth.

steps. The compiler’s problem is how to choose effective-
ly from among this menu; 1 know of no technique for
doing this except exhaustive special-case analysis. Even
when the target computer’s addressing modes are well-
suited to the most common cases, its compiler remains
complex since it must be ready to handle the general case.

The last principle is, I suppose, more in the nature of a
plea. At any time there are technological anomalies that
can be exploited to make a machine faster or cheaper, Itis
tempting to allow these factors to influence the architec-
ture—many examples abound. It takes the greatest re-
straint to look beyond the current state of technology, to
realize that the architecture will outlive that state, and to
design for the future. I think that most of the violations of
notions like orthogonality and regularity can be traced to
a shortsighted view of costs. Adhering to the principles
presented here has a measurable hardware cost to be sure,
but one which decreases exponentially as technology
changes.

Kudos and gripes

From the compiler writer’s perspective, various ma-
chines have both good and bad features which illustrate—
or violate—the principles discussed above. This is not

43

44

meant to be an exhaustive list of such features, nor is it in-
tended to criticize particular computers or manufac-
turers.

On regularity. As a compiler writer, I must applaud the
trend in many recent machines to allow each instruction
operand to be specified by any of the addressing modes.
The ability of the compiler to treat registers and memory
as well as source and destination symmetrically is an ex-
cellent example of the benefits of regularity. The compiler
is simpler and the object code is better.

Not all aspects of modern machines have been designed
regularly, however. Most machines support several data
types (including fixed and floating-point forms), several
types of words (essentially boolean vectors), and several
types of addresses—often with several sizes of each and
sometimes with variations such as signed and unsigned
and normalized or unnormalized. 1t is rare for the opera-
tors on these types to be defined reguiarly, even when it
would make sense for them to be. A compiler, for exam-
ple, would like to represent small integers as addresses or
bytes. Yet, one machine provides a complete set of byte

The familiar arithmetic shift instructions are
another example of irregularity.

operations that are symmetric with word (integer) opera-
tions except that the ADD and SUB bytes are missing, and
another defines the setting of condition codes slightly dif-
ferently for byte operations than for full-word operations.
Such differences prevent simple compilers from using the
obvious byte representations. In more ambitious com-
pilers, substantial analysis must be done to determine
whether the differences matter in the particular program
being compiled.

The familiar arithmetic shift instructions are another
example of irregularity. I trust everyone realizes that
arithmetic-right-shift is not a division by a power of two
on most machines.

A particularly annoying violation of regularity arises
from the instructions of machines that make special pro-
vision for *‘immediate mode”’ arithmetic. We know from
analysis of source programs that certain constants, not-
ably 0, + 1, and the number of bytes per word, appear fre-
quently. It makes good sense to provide special handling
for them in an instruction set. Yet it seems that many
machine designers feel that such instructions are useful
only in forming addresses—or at least that they need not
have effects identical to their more expensive equivalents.
Manifestations include

e condition codes that are not set in the same way,

e carries that do not propagate beyond the size of an
‘“address,”’ and

s operations that are restricted to operate on a selected
set of “‘index registers.”’

In practice, of course, i=i+ 1 (and its implicit counter-
part in iteration statements) is one of the most common

source program statements. Irregularities such as those
above preclude simple compilers from using immediate
mode arithmetic for these common cases and add
substantial complexity to more ambitious compilers.

Similar remarks apply to the floating-point instruc-
tions of many machines. In addition to providing an even
more restricted set of operations, these machines often
fail to support the abstraction of ‘‘real’’ numbers intend-
ed by many higher-level languages. (Someone once ob-
served that the best characterization of the floating-point
hardware of most machines is as “unreal” numbers!)
Most language designers and programmers want to think
of real numbers as an abstraction of real arithmetic (ex-
cept for their finite precision)—they would like, for exam-
ple, for them to be commutative and associative. Floating-
point representation is often neither, and hence the com-
piler writer is constrained from exploiting some obvious
optimizations. The cost is both increased compiler com-
plexity and slower programs—and the sad thing is that the
cases where the optimizations are illegal are rare in prac-
tice.

