
Organization and Performance of a Two-Level Virtual-Real Cache Hierarchy

Wen-Hann Wang, Jean-Loup Baer and Henry M. Levy

Department of Computer Science, FR-35
University of Washington

Seattle, WA 98195

Abstract

We propose and analyze a two-level cache organization that
provides high memory bandwidth. The first-level cache is ac-
cessed directly by virtual addresses. It is small, fast, and, with-
out the burden of address translation, can easily be optimized
to match the processor speed. The virtually-addressed cache is
backed up by a large physically-addressed cache; this second-
level cache provides a high hit ratio and greatly reduces mem-
ory traffic. We show how the second-level cache can be easily
extended to solve the synonym problem resulting from the use
of a virtually-addressed cache at the first level. Moreover, the
second-level cache can be used to shield the virtually-addressed
first-level cache from irrelevant cache coherence interference.
Finally, simulation results show that this organization has a
performance advantage over a hierarchy of physically-addressed
caches in a multiprocessor environment.

Keywords: Caches, Virtual Memory, Multiprocessors, Mem-
ory Hierarchy, Cache Coherence.

1 Introduction
Virtually-addressed caches are becoming commonplace in high-
performance multiprocessors due to the need for rapid cache ac-
cess ill, 3,171. A virtually-addressed cache can be accessed more
quickly than a physically-addressed cache because it does not re-
quire a preceding virtual-t&physical address translation. How-
ever, virtually-addressed caches have several problems as well.
For example:
1. They must be capable of handling synonyms, that is, multi-

ple virtual addresses that map to the same physical address.

2. While address translation is not required before a virtual
cache lookup, address translation is still needed following a
miss.

3. In a multiprocessor system, the use of a virtually-addressed
cache may complicate cache coherence because bus addresses
are physical, therefore a reverse translation may be re-
quired.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
aad its date appear, and notice is @en that copy;nP is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

4. I/O devices use physical addresses as well, also requiring
reverse translation.

5. A virtual cache may need to be invalidated on a context
switch because virtual addresses are unique to a single pro-
cess.

None of these problems is insolvable by itself, and several schemes
have been proposed for managing virtual caches. For example,
dual tag sets, one virtual and one physical, can be used for
each cache entry [7, 61. As another example, the SPUR sys-
tem restricts the use of address space, prohibits caching of I/O
buffers, and requires bus transmission of both virtual and phys-
ical addresses [ll]. However, these schemes tend to have perfor-
mance shortcomings or unpleasant implications for system soft-
ware. Virtually-addressed caches are fundamentally complicated,
and this time or space complexity reduces the ability of the cache
to match the ever-increasing needs of modern processors.

To attack this problem, we propose a two-level cache organization
involving a virtually-addressed first-level cache and a physically-
addressed second-level cache (recent studies of two-level unipro-
cessor and multiprocessor caches can be found in [4, 5, 12, 131).
The small first-level cache.can be fast to meet the requirements
of high-speed processors; it is virtually addressed to avoid the
need for address translation. The large second-level cache will
reduce miss ratios and memory traffic; it is physically addressed
to simplify the I/O and multiprocessor coherence problems. Fur-
thermore, we show how the second-level cache can be utilized
to solve the synonym problem and to shield the first-level cache
from irrelevant cache coherence traffic. Overall, we believe that
this two-level virtual-real organization rsimplifies the design of the
first-level, where performance is crucial, while solving some of the
difficult problems at the second level, where time and space are
more easily available.
Our organization involves the use of pointers in the two caches
to keep track of the mappings between virtual cache and physical
cache entries [7]. We also provide a translation buffer at the sec-
ond level which operates in parallel with first-level cache lookups
in case a miss requires reverse translation. Trace-driven simula-
tions are used to demonstrate the advantages of a two-level V-R
(virtual-real) cache over a hierarchy of real-addressed caches in
a multiprocessor environment.
The rest of this paper is organized as follows. Section 2 describes
the approaches taken in solving various problems related to vir-
tual address caches and presents some design choices for high
performance multiprocessor caches. Section 3 gives the specific
organization of a V-R two-level cache hierarchy and its detailed
operational description. Section 4 presents performance results
from simulations, and conclusions are drawn in section 5.

0 1989 ACM 0884-7495/89/0000/0140$01.50 140

2 Design issues of two-level V-R caches
for high performance multiprocessors

This section addresses some important issues in the design of
two level V-R caches and motivates our design choices. A more
detailed operational description of our approach is given in the
following section. The proposed architecture for this evaluation is
a shared-bus multiprocessor where each processor has a private,
twolevel, V-cache-R-cache hierarchy as shown in Figure 1.

