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Abstract 

We propose and analyze a two-level cache organization that 
provides high memory bandwidth. The first-level cache is ac- 
cessed directly by virtual addresses. It is small, fast, and, with- 
out the burden of address translation, can easily be optimized 
to match the processor speed. The virtually-addressed cache is 
backed up by a large physically-addressed cache; this second- 
level cache provides a high hit ratio and greatly reduces mem- 
ory traffic. We show how the second-level cache can be easily 
extended to solve the synonym problem resulting from the use 
of a virtually-addressed cache at the first level. Moreover, the 
second-level cache can be used to shield the virtually-addressed 
first-level cache from irrelevant cache coherence interference. 
Finally, simulation results show that this organization has a 
performance advantage over a hierarchy of physically-addressed 
caches in a multiprocessor environment. 

Keywords: Caches, Virtual Memory, Multiprocessors, Mem- 
ory Hierarchy, Cache Coherence. 

1 Introduction 
Virtually-addressed caches are becoming commonplace in high- 
performance multiprocessors due to the need for rapid cache ac- 
cess ill, 3,171. A virtually-addressed cache can be accessed more 
quickly than a physically-addressed cache because it does not re- 
quire a preceding virtual-t&physical address translation. How- 
ever, virtually-addressed caches have several problems as well. 
For example: 
1. They must be capable of handling synonyms, that is, multi- 

ple virtual addresses that map to the same physical address. 

2. While address translation is not required before a virtual 
cache lookup, address translation is still needed following a 
miss. 

3. In a multiprocessor system, the use of a virtually-addressed 
cache may complicate cache coherence because bus addresses 
are physical, therefore a reverse translation may be re- 
quired. 
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4. I/O devices use physical addresses as well, also requiring 
reverse translation. 

5. A virtual cache may need to be invalidated on a context 
switch because virtual addresses are unique to a single pro- 
cess. 

None of these problems is insolvable by itself, and several schemes 
have been proposed for managing virtual caches. For example, 
dual tag sets, one virtual and one physical, can be used for 
each cache entry [7, 61. As another example, the SPUR sys- 
tem restricts the use of address space, prohibits caching of I/O 
buffers, and requires bus transmission of both virtual and phys- 
ical addresses [ll]. However, these schemes tend to have perfor- 
mance shortcomings or unpleasant implications for system soft- 
ware. Virtually-addressed caches are fundamentally complicated, 
and this time or space complexity reduces the ability of the cache 
to match the ever-increasing needs of modern processors. 

To attack this problem, we propose a two-level cache organization 
involving a virtually-addressed first-level cache and a physically- 
addressed second-level cache (recent studies of two-level unipro- 
cessor and multiprocessor caches can be found in [4, 5, 12, 131). 
The small first-level cache.can be fast to meet the requirements 
of high-speed processors; it is virtually addressed to avoid the 
need for address translation. The large second-level cache will 
reduce miss ratios and memory traffic; it is physically addressed 
to simplify the I/O and multiprocessor coherence problems. Fur- 
thermore, we show how the second-level cache can be utilized 
to solve the synonym problem and to shield the first-level cache 
from irrelevant cache coherence traffic. Overall, we believe that 
this two-level virtual-real organization rsimplifies the design of the 
first-level, where performance is crucial, while solving some of the 
difficult problems at the second level, where time and space are 
more easily available. 
Our organization involves the use of pointers in the two caches 
to keep track of the mappings between virtual cache and physical 
cache entries [7]. We also provide a translation buffer at the sec- 
ond level which operates in parallel with first-level cache lookups 
in case a miss requires reverse translation. Trace-driven simula- 
tions are used to demonstrate the advantages of a two-level V-R 
(virtual-real) cache over a hierarchy of real-addressed caches in 
a multiprocessor environment. 
The rest of this paper is organized as follows. Section 2 describes 
the approaches taken in solving various problems related to vir- 
tual address caches and presents some design choices for high 
performance multiprocessor caches. Section 3 gives the specific 
organization of a V-R two-level cache hierarchy and its detailed 
operational description. Section 4 presents performance results 
from simulations, and conclusions are drawn in section 5. 
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2 Design issues of two-level V-R caches 
for high performance multiprocessors 

This section addresses some important issues in the design of 
two level V-R caches and motivates our design choices. A more 
detailed operational description of our approach is given in the 
following section. The proposed architecture for this evaluation is 
a shared-bus multiprocessor where each processor has a private, 
twolevel, V-cache-R-cache hierarchy as shown in Figure 1. 