On orthogonality. By orthogonality I mean the ability
to define separate concerns—such as addressing, opera-
tions, and data types—separately. This property is closely
allied with regularity and composability. The failure of
general-register machines to treat all their registers alike
could be characterized as a failure of any of these proper-
ties. Several machines contain both long and short forms
of branch instructions, for example, in which the short
form is taken as a constant displacement relative to the
program counter and is an addressing mode not available
in any other kind of instruction. Some machines include
instructions whose effect depends on the addressing mode
used. For example, on some machines sign extension is (or
is not) done depending on the destination location. Some
other machines create long or short forms of the result of
a multiplication, depending on the even-oddness of the
destination register. Some of the most popular machines
contain different instruction sets for register-to-register,
memory-to-register, and memory-to-memory operations
(and worse, these instruction sets partially—but not com-
pletely—overlap).

It should be clear that the compiler should perform a
separate analysis for each of these cases. And unlike some
of my previous examples, this requirement should apply
to simple as well as ambitious compilers.

On composability, From the compiler writer’s perspec-
tive, the ideal machine would, among other things, make
available the full cross-product of operations and ad-
dressing modes on similar data types. The ADD instruc-
tion should have identical effects whether it adds literals,
bytes, or words, for example. Moreover, any addressing
mode avaiiab!é in one variant should be available in the
others.

More germane to the present point is the notion of con-
version. Many machines fail badly in this respect. For ex-
ample, most only provide relational operators (i.e., con-
ditional branch instructions) that affect control flow,
while source languages generally allow relational expres-
sions to appear in contexts where a boolean value must be

COMPUTER

made manifest (e.g., allow them to be stored into a user’s
boolean variable). In addition, many machines do not
provide for conversion between data types such as integer
and floating point, nor do they provide a conversion that
differs from that specified in source languages.

The root of the problem lies in the fact that program-
ming languages view type as a property of data (or
variables), while machines view type as a property of
operators. Because the number of machine data types is
moderately large, the number of operation codes needed
toimplement a full cross-product is unreasonable. For ex-
ample, it is usually impossible to add a byte to a word
without first converting the byte to full-word form. The
need for such explicit conversions makes it difficult to
determine when overall cost is reduced by choosing a par-
ticular representation. Admittedly, where the conversion
is a significant one (as in converting integer to floating-
point representation) this doesn’t feel so bad—but it adds
complexity to the compiler as well as slowing both com-
pilation and execution in trivial cases.

1 will end this discussion with an example of the com-
plexity imposed on a compiler by the lack of regularity,
orthogonality, and composability. Consider a simple
statement such as A : = B*C and suppose we are compil-
ing for amachine on which the operand of a muitiply must
be in an odd register. A simple compiler generally al-
locates registers *‘on the fly”” as it generates code. In this
example, such a strategy appears to work well enough; the
allocator requires only minor complexity to know about
even/odd registers, and the code generator must specify
its needs on each request. But in a trivially more complex

_expression such as A : = (B+ D)*C, the strategy breaks
down. Addition can be done in either an even or odd
register; a simple ‘‘on the fly** allocation is as likely to get
an even register as an odd one for B + D—and, of course,
the choice of an even one will necessitate an extra data
move to implement the multiplication by C. More am-
bitious compilers must therefore analyze a complete ex-
pression tree before making any allocations. In trees in-
volving conflicting requirements, an assignment must be
found that minimizes data movements.

Ambitious compilers can even have a problem with the
simple assignent A : + B*C. Such compilers often employ
a technique called ‘*load/store motion®’ in which they at-
tempt to move variables accessed frequently in a program
region into Tegisters over that region; this tends to
eliminate loads and stores. The simple assignment above
suggests that it would be good to have A allocated to an
odd register, since the entire right-hand side could then be
evaluated in A and another data move eliminated.
Whether this is desirable, however, depends on all the
other uses of A in the program region under the register in
which A resides. This involves more complex analysis
than that for single expressions and, again, may require
trade-offs in the number of data moves needed.

