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Abstract
This paper is motivated by the difficulty in writing correct

high-performance programs. Writing shared-memory multi-
threaded programs imposes a complex trade-off between pro-
gramming ease and performance, largely due to subtleties in
coordinating access to shared data. To ensure correctness pro-
grammers often rely on conservative locking at the expense of
performance. The resulting serialization of threads is a perfor-
mance bottleneck. Locks also interact poorly with thread schedul-
ing and faults, resulting in poor system performance.

We seek to improve multithreaded programming trade-offs by
providing architectural support for optimistic lock-free execution.
In a lock-free execution, shared objects are never locked when
accessed by various threads. We proposeTransactional Lock
Removal(TLR) and show how a program that uses lock-based
synchronization can be executed by the hardware in a lock-free
manner, even in the presence of conflicts, without programmer
support or software changes. TLR uses timestamps for conflict
resolution, modest hardware, and features already present in
many modern computer systems.

TLR’s benefits include improved programmability, stability,
and performance. Programmers can obtain benefits of lock-free
data structures, such as non-blocking behavior and wait-freedom,
while using lock-protected critical sections for writing programs.

1  Introduction
Programming complexity is a significant problem in writing

shared-memory multithreaded applications. Although threads
simplify the conceptual design of programs, care and expertise
are required to ensure correct interaction among threads. Errors in
reasoning about appropriate synchronization among threads while
accessing shared data objects result in incorrect program execu-
tion, and may be extremely subtle.

Transactions serve as an intuitive model for coordinating
access to shared data. Atransaction[7] comprises a series of read
and write operations that provide the following properties: fail-
ure-atomicity, consistency, and durability.Failure-atomicitystates
a transaction must either execute to completion, or in the presence
of failures, must appear not to have executed at all.Consistency
requires the transaction to follow a protocol that provides threads
with a consistent view of the data object. Serializability is an intu-

itive and popular consistency criterion for transactions.Serializ-
ability requires the result of executions of concurrent transactio
to beas if there were some global order in which these transa
tions had executed serially [7].Durability states that once a trans-
action is committed, it cannot be undone.

While the concept of transactions is simple and convenie
for programmers to reason with [10], processors today provi
only restricted support for such transactions in their instructio
sets. Examples are the atomic read-modify-write operations o
single word. The restricted size for these operations and limi
tions placed on their use render them ineffective in providin
functionality of general transactions.

A lack of general transaction support in processors has led
programmers often relying on critical sections to achieve some
the functionality of transactions.Critical sectionsare software
constructs that enforce mutually exclusive access among thre
to shared objects and thus trivially satisfy serializability. Failure
atomicity is difficult to achieve with critical sections because
requires support for logging modifications performed in the crit
cal section and then making these modifications visible instan
neously using an atomic operation. Critical sections therefore
not provide failure-atomicity. Critical sections are most com
monly implemented using a software construct known as alock.
A lock is associated with a shared object and determines whet
the shared object is currently available. Nearly all architectur
support instructions for implementing lock operations. Lock
have become the synchronization mechanism of choice for p
grammers and are extensively used in various software such
operating systems, database servers, and web servers.

Motivation. Two key limitations of lock-based critical sections
motivate the work in this paper: 1) Complex trade-off betwee
programmability and performance, and 2) Problems of stabil
(i.e., behavior in the presence of unexpected conditions) of t
application.

Performance/programmability limitation of locks. The com-
plex trade-off between programmability and performance exis
because programmers have to reason about data sharing du
code development using static information rather than dynam
run-time information. Programmers often use conservative sy
chronization to easily write correct code. While such use m
guarantee correctness, provides stable software, and lead
faster code development, it also inhibits parallelism becau
threads are unnecessarily serialized. Fine-grain locks (e.g.,
lock per node in a data structure) may help performance but ma
code difficult to write and error prone. Coarse-grain locks (e.g
one lock per data structure) help in writing correct code an
reducing errors but hurt performance. Additionally, locks ca
contribute to significant overhead, serialize execution, an
degrade overall system performance [16]. Exploiting dynam
concurrency is also often a non-trivial task [13].
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Stability limitation of locks.If some thread owns a lock, and
has marked itheld, other threads requiring that lock have to wait
for the lock to becomefree. Such wait can negatively impact sys-
tem behavior. If the lock owner is de-scheduled by the operating
system, other threads waiting for the lock cannot proceed because
the lock is not free. In high concurrency environments, all threads
may wait until the de-scheduled thread runs again.Non-blocking
primitives guarantee some thread will execute an operation in a
finite number of steps despite individual halting failures or delays
[11]. Further, if the lock owner aborts, other threads waiting for
the lock never complete as the lock is never free again.The shared
structures updated by the aborted thread are left in an inconsistent
state as critical sections lack failure-atomicity. Await-freeprimi-
tive guarantees any process completes any operation in a finite
number of steps [11]. Wait-freedom adds starvation freedom to
the non-blocking property. Conventional locks are neither non-
blocking nor wait-free.

In spite of the limitations of locks, a lack of competitive alter-
natives and the intuitive appeal of critical sections has led to a
nearly universal use of lock-based critical sections for synchro-
nizing thread accesses. Even in environments where transactions
are supported in software, they are implemented using lock-based
critical sections. The limitations outlined above are becoming
important and solutions must be found to enable programmers to
exploit hardware thread parallelism efficiently and easily. A desir-
able approach therefore is to provide transparenttransactional
executionbehavior for critical sections while maintaining the
familiar paradigm of critical sections. Doing so enables the pow-
erful concept of a transaction to be transparently reflected in com-
mon multithreaded programs and allows programmers the
continued use of the lock-based critical section paradigm.

To address the problems outlined above, this paper proposes
Transactional Lock Removal (TLR). TLR uses modest hardware
to convert lock-based critical sections transparently and dynami-
cally into lock-free optimistic transactionsand usestimestamp-
based fair conflict resolutionto provide transactional semantics
and starvation freedom.

TLR uses Speculative Lock Elision (SLE) [30] as an enabling
mechanism. SLE is a recent hardware proposal for eliding lock
acquires from a dynamic execution stream, thus breaking a criti-
cal performance barrier by allowing non-conflicting critical sec-
tions to execute and commit concurrently. SLE showed how lock-
based critical sections can be executed speculatively and commit-
ted atomically without acquiring locks if no data conflicts were
observed among critical sections. Adata conflictoccurs if, of all
threads accessing a given memory location simultaneously, at
least one thread is writing to the location. While SLE provided
concurrent completion for critical sections accessing disjoint data
sets, data conflicts result in threads restarting and acquiring the
lock serially. Thus, when data conflicts occur, SLE suffers from
the key problems of locks due to lock acquisitions.

TLR elides locks using SLE to construct an optimistic trans-
action but in addition also uses a timestamp-based conflict resolu-
tion scheme to provide lock-free execution even in the presence
of data conflicts. A single, globally unique, timestamp is assigned
to all memory requests generated for data within the optimistic
lock-free critical section. Existing cache coherence protocols are
used to detect data conflicts. On a conflict, some threads may
restart (employing hardware misspeculation recovery mecha-
nisms) but the same timestamp determined at the beginning of the
optimistic lock-free critical section is used for subsequent re-exe-
cutions until the critical section is successfully executed. A time-
stamp update occurs only after a successful execution. Doing so
guarantees each thread will eventually win any conflict by virtue

of having the earliest timestamp in the system and thus will su
ceed in executing its optimistic lock-free critical section. If th
speculative data can be locally buffered, all non-conflicting tran
actions proceed and complete concurrently without serializati
or dependence on the lock. Transactions experiencing data c
flicts are ordered without interfering with non-conflicting transac
tions and without lock acquisitions.

Paper contribution. TLR is the first hardware technique for
transparent lock-free execution of lock-based programs wh
providing transactional behavior (serializability and failure-atom
icity) and starvation freedom. TLR has three primary benefits.
1. TLR improves programmability . TLR, rather than change

the programming model to obtain transactional semantic
changes the hardware implementation to transparently prov
such semantics. By allowing programmers to continue usi
the familiar lock-protected critical section interface, program
mers do not have to learn new ways to write programs. TL
does not require software support and existing legacy co
using critical sections can directly benefit from TLR.