RCdle R-C&e 

E V-Cache V-Cache 

P . . . p 

Figure 1: Shared-bus organization 

Write policies 

For a two-level cache, the write policy can be selected indepen- 
dently at each level. In the literature, write-through has been 
proposed as the most reasonable write policy for the first-level 
cache in a twolevel hierarchy, while write-back is advocated for 
the second level [lo, 8, 131. A major motivation for the choice 
of write-through at the first level is that cache coherence control 
is simplified. In this case, the first- and second-level caches will 
always contain identical values. 

There are several problems, however, with using a first-level write- 
through cache. First, assuming no write-allocate, write-through 
caches will have smaller hit ratios than write-back caches. Sec- 
ond, a write takes longer under write-through because the second- 
level cache must be updated as well; primary memory may also 
need to be updated depending on the write policy for the second 
level. 

The reduced write latency with write-through can be greatly hid- 
den by the use of write buffers between the first and second levels, 
but several write buffers may be needed. Table 1, for example, 
shows that in the execution of the VAX program pops (cf. sec- 

tion 4), 30% of writes are due to procedure calls, each of which 
typically generates six or more successive writes. Table 2 shows 
the inter-write interval distribution for a snapshot (411,237 refer- 
ences) of the same trace using a 16K direct-mapped cache with a 
M-byte block size. As can be seen, the high percentage of short 
inter-write intervals confirms the need for several buffers. 

Unfortunately, while write buffers can reduce the write latency of 
the first-level cache, they re-introduce a complexity that Write- 
through was intended to avoid, namely cache coherence. Write 
buffers can hold modified data for which other processors might 

encounter a miss. Thus, cache coherency control must be pro- 
vided for the write buffers on every cache coherence transaction. 

These difficulties lead us to favor the write-back policy for our 
virtually-addressed cache at the first level. 

no. of wr. per call count total writes 
1 3 3 
2 2 4 
3 0 0 
4 2 8 
5 2 10 

Table 1: Nu lmber of writes due to procedm re c :a116 

481 

9 735 
10 and larger 3245 

Table 2: Inter-write intervals (snapshot of 411,237 references) 

The synonym problem 

As previously noted, a two-level V-R organization can be used 
to solve the synonym problem. The solution requires the use 
of a reverse translation table [15] for detecting synonyms, and a 
natural place to put that table is at the second level. 

Our two-level organization permits and detects synonyms, but 
guarantees that at most one copy of a data element exists in the 
V-cache at any time. Each second-level cache block will have a 
pointer to its first-level child block, if one exists. If we guarantee 
an inclusion property, where the R-cache contains a superset of 
the tags in the V-cache, the reverse translation information can 
be stored in log(V-cache size/page size) superset bits in each R- 
cache block. For each entry in the R-cache with a child in the 
V-cache, these extra bits, together with the page offset, provide 
the V-cache location of its child. 

When a miss occurs in the V-cache, the virtual address is trans- 
lated (using a second-level translation buffer) and the R-cache is 
accessed. If an R-cache hit occurs, the R-cache checks whether 
the data is also in the V-cache under another virtual address (a 
synonym). If so, it simply invalidates that V-cache copy and 
moves the data to the new virtual address in the V-cache. Thus, 
while a data element can have synonyms, it is always stored 
in the V-cache using the last virtual address with which it was 
accessed.’ 

‘Note that our approach in dealing with the synonym problem has some 
similarities to Goodman’s approach [7]. One can view our approach as mov- 
ing Goodman’s real directory from being just for snooping to being associated 
with the level two cache. This move provides two benefits. First, it hides 
the cost of Goodman’s extra, real directory by making it the level two cache 
directory. Second, it reduces the misses caused by real-address collisions via 
making the real directory much bigger. 



Context switching 

In a multiprogramming environment, addresses are unique to 
each process and therefore the V-cache must be flushed when- 
ever a context switch occurs. This might be costly for a large 
virtually-addressed cache. For small caches we believe the penalty 
on hit ratios will be negligible and this is confirmed by our sim- 
ulation results (cf. Section 4). However, if a write-back policy is 
used for the V-cache, a substantial number of write-backs may 
occur at each context switch, which greatly increases context- 
switch latency. 