Note that such complexities arise in other contexts
besides even/odd register pairs. At least one machine has
distinct accumulators and index registers plus a few
elements that can be used as either. Precisely the same sort
of compiler difficulties arise in deciding where the result
of an arithmetic expression or user variable should go; the
compiler must examine all uses to determine whether the

July 1981

result is used in an indexing context, an arithmetic con-
text, or both.

On one vs. all. [am sure most readers who are familiar
with a number of machines can supply examples of viola-
tions of this principle. My favorite can be found in one of
the newest machines—one with a generally excellent in-
struction set. This set includes reasonably complete
boolean operations, but does not provide AND, instead
providing only AND NOT. AND is commutative and
associative, but AND NOT is not, so it requires a truly
bewildering analysis to determine which operand to com-
plement and when to apply DeMorgan’s law in order to
generate an optimal code sequence.

On primitives vs. solutions. Most people would agree
that Pascal is more powerful than Fortran. The precise
meaning of ‘‘more powerful’’ may be a bit unclear, but
certainly any algorithm than can be coded in Fortran can
also be coded in Pascal—but not conversely. However,
this does not mean that it is easy, or even possible, to
translate Fortran programs into Pascal. Features such as

A machine that attempts to support all
implementation requirements will probably
fail to support any of them efficiently.

COMMON and EQUIVALENCE are not present in Pas-
cal—and some uses of them are even prohibited by that
language. There is a ‘‘semantic clash’’ between the lan-
guages.

The same phenomenon can be observed in machine de-
signs. Among the common higher-level languages one
finds many different views of essentially similar concepts.
The detailed semantics associated with parameter pass-
ing, FOR statements, type conversions, and so on are
often quite different. These differences can lead to
significantly different implementation requirements. A
machine that builds-in instructions satisfying one set of
these requirements cannot support other languages. A
machine that attempts to support all the requirements will
probably fail to support any of them efficiently—and
hence will provoke additional special-case analysis in the
compiler. Examples of the misplaced enthusiasm of
machine designers include

e subroutine call instructions that support, for exam-
ple, only some parameter passing mechanisms,

e looping instructions that support only certain
models of initialization, test and increment, and
recomputation,

¢ addressing modes that presume certain stack frame
layouts—or even presume particular representations
of arrays,

e case instructions that only do or don’t implicitly test
the boundary conditions of the case index and only
do or don’t assume such bounds are static at compile
time,

45

46

* instructions that support high-fevel data structures
(such as queues) and make assumptions that differ
from some common implementations of these struc-
tures, and

¢ elaborate string manipulation.

In many of these cases, the high-level instructions are
synthesized from more primitive operations which, if the
compiler writer could access them, could be recomposed
to more closely model the features actually needed. An
ideal solution to this problem would provide a modest
amount of writable microstore for use by the runi-time
system. The compiler writer could then tailor the instruc-
tion set to the needs of a particular language.

On addressing. Modern programming languages per-
mit the definition of data structures that are arbitrary
compositions of scalars, arrays, records, and pointers. At
least in principle it is possible to define an array of
records, a component of which is a pointer to a record
containing an array of arrays of yet another kind of
record. Accessing a component at the bottom level of this
structure involves a lengthy sequence of operations. Fur-
ther, because of the interactions among block striicture,
recursive procedures, and ‘“‘by reference’” parameter
passing, finding the base address of such a structure can
be equally complex—possibly involving indexing through
the ‘“‘display,”” various sorts of ‘‘dope’’ (descriptor) in-
formation, and several levels of indirection through
reference parameter values. In practice, of course, data
structures are seldom this complex, and most variables ac-
cessed are either local to the current procedure or global
to the entire program-—but the compiler must be prepared
to handle the general case. And, surprisingly, even
relatively simple constructs such as accessing an element
of an array in the current stack frame can give rise to much
of this complexity.)