2. TLR improves performance. TLR extracts and exploits fine-
grain parallelism inherent in the program independent of t
locking granularity employed by the programmer. Serializatio
of data accesses occurs based on data conflicts and only w
such serialization is necessary for correctness.

3. TLR improves stability . TLR does not suffer from limitations
of locks because it uses timestamps to obtain a lock-free e
cution in the presence of conflicts. As locks are not acquire
the software wait for a lock variable is eliminated and a no
blocking execution is achieved along with failure-atomicity
Further, the conflict resolution scheme guarantees all threa
eventually succeed in a finite number of steps, thus providing
wait-free behavior subject only to resource constraints.

Section 2 presents the TLR algorithm and Section 3 discus
its implementation. Stability aspects of TLR are discussed
Section 4 and we evaluate TLR’s performance in Section 5 a
Section 6. We show that, for test&test&set locks, hardware wi
TLR outperforms hardware without TLR and, on the average pe
forms better than MCS locks for fine-grain locks for our applica
tions. We also show that using coarse-grain locks with TLR c
outperform fine-grain locks because of improved memory syste
behavior. Finally we discuss related work (Section 7) and co
clude (Section 8).

2  Transactional Lock Removal
TLR aims to achieve aserializableschedule of critical sec-

tions where all memory operations within a critical section a
atomically inserted into some global order. This is illustrated
Figure 1. In this paper, the term transaction is used to mea
lock-free critical section satisfying the serializability condition.

Serializability requires the result of executions of concurre
transactions to be as if these transactions executed insomeserial
order. In the absence of data conflicts, serializability can b
ensured using a technique such as SLE but the presence of
conflicts among concurrently executing threads requires ad
tional mechanisms provided by TLR.

The basic idea behind TLR is as follows: a) Treat locks a
defining scope of a transaction, b) Speculatively execute t
transaction without requesting or acquiring the lock, c) Use a co
flict resolution scheme to order conflicting transactions, and
Use a technique to give the appearance of an atomic commi
the transaction, such as is provided by SLE [30].
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TLR performsactiveconcurrency control to ensure correct
coordinated access to the data experiencing conflicting access by
using the data itself rather than locks. Unlike TLR, SLE only
identifies situations where lock-based concurrency control is not
necessary—namely the absence of data conflicts among
threads—and relies on the default lock-based concurrency control
mechanisms if data conflicts occur.

We discuss achieving serializability in the presence of data
conflicts in Section 2.1. In that section, we also discuss the use of
timestamps as a conflict resolution mechanism. We then present
the TLR algorithm for ensuring a serializable execution in
Section 2.2. Section 2.3 gives an example of the TLR algorithm.

2.1  Problem: Achieving serializability
An execution of an optimistic lock-free transaction can be

made serializable if the data speculatively modified by any trans-
action are not exposed until after the transaction commits and no
other transaction writes to speculatively read data. A serializable
execution can be achieved trivially by acquiring exclusive owner-
ship of all required resources. If the thread executing the transac-
tion does so for all required resources, the thread can operate
upon the resources and then commit the updates atomically and
instantly, thus achieving serializability.

In cache-coherent shared-memory multiprocessors the above
requires: 1) Acquiring all required cache blocks (that are accessed
within the transaction) in an appropriate ownership state, 2)
Retaining such ownership until the end of the transaction, 3) Exe-
cuting the sequence of instructions forming the transaction, 4)
Speculatively operating upon the cache blocks if necessary, and
5) Making all updates visible atomically to other threads at the
end of the transaction. However, as we shall see next, the pres-
ence of conflicts may prevent resources from being retained thus
preventing successful execution of the lock-free transaction.

2.1.1.  Necessity for conflict resolution
Livelock can occur if processors executing critical sections

speculatively and in a lock-free manner repeatedly experience
conflicts (as with SLE, the lock can always be acquired and for-
ward progress is guaranteed but we require a solution that does
not rely on lock acquisitions). Consider Figure 2 with two proces-
sors, P1 and P2. Assume both P1 and P2 have elided the lock
(using SLE) and are in optimistic lock-free transaction execution
mode. Both processors are accessing (and writing) shared mem-
ory locationsA andB in the critical sections. The two processors
write the two locations in reverse order of each other—P1 writes
A first and thenB while P2 writesB first and thenA. Messages
and state transitions for the corresponding blocks are shown.
Time instances are labeled ti where i denotes progressing

instances. Time progresses down. P1 has speculatively acce
block A and cached it in exclusive state (M). P2 also has specu
tively accessed blockB and cached it in the M state.

At t1, P1 issues a request for exclusive ownership (rd_X ) for
block B (P1’s write toB) and at t2, P2 issues anrd_X block A
(P2’s write toA). The respective cache blocks transition into
transient (pending) state. At t4, P1 receives P2’srd_X request for
block A. P1 detects the request as a data conflict (blockA, specu-
latively written to by P1, is accessed by another thread before
has completed its lock-free critical section). P1 triggers a m
speculation and restarts its lock-free critical section. Similarly, P
receives P1’srd_X for B at t3 and P2 restarts execution. Both P1
and P2 respond with the valid non-speculative data. The abo
sequence may occur indefinitely with no processor making fo
ward progress because each processor repeatedly restart
other processor.

Livelock occurs because neither processor obtains owners
of bothcache blockssimultaneously. To ensure livelock freedom,
among competing processors one processor must win the con
and retain ownership. TLR assigns priorities to the lock-fre
transactions and employs the following key idea:

Transactions with higher priority never wait for transac-
tions with lower priority. In the event of a conflict, the
lower priority transaction is restarted or forced to wait.

Consider two transactions T1 and T2 executing speculatively.
Suppose T2 issues a request that causes a data conflict with
request previously made by T1, and T1 receives T2’s conflicting
request. The conflict is resolved as follows: if T2’s priority is
lesser than T1’s priority, then T2 waits for T1 to complete (T1 wins
the conflict), else T1 is restarted (T2 wins the conflict). The “wait”
mechanism may either involve an explicit negative acknowledg
ment or a delayed processing of the request. There are concep
similarities to thewound-waitproposal by Rosenkrantz et al. [32]
for distributed concurrency control [29].

For starvation freedom the resolution mechanism must gu
antee all contenders eventually succeed and become winners.
use timestamps for conflict resolution and we discuss them ne

2.1.2.  Timestamps for fair conflict resolution
We use timestamps for resolving conflicts to decide a confl

winner—earlier timestamp implies higher priority. Thus, the con
tender with the earlier timestamp wins the conflict.

The timestamps we use have two components: a local logi
clock and processor ID. The logical clock is a way of assigning

Figure 1. While critical section executions (without lock
acquires) overlap in physical time (with or without data con-
flicts), each critical section logically appears to be inserted
atomically and instantly in a global ordering.

CS1

CS2

CS3

CS4

Global memory order
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normal memory operation
atomic critical section
(set of memory operations)

Figure 2. In this example, both processors repeatedly restart.
and B are memory locations. Coherence states: modified (M
pending (P), invalid (I). Time progresses down.

A:M

B:P

A:I

B:M

A:P

B:M

t1

t4

t5
t7

A:P

B:M

A:P

B:I

A:M

B:P

t2

t3

t6
t8

rd_X:B
rd_X:A

data:B
data:A

rd_X:B

rd_X:A

Processor 1 Processor 2

P1 restarts P2 restarts

P1 restarts P2 restarts
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number to an event and the number is thought of as the time at
which the event occurred. An event in our case is a successful
execution of a TLR instance. The local logical clock value is
increased by 1 or higher on a successful TLR execution and cap-
tures time in units of successful TLR executions on a given pro-
cessor. Since these logical clocks are local, the logical clocks on
different processors may have the same value. Such ties are bro-
ken by using the processor ID. Thus the timestamp comprising of
the local logical clock and the processor ID are globally unique.

All requests generated from within a given transaction on a
processor are assigned the same timestamp—namely the value of
the timestamp at the start of the transaction. On a successful TLR
execution, the processor increments its local logical clock to a
value higher than the previous value (typically by 1) or to a value
higher than the highest of all incoming conflicting requests
received from other processors, whichever is larger. Doing so
keeps the local logical clocks on the various processors loosely
synchronized whenever a conflict is detected.