RCdle R-C&e

E V-Cache V-Cache

P . . . p

Figure 1: Shared-bus organization

Write policies

For a two-level cache, the write policy can be selected indepen-
dently at each level. In the literature, write-through has been
proposed as the most reasonable write policy for the first-level
cache in a twolevel hierarchy, while write-back is advocated for
the second level [lo, 8, 131. A major motivation for the choice
of write-through at the first level is that cache coherence control
is simplified. In this case, the first- and second-level caches will
always contain identical values.

There are several problems, however, with using a first-level write-
through cache. First, assuming no write-allocate, write-through
caches will have smaller hit ratios than write-back caches. Sec-
ond, a write takes longer under write-through because the second-
level cache must be updated as well; primary memory may also
need to be updated depending on the write policy for the second
level.

The reduced write latency with write-through can be greatly hid-
den by the use of write buffers between the first and second levels,
but several write buffers may be needed. Table 1, for example,
shows that in the execution of the VAX program pops (cf. sec-

tion 4), 30% of writes are due to procedure calls, each of which
typically generates six or more successive writes. Table 2 shows
the inter-write interval distribution for a snapshot (411,237 refer-
ences) of the same trace using a 16K direct-mapped cache with a
M-byte block size. As can be seen, the high percentage of short
inter-write intervals confirms the need for several buffers.

Unfortunately, while write buffers can reduce the write latency of
the first-level cache, they re-introduce a complexity that Write-
through was intended to avoid, namely cache coherence. Write
buffers can hold modified data for which other processors might

encounter a miss. Thus, cache coherency control must be pro-
vided for the write buffers on every cache coherence transaction.

These difficulties lead us to favor the write-back policy for our
virtually-addressed cache at the first level.

no. of wr. per call count total writes
1 3 3
2 2 4
3 0 0
4 2 8
5 2 10

Table 1: Nu lmber of writes due to procedm re c :a116

481

9 735
10 and larger 3245

Table 2: Inter-write intervals (snapshot of 411,237 references)

The synonym problem

As previously noted, a two-level V-R organization can be used
to solve the synonym problem. The solution requires the use
of a reverse translation table [15] for detecting synonyms, and a
natural place to put that table is at the second level.

Our two-level organization permits and detects synonyms, but
guarantees that at most one copy of a data element exists in the
V-cache at any time. Each second-level cache block will have a
pointer to its first-level child block, if one exists. If we guarantee
an inclusion property, where the R-cache contains a superset of
the tags in the V-cache, the reverse translation information can
be stored in log(V-cache size/page size) superset bits in each R-
cache block. For each entry in the R-cache with a child in the
V-cache, these extra bits, together with the page offset, provide
the V-cache location of its child.

When a miss occurs in the V-cache, the virtual address is trans-
lated (using a second-level translation buffer) and the R-cache is
accessed. If an R-cache hit occurs, the R-cache checks whether
the data is also in the V-cache under another virtual address (a
synonym). If so, it simply invalidates that V-cache copy and
moves the data to the new virtual address in the V-cache. Thus,
while a data element can have synonyms, it is always stored
in the V-cache using the last virtual address with which it was
accessed.’

‘Note that our approach in dealing with the synonym problem has some
similarities to Goodman’s approach [7]. One can view our approach as mov-
ing Goodman’s real directory from being just for snooping to being associated
with the level two cache. This move provides two benefits. First, it hides
the cost of Goodman’s extra, real directory by making it the level two cache
directory. Second, it reduces the misses caused by real-address collisions via
making the real directory much bigger.

Context switching

In a multiprogramming environment, addresses are unique to
each process and therefore the V-cache must be flushed when-
ever a context switch occurs. This might be costly for a large
virtually-addressed cache. For small caches we believe the penalty
on hit ratios will be negligible and this is confirmed by our sim-
ulation results (cf. Section 4). However, if a write-back policy is
used for the V-cache, a substantial number of write-backs may
occur at each context switch, which greatly increases context-
switch latency.

Another solution to avoid the address mapping conflict is to at-
tach a process identifier to each tag entry of the V-cache. This
approach does not improve the hit ratio for a small V-cache [I],
but can avoid the large number of write-backs at context switch
time. Unfortunately, this approach increases the complexity of
a two-level hierarchy because the V-cache needs to be purged
or selectively flushed when a TLB entry of an inactive process
is replaced by an entry of the active process, or a process-id is
reassigned.

We wish to have the benefits of rednced context-switch latency
without needing to flush the V-cache when a TLB entry changes.
Our approach meets these goals by invalidating all V-cache blocks
on a context switch but not writing them back at that time.
Instead, each block is written back only when it is replaced, that
is, when a new block is read into that cache slot. The writes are
thus distributed in time where the latency can be hidden using
write-back buffers.