The algorithm to access an element of a data structure
can be viewed as walking a path from the currerit invoca-
tion record to the element; the initial portion of the path
locates the base address of the structure via the display,
elc., and the final portion is defined by the structure itself.
Each step of the path involves indirection (following a
pointer), computing a record element displacement, orin-
dexing (by an array subscript)—all of which may involve
multiplication of a subscript by the size (in address units)
of the array component. For many languages, constraint
checks on array subscripts and nil pointers must also be
performed along the path. .

It is clearly advantageous to use the target computer’s
effective address computations to implicitly perform as
many of the path steps as possible. Unfortunately, most
contemporary machines were designed with a simpler
data structure model in mind. Rather than supporting
steps along a general path, these machines generally pro-
vide an ad hoc collection of indexing and indirection that
can be used for only a subset of such steps—there isnono-
tion of their composition. For example,

¢ one of the most popular machines has no indirection
at all, thus forcing an explicit instruction each time a
pointer must be followed;

¢ most machines that provide both indexing and in-
direction define a fixed order—e.g., first do the in-
dexing, then the indirection, although the opposite
order is just as common in practice;

e some modern machines provide implicit multiplica-
tion of one operand of an indéxing operation, but
only by the size of scalars (whereas in general the ele-
ment of an array may not be a scalar); and

* many machines limit the size of the literal value in an
indexing mode, thus forcing contorted code for
larger displacements or for cases where the displace-
ment isn’t known until link time,

The addressing modes are useful for some, but never all,
of these cases. Worse, sometimes more than one mode
can be used and the compiler must make a nontrivial
choice. Again, the compiler must be made more complex
to exploit the hardware. It would be far better (and prob-
ably simpler in the hardware as well) to have a more
general and consistent model.

On environments. [believe that most people now ap-
preciate hardware support for recursive procedure in-
vocation, dynamic storage allocation, and synchroniza-
tion and communication processes. I won’t comment on
this except to note the danger of providing such support at
too high a level and hence introducing a semantic clash
with some languages. Instead, I will point out some
neglected areas of the support environment that induce
significant overheads in the implementation of at least
some languages. These include:

* Uninitialized variables. Many languages define a pro-
gram to be erroneous if the value of a variable is
fetched before being set. The code and data struc-
tures to support this are expensive. Yet at least one
old machine provided a way to check these *‘for
free’’ by setting bad parity on uninitialized variables.

e Constraint checks. Many languages specify that cer-
tain properties of a value be checked before use.
Subscript range-¢hecking is a particular instance of
this, but there are many other cases as well. Generally,
machines provide no direct implementation of this,
thus forcing explicit tests in the code and often
eliminating clever uses of the effective address hard-
ware.

* Exceptions. Exceptions (analogous to PL/I’s ON
conditions) are a part of many languages. Yet few
machines support them, and an efficient software
implementation of them often violates the hardware
assumptions of the support provided for procedures.

® Debugging support. If most programming is to be
done in high-level languages, then it is axiomatic that
debugging should be at the same level. Because most
machines do not support this, however, the designer
of the debugging system is usually faced with two
choicés, both unpalatable. The first is to force the
user to debug at a low level. The second is to create a
special debugging mode in which extra code provides
the run-time debugger with the necessary informa-
tion—this in turn makes it difficult to debug the pro-
duction version of a system.