Another solution to avoid the address mapping conflict is to at- 
tach a process identifier to each tag entry of the V-cache. This 
approach does not improve the hit ratio for a small V-cache [I], 
but can avoid the large number of write-backs at context switch 
time. Unfortunately, this approach increases the complexity of 
a two-level hierarchy because the V-cache needs to be purged 
or selectively flushed when a TLB entry of an inactive process 
is replaced by an entry of the active process, or a process-id is 
reassigned. 

We wish to have the benefits of rednced context-switch latency 
without needing to flush the V-cache when a TLB entry changes. 
Our approach meets these goals by invalidating all V-cache blocks 
on a context switch but not writing them back at that time. 
Instead, each block is written back only when it is replaced, that 
is, when a new block is read into that cache slot. The writes are 
thus distributed in time where the latency can be hidden using 
write-back buffers. 

To implement this scheme, we add two new fields to each V-cache 
block. First, we add a swapped-valid bit, which is set for each V- 
cache block on a context switch. Upon a replacement, if the 
V-cache finds a block with swapped-valid set, it checks whether 
that block is also marked both dirty and valid; if so, that block 
must be written back. Second, we add an r-pointer, which is the 
low-order bits of the page number, to each V-cache block. The 
r-pointer, together with the page offset, is sufficient to link a V- 
cache entry to its corresponding location in the R-cache. This 
linkage makes a write-back or a state check efficient, since there 
is no need for an address translation. This approach uses space 
comparable to that of the process identifier scheme, but without 
its disadvantages. 

Table 3 shows the effect of the swapped-valid bit; here we.see. 
the inter-write interval from the same benchmark as Table 2 
when the swapped-valid bit is used. Because swapped write- 
backs are typically far apart from other (swapped) write-backs, 
a single write-back buffer is sufficient to overlap swapped write- 
backs with processor execution. Our simulations show that with 
a single buffer the amount of stalling on a swapped write-back is 
indeed negligible. On the other hand, if the incremental write- 
back is not used we need to write back over a hundred blocks at 
context switching time for this specific benchmark. Notice that 
the number of write-backs needed due to context switching is a 
function of cache size, cache organization, the duration of the 
running state of a process, and the workload. 

Cache coherence 

While two-level caches are attractive, cache coherence control is 
complicated by a two-level scheme. Without special attention to 
the coherence problem, the first-level cache will be disturbed by 
every coherency request on the bus. A solution to this problem 
is to use the second-level cache as a filter to shield the first- 
level cache from irrelevant interference. In order to achieve this, 
we need to impose an inclusion property where the tags of the 

Table 3: Write interval with write-back and swapped write-back 
(snapshot of 411,237 references) 

second-level cache are a superset of the tags of its child cache. We 
say that a multilevel cache hierarchy has ,the inclusion property if 
this superset relation holds. Imposing inclusion is also essential 
for solving the synonym problem as stated above. 

In a multiprocessor environment, the inclusion property cannot 
be held even with a global LRU replacement [4]. In [5] the follow- 
ing replacement algorithm was proposed as bne of the conditions 
to impose the inclusion. 

l First level: Any replacement algorithm will do (e.g., LRU). 
Notify the second level cache of the block being replaced. 

l Second level: Replace a block which does not exist in the 
first level (this is done by checking an inclusion bit; there 
is one inclusion bit per block to indicate whether the block 
is present in the first level). 

The generat problem with inclusion is its implications for a large 
set size in the second level (i.e., high associativity). By following 
the same approach as in (51, and letting S; be the number of sets, 
Bi be the block size, and &e(i) be the cache size of a level i 
cache, we can show that in order to impose inclusion under the 
above replacement algorithm, the set-associativity of the second- 
level cache A2 must be: 

under the usual practical situations where S2 > S,, Bz _> &, 
size(2) > size(l) and BlSl 2 pagesizez. 

In practical cases, this constraint can be too strict to be feasible. 
For example, if the V-cache is 16K bytes, the page size is 4K 
bytes, and Bz is 4 times as large as B1, even with a direct-mapped 
V-cache we need a 16-way R-cache to a,chieve the inclusion. 

To relax the strict constraint on the set-associativity of the R- 
cache, we change the replacement rule of the R-cache to operate 
as follows: replace a block with the inclusion bit clear if there 
is one; otherwise replace a block according to some predefined 
replacement algorithm and invalidate the corresponding V-cache 
block. Note that the latter won’t happen very often since the R- 
cache is much larger than the V-cache. For example, the analysis 
of the multiprocessor trace, pops (over 3 million memory refer- 
ences), shows that only 21 inclusion invalidations are needed if 
the V cache is 16K bytes, a-way set-associative with a 16 byte 
block size and the R cache is 256K bytes with same set size and 
block size. 