To implement this scheme, we add two new fields to each V-cache
block. First, we add a swapped-valid bit, which is set for each V-
cache block on a context switch. Upon a replacement, if the
V-cache finds a block with swapped-valid set, it checks whether
that block is also marked both dirty and valid; if so, that block
must be written back. Second, we add an r-pointer, which is the
low-order bits of the page number, to each V-cache block. The
r-pointer, together with the page offset, is sufficient to link a V-
cache entry to its corresponding location in the R-cache. This
linkage makes a write-back or a state check efficient, since there
is no need for an address translation. This approach uses space
comparable to that of the process identifier scheme, but without
its disadvantages.

Table 3 shows the effect of the swapped-valid bit; here we.see.
the inter-write interval from the same benchmark as Table 2
when the swapped-valid bit is used. Because swapped write-
backs are typically far apart from other (swapped) write-backs,
a single write-back buffer is sufficient to overlap swapped write-
backs with processor execution. Our simulations show that with
a single buffer the amount of stalling on a swapped write-back is
indeed negligible. On the other hand, if the incremental write-
back is not used we need to write back over a hundred blocks at
context switching time for this specific benchmark. Notice that
the number of write-backs needed due to context switching is a
function of cache size, cache organization, the duration of the
running state of a process, and the workload.

Cache coherence

While two-level caches are attractive, cache coherence control is
complicated by a two-level scheme. Without special attention to
the coherence problem, the first-level cache will be disturbed by
every coherency request on the bus. A solution to this problem
is to use the second-level cache as a filter to shield the first-
level cache from irrelevant interference. In order to achieve this,
we need to impose an inclusion property where the tags of the

Table 3: Write interval with write-back and swapped write-back
(snapshot of 411,237 references)

second-level cache are a superset of the tags of its child cache. We
say that a multilevel cache hierarchy has ,the inclusion property if
this superset relation holds. Imposing inclusion is also essential
for solving the synonym problem as stated above.

In a multiprocessor environment, the inclusion property cannot
be held even with a global LRU replacement [4]. In [5] the follow-
ing replacement algorithm was proposed as bne of the conditions
to impose the inclusion.

l First level: Any replacement algorithm will do (e.g., LRU).
Notify the second level cache of the block being replaced.

l Second level: Replace a block which does not exist in the
first level (this is done by checking an inclusion bit; there
is one inclusion bit per block to indicate whether the block
is present in the first level).

The generat problem with inclusion is its implications for a large
set size in the second level (i.e., high associativity). By following
the same approach as in (51, and letting S; be the number of sets,
Bi be the block size, and &e(i) be the cache size of a level i
cache, we can show that in order to impose inclusion under the
above replacement algorithm, the set-associativity of the second-
level cache A2 must be:

under the usual practical situations where S2 > S,, Bz _> &,
size(2) > size(l) and BlSl 2 pagesizez.

In practical cases, this constraint can be too strict to be feasible.
For example, if the V-cache is 16K bytes, the page size is 4K
bytes, and Bz is 4 times as large as B1, even with a direct-mapped
V-cache we need a 16-way R-cache to a,chieve the inclusion.

To relax the strict constraint on the set-associativity of the R-
cache, we change the replacement rule of the R-cache to operate
as follows: replace a block with the inclusion bit clear if there
is one; otherwise replace a block according to some predefined
replacement algorithm and invalidate the corresponding V-cache
block. Note that the latter won’t happen very often since the R-
cache is much larger than the V-cache. For example, the analysis
of the multiprocessor trace, pops (over 3 million memory refer-
ences), shows that only 21 inclusion invalidations are needed if
the V cache is 16K bytes, a-way set-associative with a 16 byte
block size and the R cache is 256K bytes with same set size and
block size.

‘if BISI < pagesire the results of [s] appl:y.

142

3 Organization of a V-R two-level cache

A simplified organizational block diagram of a V-R two-level
cache is given in Figure 2. The V-cache is accessed via virtual
addresses, which are also forwarded to the TLB at the second
level so that address translation can proceed concurrently with
the access to the V-cache. This translation and the access to
the R-cache are aborted if there is a valid hit in the V-cache. A
number of tag and control bits that we call tag entry are associ-
ated with data blocks in both caches as shown in Figure 3. Each
tag entry in the V-cache contains a tag, an r-pointer, a dirty bit,
a valid bit and a swapped-valid bit. The r-pointer contains the
lower log(R-cache-size/page-size) bits of the real address page
number. Together with the page offset, it can be used to address
the related entry in the R-cache. The swapped-valid bit is used
to indicate whether the entry belongs to a swapped process. This
is needed in order to avoid a large context switch overhead, as
previously described.