Our use of timestamps is similar to that proposed by Lamport
[22]. Lamport used timestamps derived from logical clocks to
implement distributed mutual exclusion with a starvation freedom
guarantee. However, we only require timestamps for conflict reso-
lution while Lamport used timestamps forexplicitly ordering the
execution of mutual exclusion regions among different proces-
sors. Thus with TLR, transactions that conflict in their data sets
but do not actually observe any detected conflicts during their
execution can execute inanyorder independent of the timestamps
of the transactions. Since TLR does not require synchronized
clocks, real-time systems clock could also be used.

Starvation freedom is achieved by retaining and reusing time-
stamps in the event of a misspeculation and restart under TLR. By
reusing timestamps, processors retain their position. By updating
timestamps as above, a processor will eventually have the earliest
timestamp in the system and thus will eventually win all conflicts.
TLR uses timestamps solely for the purpose of comparing priori-
ties of two conflicting threads to determine which has a higher
priority. Thus timestamp roll-over due to fixed size timestamps is
easily handled without loss of TLR properties [29].

2.2  Solution: TLR algorithm
We assume a processor with support for SLE. All operations

executed by a processor while performing TLR (i.e., the proces-
sor is considered to be in TLR mode) are part of the optimistic
transaction and are speculative. Conventional cache coherence
protocols are used to allow processors to retain ownership of
cache blocks. In an invalidation-based cache coherence protocol,
a processor with an exclusively-owned cache block receives and
must respond to subsequent requests for the block. The processor
controls the block and can appropriately respond. Figure 3 shows
the TLR algorithm. In the discussion below, we use the term
deferred to imply the processor retains ownership.

The first step is calculating the globally unique local time-
stamp as discussed in Section 2.1.2.

The second step is identifying start of a transaction. We use
SLE to identify the start and end of transactions. SLE does so by
exploitingsilent store-pairs: a pair of store operations where the
second store undoes the effects of the first store and the interven-
ing operations appear to execute atomically [30]1. SLE thus
avoids writing (and even requesting exclusive permissions for)
the lock variable. The first store of the pair corresponds to the
start of the transaction and the second store of the pair corre-
sponds to the transaction end. Once the start is identified, the lock

is elided thus leaving the lockfree. The processor register state is
saved for recovery in the event of a misspeculation.

The third step comprises actions that may occur concurren
during speculative execution. A cache miss generated for d
within the speculative execution carries with it the processo
timestamp. Requests from other processors that result in a d
conflict (for data accessed within the transaction) are checked
priority. If the incoming request has a later timestamp than t
local processor, the incoming request’s response is deferred. If
incoming request has an earlier timestamp, the local proces
loses the conflict. It must service earlier deferred requests
order and then service the conflicting incoming request. Doing
maintains coherence ordering in the protocol for that block. T
execution may restart but the local clock is not updated.

During speculative execution, if any resource constraints,
operations that cannot be undone, are encountered, TLR can
be applied. The processor requests the lock by exposing
elided writes and exits speculative mode. Since the lock is kep
shared state under TLR, any write to the lock triggers invalid
tions thus automatically informing other participating processo
of the violation of the silent store-pair elision under TLR. Durin
speculative execution, data modified is buffered in the wri

1. SLE identifies regions for atomic execution without any semantic info
mation from the software and is a purely hardware technique that o
observes the dynamic instruction stream. The notion of silent sto
pairs employed by SLE for doing so is an example of the notion
Temporal Silence investigated by Lepak and Lipasti [23].

1. Calculate local timestamp
2. Identify transaction start:

a) Initiate TLR mode (use SLE to elide locks)
b) Execute transaction speculatively.

3. During transactional speculative execution
• Locally buffer speculative updates
• Append timestamp to all outgoing requests
• If incoming request conflicts with retainable block and

has later timestamp, retain ownership and force
requestor to wait

• If incoming request conflicts with retainable block and
has earlier timestamp, service request and restart from
step 2b if necessary. Give up any retained ownerships.

• If insufficient resources, acquire lock.
• No buffer space
• Operation cannot be undone (e.g., I/O)

4. Identify transaction end:
a) If all blocks available in local cache in appropriate

coherence state, atomically commit memory updates
from local buffer into cache (write to cache using SLE).

b) Commit transaction register (processor) state.
c) Service waiters if any
d) Update local timestamp

Figure 3. TLR algorithm. A mechanism for retaining owner-
ship of cache blocks is assumed to be present. A retainabl
cache block is defined as a block in an exclusively owned
coherence state. Requests are forwarded to the cache with th
writable copy of the block. Data conflict is defined in
Section 1.
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buffer and exclusive requests for the cache block are issued to the
memory system.

Finally, when a transaction end is identified, the transaction is
committed. If all appropriate blocks have been brought into the
cache in appropriate state (exclusive or shared), then the buffered
data in the write-buffer isatomicallycommitted into the cache—
all required lines are already in writable state in the cache. If not,
then speculative execution can proceed until the blocks corre-
sponding to the write-buffer are available in appropriate state.
After the speculative data has been committed into the cache,
deferred requests from before are then serviced in order. The local
logical clock update is performed as per the rules of Section 2.1.2.

Up to now, we have focused on interaction among time-
stamped requests—requests that are part of critical sections.
However, in some programs, the data protected by locks may be
accessed from outside a critical section and hence without locks,
and may conflict with timestamped requests. While this is a data
race, it may be acceptable for the program. Such situations may
be correctly handled in various ways. One approach is to trigger a
misspeculation when an un-timestamped request is received.
Thus, if any thread performs a conflicting access from outside a
critical section, then TLR cannot be applied because a data race
exists. Another approach is to treat un-timestamped requests as
deferrable. Such a request is assumed to have the latest timestamp
in the system (and thus the lowest priority) and the un-time-
stamped request is atomically ordered after the current critical
section. Since a data response is not sent until after the critical
section, the requestor cannot consume the data and hence is
ordered with the correct value.

2.3  TLR algorithm example
We revisit the example of Figure 2 using the algorithm out-

lined in Figure 3. Consider Figure 4. Two processors, P1 and P2,
execute a lock-free critical section and both write shared memory
locationsA andB in the critical section. Both the processors have
a unique timestamp—TS1 for P1 and TS2 for P2 where TS1 <

TS2 (processor P1 has higher priority than processor P2 and w
all conflicts). Assume that now both processors have the ad
tional ability to buffer and delay responding to incoming reques
As in the earlier example, the two processors write the two loc
tions,A andB, in reverse order of each other. Both P1 and P
have elided the lock and are executing in TLR mode.

At t1, P1 issues ard_X for blockB (P1’s write toB) and at t2,
P2 issues ard_X for block A (P2’s write toA). The respective
cache blocks transition into a transient (pending P) state. A
memory operations within the transaction are assigned the sa
timestamp. Therefore P1’srd_x for B has TS1 appended and
P2’s rd_X for A has TS2 appended. At t3, P2 receives P1’s
request and compares the incoming request timestamp TS1 w
its local timestamp TS2. Since the incoming request has an ear
timestamp than P2, P2 services the request and responds with
data for blockB (non-speculative value). On applying the incom
ing request, a data conflict is triggered at P2 and P2 restarts e
cution of its transaction. At t4, P1 receives P2’srd_X request for
block A. Since TS1 < TS2, P1 wins the conflict and defers th
request by buffering it. The cache block state forA remains M. At
t5 P1 receives data for blockB from P2. P1 has acquired and
retained permissions onbothcache blocksA andB and can suc-
cessfully execute and atomically commit the transaction. At t7, P1
completes its transaction, architecturally commits its speculat
state and services P2’s deferred request. P1 responds with the
est architecturally correct data. Meanwhile, P2 has restarted
is re-executing its transaction. The key difference betwe
Figure 2 and Figure 4 is P1’s ability to retain exclusive permi
sions in the latter example.

3  A TLR implementation
We discuss how TLR is implemented. The algorithm outline

earlier in Figure 3 relies on the ability of a processor to reta
ownership of a cache block. Two policies to retain exclusive ow
ership of cache blocks are NACK-based and deferral-based. W
NACK-based techniques, a processor refuses to process
incoming request (and thus retains ownership) by sending a ne
tive acknowledgement (NACK) to the requestor. Doing so forc
the requestor to retry at a future time. With deferral-based tec
niques, a processor defers processing an incoming reques
buffering the request and masking any conflict. NACK-based a
deferral-based techniques are contrasted elsewhere [29].