‘if BISI < pagesire the results of [s] appl:y. 
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3 Organization of a V-R two-level cache 

A simplified organizational block diagram of a V-R two-level 
cache is given in Figure 2. The V-cache is accessed via virtual 
addresses, which are also forwarded to the TLB at the second 
level so that address translation can proceed concurrently with 
the access to the V-cache. This translation and the access to 
the R-cache are aborted if there is a valid hit in the V-cache. A 
number of tag and control bits that we call tag entry are associ- 
ated with data blocks in both caches as shown in Figure 3. Each 
tag entry in the V-cache contains a tag, an r-pointer, a dirty bit, 
a valid bit and a swapped-valid bit. The r-pointer contains the 
lower log(R-cache-size/page-size) bits of the real address page 
number. Together with the page offset, it can be used to address 
the related entry in the R-cache. The swapped-valid bit is used 
to indicate whether the entry belongs to a swapped process. This 
is needed in order to avoid a large context switch overhead, as 
previously described. 

Each tag entry in the R-cache tag store contains a tag and a 
number of subentries, one subentry per V-cache block since we 
allow larger block sizes in the R-cache. A subentry contains an 
inclusion bit that indicates whether a copy of the data is in the 
V-cache or not, a buffer bit that indicates if a copy of the data 
is in a write buffer of the V-cache, a few state bits for sharing 
status and cache coherence control (with other R-cnches), two 

dirty bits, one for V-cache dirty and for R-cache dirty, and a v- 
pointer which contains the lower log(V-cache-size/page-size) bits 
of the virtual page number. Together with the page offset, the 
v-pointer cau be used to address the entry in the V-cache. 

In order to properly provide the data and manage cache coher- 
&ice and synonyms, we list in Table 4 the communication buses 
between the V-cache and the R-cache. The following is a detailed 
operational description of a two-level V-R cache. 

For simplicity, let us assume that an invalidation protocol is 
used at the R-cache level although our scheme will also work 
for other protocols as well. An invalidation protocol invalidates 
all other cache copies before updating shared data in the local 
cache. Write-backs to memory are performed when a dirty block 
moves from one cache hierarchy to another. A number of existing 
protocols belong to this category [IS]. 

V-R hierarchy algorithm 

1. Read hit in V-cache. Give the data to the processor. The 
hit signal is sent to the R-cache to abort the R-cache and 
TLB accesses. 

2. Read miss in V-cache. Raise the replacement signal if a 
V-cache block needs to be replaced to give room to the 
incoming new data. Give the R-cache both the v-pointer, 
which is the V-cache location for the new data, and the 

BUS r-pointer, which is the R-cache location of the block being 
replaced. If the replaced block in V-cache is clean, the 

Figure 2: V-R cache organization 

V-cache tag entry tag rpointer dirty v sv 

20 6 1 1 1 

R-cache tag entry tat3 I B state vpointer I B state vpointer 

16 11 2 2 1111 2 2 11 

Figure 3: Contents of tag stores (assume page size is 4K, Ci is 16K and Cz is 256K, Ba = 2 x Br.) 
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fiomV toR: 
read/write tells the FL-cache whether the current request is a read or a write. 

replacement tells the Rcache that a V-cache block needs to be replaced. 
hit/miss(v-pointer, r-pointer) tells the R-cache whether the current access results in a hit or a miss in the 

V-cache. If it is a miss, the target v-pointer gives the V-cache slot for the 
new data and the r-pointer gives the Rcache entry where the inclusion bit 
is to be erased if the block to be replaced is clean, or where the buffer bit 
is to be set if the block is dirty. If it is a hit the Rcache access is aborted. 

write back(r-pointer) tells the Rcache that the data in the write buffer will be written back to 
the place pointed to by the r-pointer. 

From R to V: 
sameset (v-pointer) tells the V-cache that there is a synonym copy in the same set; no need to 

write back; and the data is available under v-pointer. 

move(v-pointer) tells the V-cache that there is a synonym copy in a different set; the data 
is available under v-pointer. 

data supply(r-pointer) tells the V-cache that the data is ready to be loaded and gives its location 
in the R-cache to be stored as part of the tag entry. 

invalidation(v-pointer) tells the V-cache to invalidate the data under v-pointer. 

tlush(v-pointer) tells the V-cache to flush the data under v-pointer. 
invalidation(buHer) tells the V-cache to invalidate the data in the buffer. 
flush(buffer) tells the V-cache to flush the data in the buffer. 
lrrvack tells the V-cache that the coherency has been cleared and that it can update 

the data. 