Each tag entry in the R-cache tag store contains a tag and a
number of subentries, one subentry per V-cache block since we
allow larger block sizes in the R-cache. A subentry contains an
inclusion bit that indicates whether a copy of the data is in the
V-cache or not, a buffer bit that indicates if a copy of the data
is in a write buffer of the V-cache, a few state bits for sharing
status and cache coherence control (with other R-cnches), two

dirty bits, one for V-cache dirty and for R-cache dirty, and a v-
pointer which contains the lower log(V-cache-size/page-size) bits
of the virtual page number. Together with the page offset, the
v-pointer cau be used to address the entry in the V-cache.

In order to properly provide the data and manage cache coher-
&ice and synonyms, we list in Table 4 the communication buses
between the V-cache and the R-cache. The following is a detailed
operational description of a two-level V-R cache.

For simplicity, let us assume that an invalidation protocol is
used at the R-cache level although our scheme will also work
for other protocols as well. An invalidation protocol invalidates
all other cache copies before updating shared data in the local
cache. Write-backs to memory are performed when a dirty block
moves from one cache hierarchy to another. A number of existing
protocols belong to this category [IS].

V-R hierarchy algorithm

1. Read hit in V-cache. Give the data to the processor. The
hit signal is sent to the R-cache to abort the R-cache and
TLB accesses.

2. Read miss in V-cache. Raise the replacement signal if a
V-cache block needs to be replaced to give room to the
incoming new data. Give the R-cache both the v-pointer,
which is the V-cache location for the new data, and the

BUS r-pointer, which is the R-cache location of the block being
replaced. If the replaced block in V-cache is clean, the

Figure 2: V-R cache organization

V-cache tag entry tag rpointer dirty v sv

20 6 1 1 1

R-cache tag entry tat3 I B state vpointer I B state vpointer

16 11 2 2 1111 2 2 11

Figure 3: Contents of tag stores (assume page size is 4K, Ci is 16K and Cz is 256K, Ba = 2 x Br.)

143

fiomV toR:
read/write tells the FL-cache whether the current request is a read or a write.

replacement tells the Rcache that a V-cache block needs to be replaced.
hit/miss(v-pointer, r-pointer) tells the R-cache whether the current access results in a hit or a miss in the

V-cache. If it is a miss, the target v-pointer gives the V-cache slot for the
new data and the r-pointer gives the Rcache entry where the inclusion bit
is to be erased if the block to be replaced is clean, or where the buffer bit
is to be set if the block is dirty. If it is a hit the Rcache access is aborted.

write back(r-pointer) tells the Rcache that the data in the write buffer will be written back to
the place pointed to by the r-pointer.

From R to V:
sameset (v-pointer) tells the V-cache that there is a synonym copy in the same set; no need to

write back; and the data is available under v-pointer.

move(v-pointer) tells the V-cache that there is a synonym copy in a different set; the data
is available under v-pointer.

data supply(r-pointer) tells the V-cache that the data is ready to be loaded and gives its location
in the R-cache to be stored as part of the tag entry.

invalidation(v-pointer) tells the V-cache to invalidate the data under v-pointer.

tlush(v-pointer) tells the V-cache to flush the data under v-pointer.
invalidation(buHer) tells the V-cache to invalidate the data in the buffer.
flush(buffer) tells the V-cache to flush the data in the buffer.
lrrvack tells the V-cache that the coherency has been cleared and that it can update

the data.

Table 4: V-R interface
R-cache resets the inclusion bit. If the block is dirty, the
V-cache copies the block into the write buffer and the R-
cache sets the buffer bit to indicate that the block is still
in the write buffer of the V-cache. This bit gets reset when
the write-back occurs or when the write-back is canceled
(see below).

(a) Hit in R-cache.

i. The data is in the V-cache under another virtual
address. The R-cache tests whether the two loca
tions are in the same set. If so, a sameset signal
is sent to the V-cache so that the write-back can
be canceled if the replaced block is dirty; the R-
cache wiIl reset the buffer bit if the replaced bIock
is dirty, or it will set the inclusion bit if the re-
placed block is clean3. If the blocks are in different
sets, the R-cache sends a move(v-pointer) to the
V-cache so that the data can be stored at the new
location. Valid bits are set to valid. The v-pointer
tag entry of the R-cache is modified accordingly.
Notice that in both cases the v-tag is updated to
reflect the new virtual address.

ii. No other copy in V-cache. R-cache raises the data
supply signal and sends the block to the V-cache.
The R-cache also suppIies the r-pointer to the V-
cache to set up the link information, R-cache sets
the inclusion bit and the v-pointer and the V-
cache stores the r-pointer, sets the valid bits, and
resets the dirty bit.

(b) Miss in R-cache. Proceeds as described in the cache
coherence subsection. Gets a clean copy and then back
to (a)ii.

3. Write hit on clean block in V-cache. Wait till the R-cache
raises the invack signal (cf. the cache coherence subsec-
tion); then update the data and set the dirty bit in the
V-cache.