In this paper, we use a deferral-based scheme because it d
not require coherence protocol support (such as NACKs). W
deferrals, the conflict-winning processor with an exclusive
owned cache block delays processing the incoming request fo
bounded time (preferably until the processor has completed
transaction) and thus defers the request. The coherence transit
(and state transitions as seen by the “outside world”) are assum
to have occurred but the processor does not locally apply t
incoming request. Request deferral and delayed responses w
in split-coherence-transaction systems where the address req
processing is split into two sub-coherence-transactions—requ
and response. The response (often the data) may appear an
trary time later and any number of other requests and respon
may occur between the two sub-coherence-transactions.

We now discuss a deferral-based implementation of the alg
rithm. Figure 5 shows a shared-memory multiprocessor whe
every processor has a local cache hierarchy and they are c
nected together via an interconnection network. We make
assumptions regarding the memory consistency model or coh
ence protocol. The protocol may be broadcast snooping or dir
tory-based and interconnect may be ordered or un-ordered. T

Figure 4. A conflict resolution scheme is employed allowing
processor 1 to retain exclusive ownership of both cache blocks
A and B. TS1 and TS2 are timestamps and TS1 < TS2. By
deferring a response, conflicts are masked and a serializable
execution is achieved. Coherence states: modified (M), pend-
ing (P), invalid (I). Time progresses down.

A:M

B:P

A:M

B:P

A:M

B:M

t1

t4

t5

A:P

B:M

A:P

B:I

A:P

B:P

t2

t3

t7

rd_X:B:TS1

rd_X:A:TS2

data:B

rd_X:B:TS2

Processor 1, TS1 Processor 2, TS2

P1 completes
critical section

request is deferred

deferred request serviced

A:I

B:M

A:M

B:P

data:A

t6

t8

P2 restarts
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processor is assumed to have SLE capability: support for predict-
ing regions as transaction, local speculative buffering, mechanism
to track data accessed within transactions (an access bit per cache
block tracks data accessed during the transaction), and ability to
detect data conflicts [30, 29].

TLR support is required at the coherence controller where
decisions for deferrals are made. We do not require changes to the
coherence protocol state transitions. The TLR concurrency con-
trol algorithm runs in parallel and along with the coherence proto-
col and only performs deadlock-free concurrency control.

Misses generated within a transaction carry a timestamp. An
additional deferred coherence input queue is present to buffer
incoming requests that have been deferred by the local processor.
Two messages sent only within the local cache hierarchy
(start_deferandend_defer) from the processor to the cache con-
troller are needed. Thestart_deferis sent when the processor
transitions into speculative lock-free transaction mode and
end_deferis sent on exiting such a mode. Theend_defermessage
may clear the access bits in the local cache hierarchy if necessary.
These messages are ordered with respect to each other and multi-
ple pairs of messages may be present in the local hierarchy.

In Section 3.1, we discuss coherence protocol interactions
with TLR. We base our discussion around a modern broadcast
snooping protocol, the Sun Gigaplane [35]. This choice does not
take away from the generality of our discussion. Timestamp-
based conflict resolution is necessary only if deadlock dangers
exist. Section 3.2 discusses a situation where timestamp-based
conflict resolution can be relaxed if deadlock is guaranteed to not
occur. Section 3.3 discusses the resource constraints for TLR.

3.1  An implementation of the deferral algorithm
Up to now, we have assumed the requests get forwarded to the

appropriate cache that exclusively owns the cache block and has
the data. We now briefly outline the problem of deadlock that may
occur due to interactions between the TLR concurrency control
algorithm and a general coherence protocol. This deadlock is not
in the TLR algorithm but may result because of how the underly-
ing coherence protocol may be implemented. In Section 3.1.1. we
discuss how such a deadlock can be prevented without coherence
protocol changes. We then discuss TLR interaction with cache
blocks in the shared state in Section 3.1.2.

3.1.1.  Propagating priority information
On a cache miss, the cache block performs a transition from

invalid to a pending state and it stays in a pending state between

the request initiation and completion. At some time between t
two phases, the request gets ordered by the coherence prot
and the cache may become the owner of the cache block acc
ing to the coherence protocol, even though data is unavailab
This request-response decoupling introduces a complicat
because even though a processor may lose a conflict under T
it does not have data to provide. Consider Figure 6 where thr
processors P0, P1, and P2 are shown executing transactions.
arc labelling “1:rd_X:A ” means a read for exclusive ownership
(rd_X ) request for blockA was issued at time t1. Assume priority
ordering is: P0 > P1 > P2 where P0 has the highest priority.
has cache blockA in exclusive owned (M) state and P1 has cach
blockB in M state.

At time t1, P1 issues ard_X request forA. Since P0 owns
the blockA, P1’s request is forwarded to P0. P0 receives P1
request, wins the conflict, buffers P1’srd_X request forA, and
defers a response. Now P1 exclusively owns blockA because P1’s
request has been ordered by the protocol but the data (and he
the write permissions to the block) are with P0.P1 is waiting for
P0 for cache block A.At time t2, P2 issues ard_X request forB.
P1 owns the cache block and thus P2’s request is forwarded to
P1 receives P2’s request, wins the conflict, buffers P2’srd_X for
B request and delays a response. Now P2 exclusively owns
block B because P2’s request was ordered by the protocol but
write permissions to the block are still with P1.P2 is waiting for
P1 for cache block B.At time t3, P0 issues ard_X request forB.
P2 owns the cache block (even though the data is still with P
and thus P0’s request is forwarded to P2. P2 compares its lo
priority with P0’s incoming message and loses the conflict. P
must service P0’s request by responding with data. However,
cannot do so because P2 is waiting for P1 to release cache b
B. P1 will not release the cache blockB because P1 won the con-
flict but P1 is itself waiting for P0 for cache blockA.

P2 is waiting for P1 (for cache blockA) which is waiting for
P0 (for cache blockB) which is waiting for P2 (for cache block
B). If such a wait is uncontrolled, deadlock occurs. The waitin
processors are unaware of other waiting processors and inadv
ently form a cyclic wait.

The key idea for implementing a deferral-based concurren
control mechanism is to propagate information about proces
priorities along the coherence protocol chains to prevent cyc
waits. On a miss, a processor allocates a pending buffer, a m
status handling register (MSHR) and tracks the request. If t
processor receives a request (an intervention) from another p
cessor for the outstanding block, an intervention buffer or th
MSHR tracks the incoming request. When the processor recei
data for the block, the processor operates upon the data and s
it to the requestor based on the information stored in the loc
MSHR. In Figure 6, for the chain for blockA, P0 is aware of P1
but P1 is not aware of P0. Similarly, for blockB, P1 is aware of
P2 but not vice versa and P2 is aware of P0 but not vice versa.
can send information to P1 (regarding deadlock-free concurren

Figure 5. A TLR implementation. Additional hardware sup-
port is shown shaded. Processor supports SLE.

coherence

Interconnection Network

L1 cache

Ln cache

Processor

memory

controller

Processor with SLE support

Support (1 bit per block) to

Hardware queue for

track data accessed within
transaction

buffering deferred
requests

Figure 6. Unlike the earlier example with 2 processors, the
presence of an additional processor complicates issue
because now all requests are distributed in the system and a
processors are not guaranteed to observe all other requests

P0 P1

P2

MB:
MA:

2:rd_X:B

1:rd_X:A

3:rd_X:B

priorities: P1 > P2 > P3
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control) but P1 cannot send information to P0 because P1 is
unaware of P0.

P0 must inform P1 that P0 has higher priority and must not be
forced to wait for blockB. The presence of P2 in the chain pre-
vents P1 from observing P0’s request. Mechanisms can be added
to propagate such information along the chain. The conflicting
requests must propagate along the coherence chain towards the
root (i.e., the stable block) to “restart” lower priority requests. We
use special messages, we callmarker messages, for doing so.