COMPUTER

A note on stacks. A common belief is that all compiler
writers prefer a stack machine. [am an exception to that
belief—at least insofar as stacks for expression evaluation
are concerned. (Stacks to support environments are a dif-
ferent matter.) It is certainly true that th?re is a trivial
mapping from parse trees to postfix, and hence simple
compilers can be made even simpler if their target has an
expression stack. For more ambitious compilers, how-
ever, stack machines pose almost all the same optimiza-
tion problems as register machines. A common subex-
pression is still a common subexpression. A loop in-
variant expression is still invariant. Expression reorder-
ing, done on aregister machine to minimize the number of
registers used, also reduces the depth of the evaluation
stack—thus increasing the likelihood that the entire com-
putation can be held in the fast top-of-stack registers.
Even register allocation has a counterparti—i.e., allocat-
ing variables to the stack frame so that the most frequent-
ly accessed ones can utilize short addressing forms on
machines that provide such a feature. Moreover, deciding
whether an optimization is desirable can be more difficult
onastack machine. On a register machine, for example, it
is almost always desirable to save the value of a common
subexpression, while on a stack machine it is necessary to
determine whether the added cost of storing and retrieving
the value is offset by that value’s uses. Thus, while expres-
sion stacks are nice for simple compilers, they are in no
sense a solution.

A note on interpreters and writable microcode. An in-
creasingly popular approach, especially in the micro-
processor domain, is to microprogram a special-purpose
interpreter for a given source language. This has been
done extensively for Pascal, forexample. As noted above,
in general I prefer ‘“primitives, not solutions’’ {especially
the wrong solutions); tailoring the instruction set through
microprogramming is one way to achieve that.

There are problems with this approach, however. It im-
plies that we must find ways to ensure that user-written
microcode cannot subvert operating system protection.
Similarly, we must provide a means for dynamically
associating the right interpreter with a given process, and
this may imply substantial context-swap overheads unless
one is very careful. (I am making an assumption here.
Namely, I believe that multiprogramming, multiproces-
" sing, and protection will all become common in the micro-
processor world—essentially in forms evolved from what
we see in current large systems. I also believe that single-
language systems are not a solution; we must assume a
multilanguage environment. The rationale for my beliefs
is not appropriate to this article, but the most recent an-
nouncements from several chip manufacturers cor-
roborate my views.)

Aboveall, the approach is not a panacea! In atleast one
case I have examined, the code produced for such an in-
terpreter is roughly two times slower and larger than it
needs to be. In another case, a sophisticated optimizing
compiler had to be built just 1o get reasonable perfor-
mance,

Both the compiler writer and the machine designer
have multiple objectives. The machine designer should

July 1981

certainly attend to the concerns of high-level-language
implementation—since most programs will be written in
one—but he must also attend to cost, reliability, com-
patibility, customer acceptance, and so on. The compiler
writer must faithfully implement the semantics of the
source language, must provide a friendly interface to the
user, and must try to reach a reasonable compromise be-
tween the speed of compilation and the quality of the re-
sulting object code. Being realistic, both designer and
writer know that they can affect only a subset of these ob-
jectives on each side. However, they also know that they
can still do a great deal to improve the impedence match
between languages and machines and so reduce total
costs. W

Acknowledgments

This research was sponsored by the Defense Advanced
Research Projects Agency and monitored by the Air
Force Avionics Laboratory. The views and conclusions
contained in this article are those of the author and should
not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced
Research Projects Agency or the US government.

T EWilliam A. Wulf is a professor of com-
zg:%puter science at Carnegie-Mellon Uni-
. versity. Prior to joining CMU in 1968, he
: was an instructor of applied mathematics
- and computer science at the University of
: Virginia. His research interests span the
fields traditionally called “‘programming
systems’’ and ‘‘computer architecture.”’
7 » / He is especially interested in the construc-
ﬁ.ﬂ . + tion of large systems, notably compilers
and operating systems, and in the way the construction of these
systems interacts with the architecture of the machine on which
they run. Wulf’s research activities have included the design and
implementation of the Bliss system implementation language,
participation in the PDP-11 design, construction of C.mmp—a
sixteen-processor multiprocessor computer, the design and im-
plementation of the Hydra operating system for C.mmp, the de-
sign of the Alphard programming language, and participation in
the development of Ada, the DoD language for embedded com-
puter applications.
Waulf holds the BS in physics and the MSEE from the Universi-
ty of 1llinois and the PhD from the University of Virginia.

47