4. Write miss in V-cache. The replacement proceeds as in the
case of a read miss.

‘the inclusion bit was reset earlier to reflect the replacement.

(a) Hit in R-cache. Resolve the cache coherency (cf. be-
low); resolve the synonyms as in the case of a read
&SS; load the block into V-cache; update the data
and sets the dirty bit in the V-cache.

(b) Miss in R-cache. Proceed as described in the cache
coherence subsection; get a clean copy, load the block
into the V-cache and the R-cache and set appropriate
pointers and inclusion as in the case for a read; update
the data, and set the dirty bit in the V-cache.

It is worth noticing that the cost of handling a synonym is ap-
proximately the same as a first-level miss and second-level hit.
This observation will be used in our performance evaluations.

Cache coherence
Processor induced:

1. Read miss in the V-cache and in the R-cache. Initiate a
read-miss bus transaction and get the block. Set the state
of the block as shared if another cache acknowledges having
this block; otherwise set the state as private.

2. Write hit on a clean block in the V.-cache. Check the state
in the R-cache. If private, raises the invack to let the
V-cache proceed; sets the vdirty bit in the R-cache. Other-
wise, the R-cache initiates an invalidation bus transaction
and when it is completed, raise the invack signal and set
the vdirty bit in the R-cache.

3. Write miss in the V-cache.

(a) Hit in the R-cache. Check the state in the R-cache. If
shared, initiate an invalidation bus transaction. Sup-
ply the block to the V-cache when the transaction is
completed and Set the vdirty bit in the R-cache.

(b) Miss in the R-cache. Initiate a read-modified-write
bus transaction; get the block; reset the rdirty bit in
the R-cache and set the vdirty bit in the R-cache.

1. Read-miss. Acknowledge the sharing status if in possession
of the requested block and:

144

(a) If the block is modified in the V-cache, the R-cache
sends a Aush(v-pointer) to V-cache and gets the block,
update5 itself, changes its state to shared, resets the
vdirty bit, resets the rdirty bit, supplies the block to
the requesting cache and update5 the memory.

(b) If the block is modified in the write buffer of V-cache,
R-cache sends a flush(buffer) to V-cache and gets the
block, updates itself, changes its state to shared, resets
vdirty bit, resets the rdirty bit, resets the inclusion bit,
supplies the block to the requesting cache and updates
the memory.

(c) If the block is dirty in the R-cache, the R-cache sup-
plies the block to the requesting cache, updates the
memory, changes its state to shared, and resets its
dirty bit.

(d) Otherwise, memory supplies the block.

2. Invalidation. The R-cache invalidates its own entry if present
and checks the inclusion bit. If it is set, the corresponding
entry in the V-cache is invalidated. This is done by issuing
invaIidate(v-pointer) to the V-cache.

3. Read-modified-write. Treated as a read-miss followed by
an invalidation.

Replacement

(a) V-cache: Any replacement algorithm will do (e.g., LRU).

(b) R-cache: Replace a block with all inclusion bits (i.e., for each
subentry) reset. If there is none (this might happen if we follow
the strategy of the end of section 2), randomly choose one block
and invalidate the copy (or copies if Bs > Br) in the V-cache.

4 Performance

In this section, we compare the relative performance of virtual-
real (V-R) and real-real (R-R) two-level caches. We also examine
the merits of splitting the first-level virtually-addressed cache
into I and D caches. Finally, we measure the effect of the R-
cache in shielding the V-cache from irrelevant cache coherence
interference.

To gather the performance figures, we use trace-driven simula-
tions and three parallel program traces: pops, thor and abaqus
[2, 141. In pops and thor, context switches occur rarely while
they are frequent in abaqus. Table 5 gives a summary of some
characteristics of these traces.

Relative performance of V-R and R-R two-level caches

To compare the performance of V-R and R-R two-level caches,
we gather the hit ratios at different levels; the hit ratios are then
used in generic memory access time equations to predict relative
performances. We assume that the inclusion property defined
previously also holds for the R-R two-level cache. For simplicity,
we consider only direct-mapped caches at both levels.

The generic access time equation of a two-level cache hierarchy
is as follows:

xc,= Prob(hit at level 1) x access time at level 1
+ Prob(hit at level 2&r&s at level 1) x access time at level 2
t prob(miss at level 1 and 2) x memory access time

that is:

Tecc = htl t (1 - h)hzt2 + (1 - hr - (1 - hr)h2)t,

where hr, hz are hit ratios at levels 1 and 2, tr and t2 are ac-
cess times at the two levels, and t, is the memory access time
including the bus overhead.

Because the second-level caches are the same for both V-R and
R-R organizations, and because inclusion holds, the number of
misses and the traffic from the second-level cache are the same in
both organizations. Therefore the third term in the above equa-
tion is the same for both V-R and R-R organizations. Assuming
that handling a synonym has a cost equivalent of handling a miss
in the first-level cache that hits in the second-level cache, the rel-
ative performance where there is a hit in the hierarchy can be
estimated solely on the first two terms of the above equation.