Marker messages are directed messages sent in response to a
request for a block under conflict for which data is not provided
immediately. The delay may be because either the processor is
forcing the request to wait or the processor does not have the data
for the block in question but is considered to be the owner of the
block. The idea behind marker messages is to make processors
aware of their immediate neighbors in a chain. These messages
have no coherence interactions. The marker messages areonly
required when the processor is doing TLR and receives a conflict-
ing request for a exclusively owned block. We have a mechanism
to propagate timestamps requests upstream (probes) to the cache
that has the block with valid data. Probes are only used to propa-
gate a conflict request upstream in a cache coherence protocol
chain. Thus, when P2 receives P0’s request forB, P2 forwards the
probe (with P0’s timestamp) to P1 since P2 received a marker
message from P1. P1 receives P0’s forwarded probe (via P2) and
loses the conflict because P0 has higher priority than P1. P1
releases ownership of blockB and the cyclic wait is broken.

3.1.2.  Handling the protocol shared state
Often, within a critical section, a processor may read a shared

location, operate upon the value and write a new value to the
same location. The read operation brings the corresponding cache
block locally into shared state and the subsequent write results in
an upgrade operation where the processor requests exclusive
ownership of the cache block so that the processor can update the
block. External invalidation requests to shared blocks typically
cannot be deferred because no processor exclusively owns the
block (upgrades in some protocols may not expect an acknowl-
edgement). These requests must be serviced without delay and
may trigger a misspeculation (violation in atomicity of the trans-
action). To reduce the probability of such upgrade-induced mis-
speculation, we employ instruction-based prediction to reduce the
necessity of requiring upgrades following misspeculation.

The basic idea behind the predictor is as follows. Load opera-
tions within a critical section are recorded and any store opera-
tions within the critical section to the same address results in the
predictor update occurring corresponding to the appropriate load
operation. For out-of-order processors, the predictor update must
occur at instruction commit because only then does the processor
know for certain if the memory operation occurred within the
transaction (out-of-order processors issue memory operations
without regard to program order but instruction retirement is in
program order). The predictor is indexed by instruction address.
Predictors for optimizing patterns as above have been proposed
earlier [17]. We show in our results section that the use of the sim-
ple read-modify-write predictor substantially improves perfor-
mance of the base system without TLR as well as with TLR.

Cache blocks that are only read within critical sections are
brought into the cache in a shared state. If repeated upgrade-
induced violations occur, the processor can issue exclusive
requests for the blocks, obtain the blocks in owned state and defer
external requests to such blocks. Doing so guarantees a successful
TLR execution even without the above optimization.

3.2  Selectively relaxing timestamp order
Deadlock is not possible if only one cache block is under co

flict within the transaction because a cyclic wait is impossible (th
head node of the coherence chain is always a stable state and
not wait for anyone else). Timestamps serve two functions: pr
viding starvation freedom and deadlock-freedom. In protoco
such as the Sun Gigaplane (which are non-nacking protocols
queue of requests is automatically formed for a given block
multiple processors issue ownership requests while the blo
states are pending and the deferred queue is serviced in a s
order. In such situations, strict timestamp order can be relax
Thus, a timestamp-induced restart can be temporarily avoide
only a single cache block is contended for. However, if an add
tional cache block is accessed that may deadlock (i.e., generat
cache miss), then the timestamp order must be enforced.

3.3  Resource constraints
TLR has resource limitations similar to SLE. If the cache

used to track the lock and data accesses for a critical section,
finite size of the cache restricts the data set size that can
tracked speculatively. The associativity of the cache also place
limit because conflict misses force evictions of cache blocks. W
known and well understood techniques, such as victim cach
[15], for handling such situations exist. Victim caches are sma
fast, fully associative structures that buffer cache lines evict
from the main cache due to conflict and capacity misses. The v
tim cache can be extended with a speculative access bit per e
to achieve the same functionality as a regular cache.

Since the write buffer buffers speculative memory updates,
size restricts the number of static block addresses that can be w
ten to within a critical section. Since writes are merged in th
write buffer and memory locations can be re-written within th
write buffer (because atomicity is guaranteed), the number
unique cache lines written to within the critical section dete
mines the size of the write buffer.

In addition, for the implementation we provide, TLR also
requires sufficient buffering for deferred requests. The size
buffering can be calculateda priori and is a function of the sys-
tem size and victim cache size. In any case, TLR like SLE c
guarantee correctness under all circumstances and in the pres
of unexpected conditions can always acquire the lock. Anoth
resource constraint is the operating systems scheduling qu
tum—it must be possible to execute the critical section within
single quantum.

4  TLR Stability Properties
We have discussed TLR’s performance and programmabil

aspects. We now discuss the implications of TLR on stability
multithreaded programs. In the TLR algorithm described
Section 2.2, three key invariants must hold: a) the timestamp
retained and re-used following a conflict-induced misspeculatio
b) timestamps are updated in a strictly monotonic order followin
a successful TLR execution, and c) the earlier timestamp requ
never loses a resource conflict and thus succeeds in obtain
ownership of the resource. If TLR is applied, these invariants c
lectively provide two guarantees:
1. A processor eventually has the earliest timestamp in the s

tem, and
2. A processor with the earliest timestamp eventually has a s

cessful lock-free transactional execution.
The two properties above result in the following observatio

“In a finite number of steps, a node will eventually have the ear
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est timestamp for all blocks it accesses and operates upon within
its optimistic transaction and is thus guaranteed to have a success-
ful starvation-free lock-free execution.”

However, the guarantees are true only if TLR can be applied.
In the presence of constraints, such as resource limitations and
un-cacheable requests, these guarantees cannot be provided.
These limitations make the guarantee of stability properties con-
ditional. Such a guarantee can be constructed using the size of the
victim cache and the scheduling quanta. Some of these parame-
ters can be architecturally specified. For example, if the system
has a 16 entry victim cache and a 4-way data cache, the program-
mer can be sure any transaction accessing 20 cache lines or less is
ensured a lock-free execution. A programmer expecting guaran-
teed behavior will need to be aware of precise specifications. For
a critical section to be executed in a wait-free manner, the lock
must be positively identified. TLR uses SLE, which must be
implemented to identify all locks that satisfy a certain idiom. The
spin-wait loop of the lock acquire will only be reached if TLR has
failed thus giving the programmer a method of detecting when
wait-freedom has not been achieved. This is an area of future
work.

Multiple nested locks can also be elided if hardware for track-
ing these elisions is sufficient. If some inner lock cannot be elided
due to an inability to track multiple elisions, the inner lock is
treated as data. This does not change TLR’s properties: the execu-
tion is still lock-free and lower priority threads will be deferred by
higher priority threads temporarily. The outermost lock controls
whether TLR’s properties are met [29].

TLR provides support for restartable critical sections because
failure atomicity is provided by TLR. Sometimes operating sys-
tem may want to restart certain threads—e.g., if threads are dead-
locked. Locks makes such termination difficult because the thread
might be in a critical section and may have modified shared mem-
ory. TLR provides hardware support for buffering speculative
updates within critical sections and exposes these values only at
the time the critical section execution is committed. Thus, if a
thread is terminated during TLR execution, the speculative
updates are discarded. Restartable critical section are a useful
functionality for operating systems to exploit.

Restartable critical sections allow the underlying blocking
synchronization primitive to be made non-blocking. Non-block-
ing synchronization primitives allow a system as a whole makes
progress despite individual halting failures or delays. TLR makes
the critical section execution non-blocking because TLR provides
a lock-free execution. If a process is de-scheduled, a misspecula-
tion is triggered and the lock is left free with all speculative
updates within the critical section discarded. Other threads sched-
uled continue to operate on the protected data. The wait-free
behavior follows from the non-blocking behavior discussed above
but subject to a stronger guarantee of starvation freedom.

5  Evaluation Methodology
We evaluate TLR using microbenchmarks and applications.

We evaluate four configurations—1) BASE: base system, 2)
BASE+SLE: base system with SLE optimization [30], 3)
BASE+SLE+TLR: base system with SLE and TLR optimizations
(this paper), and 4) MCS: system with MCS locks [26]. MCS
locks are scalable software-queue locks that perform well under
contention. For convenience we will refer to these four schemes
in text as BASE, SLE, TLR, and MCS respectively. BASE, SLE,
and TLR use the same benchmark executable employing the
test&test&set lock.