Table 4: V-R interface 
R-cache resets the inclusion bit. If the block is dirty, the 
V-cache copies the block into the write buffer and the R- 
cache sets the buffer bit to indicate that the block is still 
in the write buffer of the V-cache. This bit gets reset when 
the write-back occurs or when the write-back is canceled 
(see below). 

(a) Hit in R-cache. 

i. The data is in the V-cache under another virtual 
address. The R-cache tests whether the two loca 
tions are in the same set. If so, a sameset signal 
is sent to the V-cache so that the write-back can 
be canceled if the replaced block is dirty; the R- 
cache wiIl reset the buffer bit if the replaced bIock 
is dirty, or it will set the inclusion bit if the re- 
placed block is clean3. If the blocks are in different 
sets, the R-cache sends a move(v-pointer) to the 
V-cache so that the data can be stored at the new 
location. Valid bits are set to valid. The v-pointer 
tag entry of the R-cache is modified accordingly. 
Notice that in both cases the v-tag is updated to 
reflect the new virtual address. 

ii. No other copy in V-cache. R-cache raises the data 
supply signal and sends the block to the V-cache. 
The R-cache also suppIies the r-pointer to the V- 
cache to set up the link information, R-cache sets 
the inclusion bit and the v-pointer and the V- 
cache stores the r-pointer, sets the valid bits, and 
resets the dirty bit. 

(b) Miss in R-cache. Proceeds as described in the cache 
coherence subsection. Gets a clean copy and then back 
to (a)ii. 

3. Write hit on clean block in V-cache. Wait till the R-cache 
raises the invack signal (cf. the cache coherence subsec- 
tion); then update the data and set the dirty bit in the 
V-cache. 

4. Write miss in V-cache. The replacement proceeds as in the 
case of a read miss. 

‘the inclusion bit was reset earlier to reflect the replacement. 

(a) Hit in R-cache. Resolve the cache coherency (cf. be- 
low); resolve the synonyms as in the case of a read 
&SS; load the block into V-cache; update the data 
and sets the dirty bit in the V-cache. 

(b) Miss in R-cache. Proceed as described in the cache 
coherence subsection; get a clean copy, load the block 
into the V-cache and the R-cache and set appropriate 
pointers and inclusion as in the case for a read; update 
the data, and set the dirty bit in the V-cache. 

It is worth noticing that the cost of handling a synonym is ap- 
proximately the same as a first-level miss and second-level hit. 
This observation will be used in our performance evaluations. 

Cache coherence 
Processor induced: 

1. Read miss in the V-cache and in the R-cache. Initiate a 
read-miss bus transaction and get the block. Set the state 
of the block as shared if another cache acknowledges having 
this block; otherwise set the state as private. 

2. Write hit on a clean block in the V.-cache. Check the state 
in the R-cache. If private, raises the invack to let the 
V-cache proceed; sets the vdirty bit in the R-cache. Other- 
wise, the R-cache initiates an invalidation bus transaction 
and when it is completed, raise the invack signal and set 
the vdirty bit in the R-cache. 

3. Write miss in the V-cache. 

(a) Hit in the R-cache. Check the state in the R-cache. If 
shared, initiate an invalidation bus transaction. Sup- 
ply the block to the V-cache when the transaction is 
completed and Set the vdirty bit in the R-cache. 

(b) Miss in the R-cache. Initiate a read-modified-write 
bus transaction; get the block; reset the rdirty bit in 
the R-cache and set the vdirty bit in the R-cache. 

1. Read-miss. Acknowledge the sharing status if in possession 
of the requested block and: 
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(a) If the block is modified in the V-cache, the R-cache 
sends a Aush(v-pointer) to V-cache and gets the block, 
update5 itself, changes its state to shared, resets the 
vdirty bit, resets the rdirty bit, supplies the block to 
the requesting cache and update5 the memory. 

(b) If the block is modified in the write buffer of V-cache, 
R-cache sends a flush(buffer) to V-cache and gets the 
block, updates itself, changes its state to shared, resets 
vdirty bit, resets the rdirty bit, resets the inclusion bit, 
supplies the block to the requesting cache and updates 
the memory. 