Table 6 shows the hit ratios at both levels of V-R and R-R orga
nizations for the three traces under three different pairs of first
and second-level cache sizes. Figures 4, 5 and 6 depict the rela-
tive performance of the two organizations under different degrees
of assumed R-cache degradation due to address translation over-
head. These figures plot the relative performance of the two
hierarchies with t2 = 4tl vs. the percentage of slow down due to
address translation for various first-level/second-level cache sizes.
The points on the y-axis correspond to no slow down at all. From
these figures we can draw the following conclusions.
Let US assume that there is no time, penalty involved in per-
forming a virtual-real address translation in conjunction with
the access to the first level cache. When context switches occur
rarely, as is the case for the first two traces (Figures 4 and 5),
the performances of the V-R and R-R hierarchies are almost in-
distinguishable (the points on the y-axis are the same). When
context switches are frequent, as in the third trace (Figure 6),
the V-R hierarchy is slower by 2 to 6% depending on the size of
the V-cache (a larger V-cache seems to imply a larger relative
degradation).
Now, let us assume a time penalty for the translation. There
are two possible reasons for this penalty. The first is that TLB
access and cache access cannot be completely overlapped m soon
a the cache size is larger than the page size multiplied by the
set ssociativity. Second, even if there were total overlap, there
would still be an extra comparison necessary to check the validity
of a cache hit. From the observation5 of the previous paragraph,
it is clear that the V-R hierarchy will perform better in the case.
of rare context-switches. The relative improvement is approx-
imately equal to the overhead of address translation. What is
interesting Is to see the cross-over point for the case of frequent
context-switches. From Figure 6, we see that the V-R hierar-
thy will have a better performance when the address translation
510~5 down the first level R-cache access by 6% or more.
Since 6% is a conservative figure for the penalty due to the inser-
tion of a TLB at the first level, it appears that the V-R hierarchy
is a better solution. Its performance is a~ good a~ that of an R-R
hierarchy and its cost is less since the TLB does not have to be

trace num. of cpus total refs instr count data read data write context switch count
thor 4 3283k 1517k 139Ok 376k 21

POPS 4 3286k 1718k 1285k 283k 7
abaqus 2 1196k 514k 600k 82k 292

Table 5: Characteristics of traces

145

Table 6: hit ratios

Table 7: Hit ratios for small first-level caches

Fl4: Average usxss time VS. slow-down of R-Eache (thor)
.,._ _. .,. __,

! ,/
, lm4d

; /-

,.q’
,/ ;

j /.”
,.‘. i

,..____._....______....._ k “‘., 4:: ___.......____... 4_.....................

,
6 12 18

Fist-level R-ache slowdown pacmtage

Figure 5: Average wxss time VS. slow-down of R-cache (pp)

,,w ___...______._..____....... I __._....____...______.. -.; __....._______.._______.... i

1

d

0 6 12 18

Fist-level R-cache slowdown percentage

6 12. I8

First-level Rcache slowdown percentwe

implemented in fast logic. Another advantage is that problems
such as TLB coherence can also be handled at the second level.

The results presented above assumed 4K to 16K first-level caches,
which may be impractical for some advanced technologies, such
as GaAs. However, we believe that the V-R organization is even
more attractive for hierarchies with smaller first-level caches. Our
results in Table 7 show that for smaller fimt-level caches (e.g., .5K
to 2K), the first-level hit ratios of V-R and R-R organizations are
nearly identical. Therefore, performance of a V-R hierarchy will
be superior given any penalty for a TLB lookup. In addition, for
technologies in which space is at a premium, we can trade the
first-level TLB of an R-R hierarchy for a larger first-level cache
in a V-R hierarchy. This in turn provides larger hit ratios and
hence smaller average access time.

Splitting the first-level virtually-addressed cache

There are a number of reasons why it is advantageous to split the
first-level cache into separate I and D caches. First, the band-
width can almost be doubled for pipelined processors where an
instruction fetch can occur at the same time as a data fetch of
a previous instruction (e.g., the IBM801 and Motorola 88000).
Second, each I and D cache is smaller and has the potential to
be optimized for its speed. Third, and this pertains mostly to
V-caches, the I cache is simpler than the D cache since it does

not need to handle the synonym and the cache coherence prob-
lems provided that self-modifying programs are not permitted. A
disadvantage, however, is that we need more wirings or pins for
the processor and cache module. It is important to assess, how-
ever, if splitting the cache into I & D components will improve
performance.