5.1  Microbenchmarks
The three microbenchmarks capture three different locki

and critical section data conflict behaviors—coarse-grain/no-co
flicts, fine-grain/high-conflicts, and fine-grain/dynamic conflicts

Coarse-grain/no-conflicts.The multiple-counter
microbenchmark consists ofn counters protected by a single lock
Each processor uniquely updates only one ofn counters 224/n
times. While a single lock protects the counters, there is
dependence across the various critical sections for the data it
and hence no conflicts.

Fine-grain/high-confl icts. The single-counter
microbenchmark corresponds to critical sections operating o
single cache line. One counter is protected by a lock andn proces-
sors increment the counter 216/n times. No inherent exploitable
parallelism exists as all processors operate upon the same
(and cache line).

Fine-grain/dynamic-conflicts. Thedoubly-linked list
microbenchmark consists of a doubly-linked list withHead and
Tail pointers protected by one lock. Each processor deque
an item by removing the item pointed to byHead, and then
enqueues it by adding it toTail . A process that removes the las
item sets bothHead andTail to NULL, and a process that
inserts an item into an empty list sets bothHead andTail to
point to the new item. The benchmark finishes when 216/n
enqueue and dequeue operations have completed. A non-em
queue can support concurrent enqueue and dequeue operat
When the queue is non-empty, each transaction modifiesHead or
Tail , but not both, so enqueuers can execute without interfe
ence from dequeuers, and vice versa. Transactions must mo
both pointers for an empty queue. This concurrency is difficult
exploit in any simple way using locks, since an enqueuer does
know if it must lock the tail pointer until after it has locked the
head pointer, and vice-versa for dequeuers [13, 33]. The criti
sections are non-trivial involving pointer manipulations and mu
tiple cache line accesses.

Processors execute critical sections in a loop for a fixed nu
ber of iterations. Special care was taken in designing the
microbenchmarks. We use a methodology similar to that used
Kumar et al. [19]. To ensure fairness, we introduce delays afte
lock release operations. After releasing the lock, the proces
waits a minimum random interval before proceeding to ensu
another processor has an opportunity to acquire the lock befor
successive local lock re-acquire, thus reducing unfairness.

5.2  Applications
We usebarnes , cholesky , andmp3d from SPLASH[34]

and radiosity , water-nsq , ocean-cont , and ray-
trace from SPLASH2[39]. A locking version ofmp3d is used
to study the impact of TLR on a lock-intensive benchmark [16
This version ofmp3d does frequent synchronization to largely
uncontended locks and lock access latencies cannot be hidde
a large reorder buffer. Table 1 presents details. These applicati
have been selected for their fine-grain locking and critical secti
behavior.Barnes , cholesky , radiosity , raytrace , and
ocean-cont have lock contention.Water-nsq andmp3d do
not have lock contention but perform frequent synchronizatio
These benchmarks are optimized for sharing, employ fine-gra
locks, and have little communication in most cases. Where app
priate, the data structures are padded to eliminate false sharin

5.3  System configuration
The target system configuration is shown in Table 2. It is

chip-multiprocessor configuration with snooping L1 caches inte
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connected together. All coherence traffic occurs between the L1s.
The L2 cache is shared. The system is a MOESI broadcast snoop-
ing system modeled after the Sun Gigaplane [35]. The broadcast
is performed over an ordered network supporting high bandwidth
snooping. The PC-indexed predictor for optimizing read-modify-
write sequences is used for all experiments (BASE, SLE, TLR,
and MCS).

We use SimpleMP, an execution-driven simulator for running
multithreaded binaries. The simulator accurately models out-of-
order processors and a detailed memory hierarchy in a multipro-
cessor configuration. To model coherency and memory consis-
tency events accurately, the processors operate (read and write)
on data in caches and write-buffers. Contention is modeled in the
memory system. To ensure correct simulation, a functional
checker simulator executes behind the detailed timing simulator
only for checking correctness. The functional simulator works in
its own memory and register space and can validate total store
ordering (TSO) implementations. Care must be taken in evaluat-
ing multithreaded workloads because of non-deterministic execu-
tions. Random latency perturbations are introduced in the
simulator (similar to [1]).

6  Results
In Section 6.1 we provide an intuition behind why TLR may

improve performance. We present microbenchmark results in
Section 6.2 and application results in Section 6.3.

6.1  Performance intuition
With TLR, processors request data without acquiring locks

and the data request is appropriately queued using the coherence
protocol and a timestamp-based conflict resolution scheme.
Figure 7 shows four processors P0, P1, P2, and P3 requesting the
same cache lineA thus exhibiting true data conflict. For simplic-
ity, assume the conflict resolution scheme orders priorities as fol-
lows: P0, P1, P2, and P3 (P0 has highest priority). P0 is currently
executing its optimistic lock-free transaction and has accessed
cache lineA (in modified state M). P0 receives, defers (and buff-
ers) P1’s request forA. P2’s request is buffered by P1 and P2’s
request is buffered by P3. P0 operates onA, complete its critical

section and then responds to P1’s request with the latest data
A. Subsequently, P1 operates upon the data, execute its own tr
action, and on completion, respond to P2’s request with the lat
data forA, and so on. Thus, while processors execute transactio
conflicting on data accessed, they are ordered on the data req
itself and no explicit lock requests are generated. This dire
transfer of data, coupled with the absence of lock requests a
overhead, provides the intuition for high-performance in the pre
ence of data conflicts. No transaction requires to restart in t
above example. Further, while P0 is operating onA, other proces-
sors wait for the latest copy rather than introduce contention
the system by repeatedly requesting locks and data. The beha
is similar to hardware queue locks [9] but now the queue is co
structed using the data itself and no lock requests are genera
TLR, by removing explicit lock requests and locking overhea
under contention, reduces network contention and latency.

If the order of timestamps is different from the order in whic
the respective requests are ordered by the coherence proto
additional latency may be introduced due to misspeculation—
processor may have to restart and service a higher priority requ
making the performance sub-optimal. Processors in TLR mo
restart only if the order of requests processed by the cohere
protocol are different from the timestamp order. Such situatio
can be addressed if coherence protocol support was added. In
TLR algorithm in this paper, no coherence protocol state tran
tion changes are made or special protocol support is required.
we see later TLR always outperforms the base system.

6.2  Microbenchmarks
Figure 8, Figure 9, and Figure 10 present microbenchma

results. The y-axis shows wall-clock time for completing the pa
allel execution of the microbenchmarks. The x-axis shows pr
cessor counts. Each data point in the graphs represents the s
amount of work. Thus, in a 16-processor system, each proces
does lesser work than in a 8-processor system but the total w
done in the system is the same.

Figure 8 shows results formultiple-counters .The
scheme degrades performance as more threads run concurre
because of severe contention for the lock. MCS, as expecte
scalable under high contention but experiences a fixed softw
overhead. TLR and SLE behave identically because of t
absence of any data conflicts and both outperform BASE a

Application Type of Simulation Inputs Type of Critical Sections

Barnes
Cholesky
Mp3D
Radiosity
Water-nsq
Ocean-cont
Raytrace

N-Body
Matrix factoring
Rarefied field flow
3-D rendering
Water molecules
Hydrodynamics
Image rendering

4K bodies
tk15.O
24000 mols, 25 iter.
-room, batch mode
512 mols, 3 iter.
128x128, 2 days
car

tree node locks
task queue & col. locks
cell locks
task queue & buffer locks
global structure locks
counter locks
work list & counter locks

Table 1. Benchmarks

Processor

L1 caches

1 GHz (1 ns clock), 128 entry reorder buffer, 64 entry load/store queue, 16 entry instruction fetch queue, 3-cycle branch mispredict redir
penalty, out-of-order issue/execution and commit of 8 inst. per cycle, issue loads as early as possible, 8-K entry combining predictor, 8-K
4-way BTB, 64 entry return address stack. Pipelined functional units, 8 alus, 2 multipliers, 4 floating point units, 3 memory ports. Write-bu
64-entry (64 byte wide). 128-entry PC indexed predictor for collapsing read-modify-write sequences within critical sections into single req
Synchronization primitive: load-linked/store-conditional. Memory Model: Total Store Ordering (aggressive implementation [8]).
Instruction cache: 64-KByte, 2-way, 1 cycle access, 16 pending misses.
Data cache: 128-KByte. 4-way associative, write-back, 1-cycle access, 16 pending misses. Line size of 64 bytes.