(c) If the block is dirty in the R-cache, the R-cache sup- 
plies the block to the requesting cache, updates the 
memory, changes its state to shared, and resets its 
dirty bit. 

(d) Otherwise, memory supplies the block. 

2. Invalidation. The R-cache invalidates its own entry if present 
and checks the inclusion bit. If it is set, the corresponding 
entry in the V-cache is invalidated. This is done by issuing 
invaIidate(v-pointer) to the V-cache. 

3. Read-modified-write. Treated as a read-miss followed by 
an invalidation. 

Replacement 

(a) V-cache: Any replacement algorithm will do (e.g., LRU). 

(b) R-cache: Replace a block with all inclusion bits (i.e., for each 
subentry) reset. If there is none (this might happen if we follow 
the strategy of the end of section 2), randomly choose one block 
and invalidate the copy (or copies if Bs > Br) in the V-cache. 

4 Performance 

In this section, we compare the relative performance of virtual- 
real (V-R) and real-real (R-R) two-level caches. We also examine 
the merits of splitting the first-level virtually-addressed cache 
into I and D caches. Finally, we measure the effect of the R- 
cache in shielding the V-cache from irrelevant cache coherence 
interference. 

To gather the performance figures, we use trace-driven simula- 
tions and three parallel program traces: pops, thor and abaqus 
[2, 141. In pops and thor, context switches occur rarely while 
they are frequent in abaqus. Table 5 gives a summary of some 
characteristics of these traces. 

Relative performance of V-R and R-R two-level caches 

To compare the performance of V-R and R-R two-level caches, 
we gather the hit ratios at different levels; the hit ratios are then 
used in generic memory access time equations to predict relative 
performances. We assume that the inclusion property defined 
previously also holds for the R-R two-level cache. For simplicity, 
we consider only direct-mapped caches at both levels. 

The generic access time equation of a two-level cache hierarchy 
is as follows: 

xc,= Prob(hit at level 1) x access time at level 1 
+ Prob(hit at level 2&r&s at level 1) x access time at level 2 
t prob(miss at level 1 and 2) x memory access time 

that is: 

Tecc = htl t (1 - h)hzt2 + (1 - hr - (1 - hr)h2)t, 

where hr, hz are hit ratios at levels 1 and 2, tr and t2 are ac- 
cess times at the two levels, and t, is the memory access time 
including the bus overhead. 

Because the second-level caches are the same for both V-R and 
R-R organizations, and because inclusion holds, the number of 
misses and the traffic from the second-level cache are the same in 
both organizations. Therefore the third term in the above equa- 
tion is the same for both V-R and R-R organizations. Assuming 
that handling a synonym has a cost equivalent of handling a miss 
in the first-level cache that hits in the second-level cache, the rel- 
ative performance where there is a hit in the hierarchy can be 
estimated solely on the first two terms of the above equation. 

Table 6 shows the hit ratios at both levels of V-R and R-R orga 
nizations for the three traces under three different pairs of first 
and second-level cache sizes. Figures 4, 5 and 6 depict the rela- 
tive performance of the two organizations under different degrees 
of assumed R-cache degradation due to address translation over- 
head. These figures plot the relative performance of the two 
hierarchies with t2 = 4tl vs. the percentage of slow down due to 
address translation for various first-level/second-level cache sizes. 
The points on the y-axis correspond to no slow down at all. From 
these figures we can draw the following conclusions. 
Let US assume that there is no time, penalty involved in per- 
forming a virtual-real address translation in conjunction with 
the access to the first level cache. When context switches occur 
rarely, as is the case for the first two traces (Figures 4 and 5), 
the performances of the V-R and R-R hierarchies are almost in- 
distinguishable (the points on the y-axis are the same). When 
context switches are frequent, as in the third trace (Figure 6), 
the V-R hierarchy is slower by 2 to 6% depending on the size of 
the V-cache (a larger V-cache seems to imply a larger relative 
degradation). 
Now, let us assume a time penalty for the translation. There 
are two possible reasons for this penalty. The first is that TLB 
access and cache access cannot be completely overlapped m soon 
a the cache size is larger than the page size multiplied by the 
set ssociativity. Second, even if there were total overlap, there 
would still be an extra comparison necessary to check the validity 
of a cache hit. From the observation5 of the previous paragraph, 
it is clear that the V-R hierarchy will perform better in the case. 
of rare context-switches. The relative improvement is approx- 
imately equal to the overhead of address translation. What is 
interesting Is to see the cross-over point for the case of frequent 
context-switches. From Figure 6, we see that the V-R hierar- 
thy will have a better performance when the address translation 
510~5 down the first level R-cache access by 6% or more. 
Since 6% is a conservative figure for the penalty due to the inser- 
tion of a TLB at the first level, it appears that the V-R hierarchy 
is a better solution. Its performance is a~ good a~ that of an R-R 
hierarchy and its cost is less since the TLB does not have to be 