Our results in Table 8, 9 and 10 show that the hit ratios of split
I&D caches are very close to that of a unified I&D cache and are
not necessarily worse. In these tables, the I and D separate caches
are of equal sizes (i.e., in the 4K example the I-cache and the D-
cache are each 2K). Similar results have been found in [9, 131.
Thus, we would advocate such a split for a V-R hierarchy.

thor 4K/64K 8K/128K 16K/256K
data read split 0.924 0.937 0.945

unified 0.913 0.938 0.950
data write split 0.952 0.962 0.969

unified 0.946 0.966 0.972
instruction split 0.957 0.963 0.989

unified 0.930 0.973 0.984
overall split 0.942 0.952 0.968

unified 0.925 0.957 0.968

Table 8: Hit ratios of level 1 caches for the thor trace

POPS POPS 4K/64K 8K/128K 16K/256K 4K/64K 8K/128K 16K/256K
dataread split dataread split 0.902 0.902 0.912 0.912 0.923 0.923

unified unified 0.900 0.900 0.915 0.915 0.926 0.926
data write split data write split 0.936 0.936 0.946 0.946 0.955 0.955

- unified unified 0.937 0.937 1 0.948 0.948 1 0.958 0.958
instruction split instruction split 1 0.947 0.947 1 0.966 0.966 1 0.978 0.978

unified 0.948 0.963 0.974
overall epht 0.928 0.944 0.955

unified 1 0.948 1 0.963 1 0.974
overall epht 1 0.928 1 0.944 1 0.955

I unified I 0.928 I 0.943 I 0.954 I

Table 9: Hit ratios of level 1 caches for the pops trace

abaqus 4K/64K 8K/128K lSK/256K ’
data read split 0.795 0.818 0.837

unified 0.806 0.829 0.845
data write split 0.841 0.861 0.875

unified 0.847 0.857 0.895
instruction split 0.920 0.947 0.949

unified 0.907 0.926 0.938
overall split 0.852 0.876 0.888

unified 0.852 0.873 0.888

Table 10: Hit ratios of level 1 caches for the abaqus trace

Shielding cache coherence interference

An important advantage of the two-level approach is that the
R-cache can shield the V-cache from irrelevant cache coherence
interference. For example, on a read miss bus request, the R-
cache needs to send a flush request to its V-cache only when
the V-cache contains a modified copy of the data; otherwise the
V-cache will not be disrupted. Note that this shielding effect is
achieved because the inclusion property holds in our V-R two-
level cache. Imposing inclusion might not seem to be essential
for an R-R two-level hierarchy because the synonym problem
is not present. However, the results in Tables 11, 12 and 13,
which give the number of coherence messages being percolated
to each first-level cache, show that a V-R two-level cache has
much less coherence interference at the first level than that of
an R-R two-level cache without inclusion. The results also show
that inclusion is important in an R-R two-level cache since it
results in approximately the same savings in coherence messages
to the first-level cache.4

We believe that the shielding effect on cache coherence will be
more prominent as the number of processors increases. This is
due to the fact that more bus coherence requests will be generated
from a larger number of processors, and without the shielding,
a first-level cache will be disrupted more often. Our results in
Tables 11, 12 (4 cpus) and 13 (2 cpus) reflect this effect. For
example, on the average, the first-level cache of a V-R hierarchy
encounters about half the coherence messages than that of the
R-R hierarchy without inclusion for the two processor trace (cf.
Table 13), whereas for four processor traces the first-level cache
of the V-R hierarchy encounters from three to six times fewer
coherence messages. We plan to further confirm this observation
when we are in possession of larger-scale traces.

5 Conclusions

One of the most challenging issues in computer design is the sup-
port of high memory bandwidth. In this paper, we have proposed

‘We notice that RR with inclusion has over 10% fewer coherence messages
than that of VR for the abaqus trace. This discrepancy is due to a large
amount of inclusion invalidations incurred in this specific trace due to a
large number of context switchings.

Table 11: Number of coherence messages to the first-level cache

Table 12: Number of coherence messages to the first-level cache

abaqus 4K/64K 8K/128K 16K/256K

CPU VR RR(inc1) RR(no incl) VR RR(inc1) RR(no incl) VR RR(inc1) RR(no incl)
0 10961 8436 18855 11677 9379 21295 11067 9853 22603
1 10527 8029 20726 10547 9528 24202 10599 10028 26845

Table 13: Number of coherence messages to the first-level cache

147

a two-level cache hierarchy to address this issue. We have argued
that the first level cache is best accessed directly by virtual ad-
dresses. We back up the small virtually-addressed cache by a
large second-level cache. A virtually-addressed first-level cache
does not require address translation and can be optimized to
match the processor speed. Through the use of a swapped-valid
bit, we avoid the clustering of write-backs at context switching
time. The distribution of these write-backs is more evenly spread
over time. The large second-level cache provides a high hit ratio
and reduces a large amount of memory traffic. We have shown
how the second-level cache can be easily extended to solve the
synonym problem resulting from the use of a virtually-addressed
cache at the first level. Furthermore, the second-level cache can
be used effectively to shield the virtually-addressed first-level
cache from irrelevant cache coherence interference.