TLR parameters 64 entry silent store-pair predictor table, support for upto 8 store-pair elisions at any time (~lock nesting depth of 8)

Coherence
protocol

Sun Gigaplane-type MOESI protocol between L1s, split transaction. Address bus: broadcast network, snoop latency of 20 cycles, 120 ou
ing transactions. L2 cache: 4MB 12 cycle access. Memory access: 70 cycles. Data network: point-to-point, pipelined, latency: 20 cycles.

Table 2. Simulated machine parameters.

Figure 7.Queue maintenance and data transfer.

P0

MA:

P1
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P2
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MCS. They experience no lock overhead and true concurrency is
exploited. Perfect scalability is achieved.

Figure 9 shows results forsingle-counter . BASE per-
formance degrades with increasing threads because of severe con-
tention for the lock and data. SLE behaves similar to BASE
because SLE detects frequent data conflicts, turns off speculation,
and falls back to the BASE scheme. MCS is scalable but experi-
ences a fixed software overhead. Following our performance intu-
ition discussion in Section 6.1, we get ideal queued behavior for
TLR and increasing concurrent threads does not degrade perfor-
mance the way the other schemes do. No explicit lock requests
are made under TLR and TLR performs ideally; no processor
restarts and all transactions complete with a single cache miss.
Also shown is theTLR-strict-tscase without the single cache
block optimization of Section 3.2 Under TLR-strict-ts, time-
stamps are always enforced even though there is no danger of
deadlock because only one data block is being contended for. The
performance gap between TLR and TLR-strict-ts is because
sometimes the order in which requests reach the coherence proto-
col is different from the order of the respective timestamps result-
ing in some misspeculation. The mismatch of protocol orders and
timestamp orders results in a sub-optimal ordering and additional
latencies (Section 6.1).

Figure 10 shows results fordoubly-linked list . Per-
formance for BASE degrades similar to the other microbench-
marks because of severe lock contention. SLE does not perform
well either (and performs similar to BASE) because determining
when to apply speculation is difficult due to the dynamic concur-
rency of the benchmark. More often than not, SLE falls back to
the base case of lock acquisitions because of detected data con-
flicts. Any concurrency SLE exploits is offset by locking over-
head when SLE needs to acquire the lock. MCS again is scalable
but experiences a fixed software overhead. TLR performs well
and can exploit enqueue/dequeue concurrency. For two proces-
sors, BASE performs slightly better than TLR because of fairness
issues for that one run.

In summary, TLR outperforms both BASE and MCS. TLR
exploits dynamic concurrency while both BASE and MCS are
limited by synchronization performance. MCS performs a con-
stant factor worse than TLR while BASE performance degrades
quite substantially with increasing contention. Poor behavior of
BASE under lock contention occurs because of repeated access to
the lock variable by multiple processors racing for the lock and
data thus introducing a large amount of traffic into the network
[16]. MCS is scalable because processors form an orderly queue
in software rather than repeatedly race for the variable and data.

6.3  Applications
Figure 11 shows application performance for 16 processo

The y-axis is normalized execution time. All bars are normalize
to BASE. Each benchmark has three bars: the first bar is BAS
The second bar is SLE and the third bar is TLR. Each bar
divided into two parts: contributions due to lock variable access
(loads and stores) and the remaining contributions. The accou
ing is performed at instruction commit time—the instruction tha
stalls commit is charged the stall. The breakup is approxima
since accounting for stall cycles due to individual operations
difficult and not accurate. For some benchmarks, the non-lo
portion for the optimized case is larger than the non-lock portio
for the base case. This is because sometimes removing locks
other memory operations on the critical path. Speculative loa
issued for data within critical sections that were earlier ove
lapped with the lock-acquire operation now are exposed and s
the processor. Since we assume fast network latencies and
aggressive memory system, communication among processo
fast and thus the stalls due to lock operations is small.

All experiments employ the instruction-based predictor fo
reducing latencies in critical sections and discussed earl
(Section 3.1.2. and Table 2). This results in a highly-optimize
base system execution and the performance numbers for TLR
thus conservative. Later, we discuss the effect this predictor h
on the base system and present performance numbers to giv
idea of how much better TLR would do against a more conve
tional base case. The speedup for techniqueX over techniqueY is
the ratio of the benchmark parallel cycle count with techniqueY
to that of the benchmark parallel cycle count with techniqueX. A
speedup value greater than 1 is better.

Ocean-cont andwater-nsq do not show much perfor-
mance benefits. Whileocean-cont has lock contention and
opportunities for concurrent critical section execution, the perfo
mance impact on our target system is not much because lo
accesses do not contribute much to performance loss.Water-
nsq has frequent uncontended lock acquires. While the bars
BASE show potential for performance, removing locks does n
result in a corresponding performance gain because now the d
cache misses within the critical section, that were earlier ove
lapped with lock access misses, now are exposed and accoun
the stalls. For, TLR speedup over BASE forwater-nsq is 1.01
and forocean-cont is 1.00. MCS speedup over BASE for
ocean-cont is 0%, and forwater-nsq is 0.96. The perfor-
mance loss for MCS forwater-nsq is due to the software over-
head for uncontended locks.

Figure 8. Multiple counter results:
coarse-grain/no-conflicts.

Figure 9. Single counter results: fine-
grain/high-conflict

Figure 10. Doubly-linked list results:
fine-grain/dynamic-conflicts
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For radiosity , speedup of TLR over BASE is 1.47 and
nearly all locking overhead disappears. Speedup of MCS over
BASE is 1.35. The task queue critical section was most contended
for in radiosity and accounted for most conflict-induced
restarts under TLR.

For raytrace , the speedup of TLR over BASE is 1.17.
MCS performance is similar to TLR and its speedup over BASE
is also 1.17. Forraytrace (car input) on our system, lock
contribution to execution time is 16%—much less than those
reported earlier on systems with larger latencies, slower memory
systems and different cache coherence protocols [19, 16].

For barnes TLR speedup over BASE is 1.16. However,
MCS speedup over BASE is 1.21. MCS performs 4% better than
TLR—the only application where MCS performs better than
TLR. Barnes is based on a hierarchical octree representation of
space in three dimensions and each node in the tree has its own
lock. The root of this tree represents a space cell containing all
bodies in the system. The tree is built by adding particles to the
initially empty root cell and subdividing a cell into its eight chil-
dren as soon as it contains more than single body. Most locking
occurs in the tree building phase. Each process loads its bodies in
the octree using locks to ensure atomic updates of the cell nodes.
These locks tend to be contended and have data conflicts resulting
in TLR restarting frequently. TLR’s restarts are due to sub-opti-
mal ordering discussed earlier in Section 6.1. MCS constructs an
ordered software queue and thus performs better than TLR.

Cholesky , with the tk15.0 input set, is the only bench-
mark that cannot fit one critical section’s data within the local
cache. About 3.7% of dynamic critical section executions resulted
in resource limitations for local buffering (write-buffer limita-
tions). This occurs at three functions (ScatterUpdate , Com-
pleteSuperNode , andModifyColumn) where a column in
the matrix is locked and the algorithm then writes to the column
entries resulting in buffer limitations (80% due to write buffer and
20% due to cache). TLR nevertheless achieves a speedup of 1.05
over BASE. MCS performs slightly worse than BASE (0.97).

Mp3d has frequent lock accesses but these locks are largely
uncontended. The 128K data cache is unable to hold all locks and
hence the processor suffers miss latency to locks. With TLR, sig-
nificant lock contribution still remains. TLR achieves a speedup
of 1.40 over BASE. BASE performs better than MCS (speedup

over MCS: 1.47) because MCS pays a software overhead even
uncontended locks. This overhead adds up significantly if locki
is frequent. TLR outperforms MCS by achieving a speedup
2.06 because TLR pays no software overhead.

The performance gaps between MCS and TLR forbarnes
and the TLR restarts in the applications suggests more optimi
tions are possible for TLR where coherence protocol support c
be used. A similar gap (between TLR and an ideal TLR exec
tion) was also observed in Figure 9 in Section 6.2.