trace num. of cpus total refs instr count data read data write context switch count 
thor 4 3283k 1517k 139Ok 376k 21 

POPS 4 3286k 1718k 1285k 283k 7 
abaqus 2 1196k 514k 600k 82k 292 

Table 5: Characteristics of traces 
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Table 6: hit ratios 

Table 7: Hit ratios for small first-level caches 
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implemented in fast logic. Another advantage is that problems 
such as TLB coherence can also be handled at the second level. 

The results presented above assumed 4K to 16K first-level caches, 
which may be impractical for some advanced technologies, such 
as GaAs. However, we believe that the V-R organization is even 
more attractive for hierarchies with smaller first-level caches. Our 
results in Table 7 show that for smaller fimt-level caches (e.g., .5K 
to 2K), the first-level hit ratios of V-R and R-R organizations are 
nearly identical. Therefore, performance of a V-R hierarchy will 
be superior given any penalty for a TLB lookup. In addition, for 
technologies in which space is at a premium, we can trade the 
first-level TLB of an R-R hierarchy for a larger first-level cache 
in a V-R hierarchy. This in turn provides larger hit ratios and 
hence smaller average access time. 

Splitting the first-level virtually-addressed cache 

There are a number of reasons why it is advantageous to split the 
first-level cache into separate I and D caches. First, the band- 
width can almost be doubled for pipelined processors where an 
instruction fetch can occur at the same time as a data fetch of 
a previous instruction (e.g., the IBM801 and Motorola 88000). 
Second, each I and D cache is smaller and has the potential to 
be optimized for its speed. Third, and this pertains mostly to 
V-caches, the I cache is simpler than the D cache since it does 



not need to handle the synonym and the cache coherence prob- 
lems provided that self-modifying programs are not permitted. A 
disadvantage, however, is that we need more wirings or pins for 
the processor and cache module. It is important to assess, how- 
ever, if splitting the cache into I & D components will improve 
performance. 

Our results in Table 8, 9 and 10 show that the hit ratios of split 
I&D caches are very close to that of a unified I&D cache and are 
not necessarily worse. In these tables, the I and D separate caches 
are of equal sizes (i.e., in the 4K example the I-cache and the D- 
cache are each 2K). Similar results have been found in [9, 131. 
Thus, we would advocate such a split for a V-R hierarchy. 

thor 4K/64K 8K/128K 16K/256K 
data read split 0.924 0.937 0.945 

unified 0.913 0.938 0.950 
data write split 0.952 0.962 0.969 

unified 0.946 0.966 0.972 
instruction split 0.957 0.963 0.989 

unified 0.930 0.973 0.984 
overall split 0.942 0.952 0.968 

unified 0.925 0.957 0.968 

Table 8: Hit ratios of level 1 caches for the thor trace 

POPS POPS 4K/64K 8K/128K 16K/256K 4K/64K 8K/128K 16K/256K 
dataread split dataread split 0.902 0.902 0.912 0.912 0.923 0.923 

unified unified 0.900 0.900 0.915 0.915 0.926 0.926 
data write split data write split 0.936 0.936 0.946 0.946 0.955 0.955 

- unified unified 0.937 0.937 1 0.948 0.948 1 0.958 0.958 
instruction split instruction split 1 0.947 0.947 1 0.966 0.966 1 0.978 0.978 