Our simulation results show that when context switches are rare,
the virtually-addressed cache option has comparable performance
to its physically-addressed counterpart, even assuming no ad-
dress translation overhead. When context switches occur fre-
quently, the virtually-addressed cache option has a performance
edge when a small address translation penalty is taken into ac-
count, and the smaller the virtually-addressed cache the larger
the relative performance edge. We also advocate splitting the
virtually-addressed cache into separated instruction and data
caches. This approach has the potential of doubling the memory
bandwidth since our results show that the hit ratios of split in-
struction and data caches are very close to that of a single I&D
cache.

As a final remark, we note that cache performance is workload
dependent. In this study we have confined ourselves to a limited
VAX multiprocessor workload. We plan to enlarge our workload
sample as soon a8 we are in possession of other multiprocessor
traces.

Acknowledgment
This work was supported in part by National Science Foundation
(Grants No. CC%8702915 and CCR-8619663), Boeing Com-
puter Services, Digital Equipment Corporation (the System Re-
search Center and the External Research Program) and a GTE
fellowship. The experimental part of this study could not have
been possible without Dick Sites who made the traces available to
us and Arrant Agarwal who allowed us to share his postprocessing
programs and who patiently answered our many questions. We
also thank the members of the “Computer Architecture lunch”,
especially Tom Anderson, Jon Bertoni, Sanglyul Min and John
Zahorjan for their excellent comments and suggestions.

References

[l] Agarwal, A., R. L. Sites and M. Horowitz. ATUM: A
new technique for capturing address traces using microcode.
In Proc. 13th Symposium on Computer Architecture, pages
119-127, 1986.

[2] Agarwal, A., R. Simoni, J. Hennessy and M. Horowitz. An
evaluation of directory schemes for cache coherence. In Proc.
15th Symposium on Computer Architecture, pages 280-289,
1988.

[3] Atkinson, R. R. and E. M. McCreight. The dragon processor.
In Proc. Architectural Support for Progmmming Languages
and Opemting Systems(ASPLOS-II), pages 65-69, 1987.

[4] Baer, J.-L. and W.-H. Wang. Architecturalchoicesfor multi-
level cache hierarchies. In Prac. 16th International Conjer-
ence on Pamllel Processing, pages 258-261, 1987.

[51 Baer, J.-L. and W.-H. Wang. On the inclusion property for
multi-level cache hierarchies. In Proc. 15th Symposium on
Computer Architecture, pages 73-80, 1988.

(61 Cheriton, D.R., G. Slavenburg and P. Boyle. Software-
controlled caches in the VMP multiprocessor. In Prac. 13th
Symposium on Computer Architectun:, pages 367-374, 1986.

[71 Goodman, J. Coherency for multiprocessor virtual address
caches. In Prac. Amhitectuml Support for Programming Lan-
guages and Opemting Systems(ASPLOS-II), pages 72-81,
1987.

PI Goodman, J. and P.J. Woest. The Wisconsin multicube: A
new large-scale cache-coherent multiprocessor. In Proc. 15th
Symposium on Computer Architecture, pages 422-431, 1988.

PI

PO1

Halkala, I.J. and P.H. Kutvonen. SpYit cache organizations.
In Proc. Performance ‘84, pages 459.-472, 1984.

Hattori,A., Koshino,M. and S.Kamimoto. Three-level hier-
archical storage system for FACOM M-380/382. In Proc.
Information Processing IFIP, pages 693-697, 1983.

1111

PI

[I31

WI

[I51

[I‘31

1171

Hill,M. et al. Design decisions in SPUR. Computer,
19(11):8-22, November 1986.

Przybylski, Steven A. Performance- Directed Memory Hier-
archy Design. Ph.D Dissertation, Stanford University, 1988.

Short R.T. and H.M. Levy. A simulation study of two-level
caches. In Proc. 15th Symposium on Computer Architecture,
pages 81-88, 1988.

Sites, R.L. and A. Agarwal. Multiprocessor cache analysis
using ATUM. In Prac. 15th Symposium on Computer Ar-
chitecture, pages 186-195, 1988.

Smith,A.J. Cache memories. Computing Surveys, 14(3):473-
530, September 1982.

Sweasey, P. and A.J. Smith. A class of compatible cache
consistency protocols and their support by the IEEE future-
bus. In Proc. 13th Symposium on Computer Architecture,
pages 414-423, 1986.

Cheng, Ray. Virtual address cache in UNIX. In Proc.
USENIX Conference, pages 217-224, June 1987.

148