Coarse-grain vs. fine-grain experiment.With mp3d, a
noticeable locking overhead remained and we investigated it f
ther. We conjectured replacing the per-cell fine-grain locks
mp3d by one single coarse-grain lock should provide better pe
formance because the data foot-print reduces and the mem
system behavior should improve substantially. We replaced
individual cell locks inmp3d with a single lock. This is bad for
BASE (and MCS) because now the benchmark has severe con
tion. As expected, TLR with one lock for all cells inmp3d out-
performs BASE with fine-grain per-cell locks by 58% (speedu
2.40) and outperforms TLR with fine-grain per-cell locks by 41%
(speedup 1.70). Thus, using coarse-grain locks can improve p
formance significantly over fine-grain locks.

Read modify-write prediction effects. The performance
we report for the BASE case uses the instruction-based predic
for collapsing read-modify-write sequences within predicted cri
cal sections. We give speedups of BASE with the predictor (t
results in Figure 11) with respect to BASE without the predicto
(BASE-no-opt: a more conventional base case). The speedu
calculated as the ratio of the parallel cycle count for BASE an
parallel cycle count for BASE-no-opt. A speedup value great
than 1 is better. The speedups are—ocean-cont: 1.00,
water-nsq : 1.04, raytrace : 1.28, radiosity: 1.05,
barnes : 1.04,cholesky : 1.33, andmp3d: 1.13. With the opti-
mization, the time spent waiting for lock operations increas
because critical section data latencies are reduced. Thus,
speedups in Figure 11 would be much larger if we assumed
more conventional base case without the predictor. For all ben
marks, a 128 entry PC-indexed predictor was sufficient (on
radiosity used more than 30 entries—using just under 10
and most of the remaining benchmarks used less than 20 entr

7  Related work
We discuss related work under three categories: lock-free a

non-blocking methods, database concurrency control, and lo
based synchronization.

Lock-free and non-blocking methods. Lamport introduced
lock-free synchronization to allow multiple threads to work on
data structure concurrently without a lock [21]. Herlihy gave
theoretical framework for constructing wait-free objects [12, 11
Software lock-free schemes using lock-free data structures h
been proposed to address the inherent limitations of locking [1
38, 4, 27]. Lock-free schemes provide optimistic concurrenc
without requiring a critical section or software wait on a lock
These schemes often require more complex operations than c
cal sections and rely on programmers to write appropriate co
Programmers have to reason about correctness in the presen
complex data structures. These alternatives commonly suf
from difficulty of use, complex programming methodologies, an
often high software overheads, thus aggravating the compl
ity/performance trade-off. Software only lock-free schemes ha
been shown to perform poorly as compared to lock-bas
schemes because of high software overheads and excessive

Figure 11. Application performance for 16 processors. The y-
axis is normalized execution time. All bars are normalized to the
performance of BASE. Benchmarks are on the x-axis. Each
benchmark has three bars: first bar is BASE, second bar is
BASE+SLE and third bar is BASE+SLE+TLR. Each bar is
divided into two parts: contributions due to lock variables (load
and store instructions) and the remaining contributions. The
number in parentheses below the benchmark name is the paral-
lel execution cycle count, in millions, for the BASE shown as the
first of three bars for each benchmark.
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copying to allow roll-back [2, 6]. With TLR, programmers con-
tinue using the familiar lock-based critical section while obtain-
ing the benefits of lock-free data structures.

Hybrid hardware/software schemes have been proposed. The
load-linked/store-conditional (LL/SC) instructions allow for an
optimistic atomic read-modify-write on a single word [14]. Trans-
actional memory [13] and the Oklahoma update [36] were gener-
alization of the LL/SC primitives outlined above. Both schemes
required special instructions, programmer support, and coherence
protocol extensions to provide mechanisms to write transactional
code. Transactional memory is not strictly non-blocking and
relied on software back off to guarantee forward progress. Okla-
homa update did not provide starvation freedom although it did
provide liveness by relying on a two-phase commit process and
sorting memory addresses in hardware to order their requests.
Software transactional memory [33] uses software primitives to
implement transactions but performs poorly with respect to its
lock-based counterparts. Speculative Lock Elision [30] dynami-
cally elides lock acquire and release operations from an execution
stream but requires lock acquisitions in the presence of conflicts.

Improving performance of software non-blocking schemes
have been studied previously [27, 4, 38]. Software proposals have
been made to make lock-based critical sections non-blocking [37]
and thread scheduling that is aware of blocking locks [18, 28].

Database concurrency control. Transactions are well under-
stood and studied in database literature [10]. The use of time-
stamps for resolving conflicts and ordering transactions in data-
base systems has been well studied [5, 32]. Optimistic concur-
rency control (OCC) was proposed as an alternative to locking in
database management systems [20]. OCC involves a read phase
where objects are accessed (with possible updates to a private
copy of these objects) followed by a serialized validation phase to
check for data conflicts (read/write conflicts with other transac-
tions). This is followed by the write phase if the validation is suc-
cessful. TLR does not have a serialized validation phase and
exploits hardware techniques to provide transactional behavior.

Lock-based synchronization. Lock-based synchronization
has been extensively studied in literature. These techniques
attempt to optimize the lock and data transfer operations [9, 3, 26,
16, 31]. The techniques are not lock-free. These techniques suffer
from locking overhead and serialization due to lock acquisitions.

Martínez and Torrellas introducedSpeculative Locks, allow-
ing speculative threads to bypass a held lock and enter a critical
section [24]. At any time the lock is always acquired by one
thread which is non-speculative. Speculative threads could then
become non-speculative after a lock was released by the non-
speculative thread if no data conflicts were detected by the specu-
lative threads and the speculative threads had completed their crit-
ical sections. In the presence of data conflicts, speculative threads
always restart and retry the above sequence, competing for the
lock. A free lock is always written to and acquired explicitly by a
thread. InSpeculative Synchronization[25], Speculative Locks is
extended to include the SLE mechanism to be used in the absence
of data conflicts. In the presence of data conflicts, rather than fall-
ing back on the underlying scheme as SLE does, it adapts by
employing Speculative Locks as described above. These schemes
provide the same forward progress guarantees as SLE. These
schemes are not lock-free, experience the limitations of locks, and
do not provide the guarantees provided by TLR.

Delaying responses to requests for lock variables for a short
time and thus emulating hardware queued locks was proposed
earlier [31]. TLR generalizes that notion by applying deferrals to
data and to multiple cache blocks simultaneously.

8  Concluding Remarks
We have proposed Transactional Lock Removal (TLR),

hardware mechanism to convert lock-based critical sections tra
parently and optimistically into lock-free transactions and
timestamp-based conflict resolution scheme to provide trans
tional execution (failure-atomicity and serializability) and starva
tion-freedom if the data accessed by the transaction can be loc
cached and subject to some implementation specific constrain

TLR is a step in the direction towards high-performance an
highly reliable concurrent multithreaded execution. We summ
rize the contributions of our mechanism under 3 categories:
• Programmability . Reasoning about granularity of locks is no

required because ordering decisions are dynamically ma
based on actual data conflicts and independent of lock gra
larity. Thus, a critical problem in reasoning about writing mu
tithreaded programs is solved. Coarse granularity locking a
frequent locking can be employed without paying a perfo
mance penalty.

• Stability. Since the software wait on locks is eliminated, prop
erties of lock-free and wait-free execution are achieved tran
parently. This results in improved system wide interaction
non-blocking behavior, and improved stability.

• Performance. Since serialization decisions are made on
when data conflicts occur, the performance of the finest gran
larity locking is automatically obtained independent of lockin
granularity. Since a queue of requestors is constructed in ha
ware using the coherence protocol, data transfers are effici
and low overhead. Programmers can focus on writing corre
code while hardware automatically extracts performance.
TLR is the first proposal to combine these properties. Whi

TLR does tradeoff hardware for these properties, the hardw
cost is modest. Additionally, we address the inherent limitatio
of the locking construct automatically while maintaining the we
understood critical section abstraction for the programmer.

Although our proposal is a hardware-only scheme, we belie
software developers can use such functionality in several wa
The size of transactions can be architecturally specified thus gu
anteeing programmers a wait-free critical section execution. F
ther, operating systems can exploit the notion of transaction
execution to provide improved behavior and appropriate oper
ing systems involvement can prevent software failures (that aff
one thread) to interact negatively with other concurrent threa
and allow other threads to continue execution.
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