unified 0.948 0.963 0.974 
overall epht 0.928 0.944 0.955 

unified 1 0.948 1 0.963 1 0.974 
overall epht 1 0.928 1 0.944 1 0.955 

I unified I 0.928 I 0.943 I 0.954 I 

Table 9: Hit ratios of level 1 caches for the pops trace 

abaqus 4K/64K 8K/128K lSK/256K ’ 
data read split 0.795 0.818 0.837 

unified 0.806 0.829 0.845 
data write split 0.841 0.861 0.875 

unified 0.847 0.857 0.895 
instruction split 0.920 0.947 0.949 

unified 0.907 0.926 0.938 
overall split 0.852 0.876 0.888 

unified 0.852 0.873 0.888 

Table 10: Hit ratios of level 1 caches for the abaqus trace 

Shielding cache coherence interference 

An important advantage of the two-level approach is that the 
R-cache can shield the V-cache from irrelevant cache coherence 
interference. For example, on a read miss bus request, the R- 
cache needs to send a flush request to its V-cache only when 
the V-cache contains a modified copy of the data; otherwise the 
V-cache will not be disrupted. Note that this shielding effect is 
achieved because the inclusion property holds in our V-R two- 
level cache. Imposing inclusion might not seem to be essential 
for an R-R two-level hierarchy because the synonym problem 
is not present. However, the results in Tables 11, 12 and 13, 
which give the number of coherence messages being percolated 
to each first-level cache, show that a V-R two-level cache has 
much less coherence interference at the first level than that of 
an R-R two-level cache without inclusion. The results also show 
that inclusion is important in an R-R two-level cache since it 
results in approximately the same savings in coherence messages 
to the first-level cache.4 

We believe that the shielding effect on cache coherence will be 
more prominent as the number of processors increases. This is 
due to the fact that more bus coherence requests will be generated 
from a larger number of processors, and without the shielding, 
a first-level cache will be disrupted more often. Our results in 
Tables 11, 12 (4 cpus) and 13 (2 cpus) reflect this effect. For 
example, on the average, the first-level cache of a V-R hierarchy 
encounters about half the coherence messages than that of the 
R-R hierarchy without inclusion for the two processor trace (cf. 
Table 13), whereas for four processor traces the first-level cache 
of the V-R hierarchy encounters from three to six times fewer 
coherence messages. We plan to further confirm this observation 
when we are in possession of larger-scale traces. 

5 Conclusions 

One of the most challenging issues in computer design is the sup- 
port of high memory bandwidth. In this paper, we have proposed 

‘We notice that RR with inclusion has over 10% fewer coherence messages 
than that of VR for the abaqus trace. This discrepancy is due to a large 
amount of inclusion invalidations incurred in this specific trace due to a 
large number of context switchings. 

Table 11: Number of coherence messages to the first-level cache 

Table 12: Number of coherence messages to the first-level cache 

abaqus 4K/64K 8K/128K 16K/256K 

CPU VR RR(inc1) RR(no incl) VR RR(inc1 ) RR(no incl) VR RR(inc1) RR(no incl) 
0 10961 8436 18855 11677 9379 21295 11067 9853 22603 
1 10527 8029 20726 10547 9528 24202 10599 10028 26845 

Table 13: Number of coherence messages to the first-level cache 
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a two-level cache hierarchy to address this issue. We have argued 
that the first level cache is best accessed directly by virtual ad- 
dresses. We back up the small virtually-addressed cache by a 
large second-level cache. A virtually-addressed first-level cache 
does not require address translation and can be optimized to 
match the processor speed. Through the use of a swapped-valid 
bit, we avoid the clustering of write-backs at context switching 
time. The distribution of these write-backs is more evenly spread 
over time. The large second-level cache provides a high hit ratio 
and reduces a large amount of memory traffic. We have shown 
how the second-level cache can be easily extended to solve the 
synonym problem resulting from the use of a virtually-addressed 
cache at the first level. Furthermore, the second-level cache can 
be used effectively to shield the virtually-addressed first-level 
cache from irrelevant cache coherence interference. 

Our simulation results show that when context switches are rare, 
the virtually-addressed cache option has comparable performance 
to its physically-addressed counterpart, even assuming no ad- 
dress translation overhead. When context switches occur fre- 
quently, the virtually-addressed cache option has a performance 
edge when a small address translation penalty is taken into ac- 
count, and the smaller the virtually-addressed cache the larger 
the relative performance edge. We also advocate splitting the 
virtually-addressed cache into separated instruction and data 
caches. This approach has the potential of doubling the memory 
bandwidth since our results show that the hit ratios of split in- 
struction and data caches are very close to that of a single I&D 
cache. 

As a final remark, we note that cache performance is workload 
dependent. In this study we have confined ourselves to a limited 
VAX multiprocessor workload. We plan to enlarge our workload 
sample as soon a8 we are in possession of other multiprocessor 
traces. 
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