
D. W. Anderson

F. J. Sparacio

R. M. Tomasulo

The IBM System/360 Model 91: Machine
Philosophy and Instruction - Handling

Abstract: The System/360 Model 91 central processing unit provides internal computational performance one to two orders of magni-
tude greater than that of the IBM 7090 Data Processing System through a combination of advancements in machine organization, circuit
design, and hardware packaging. The circuits employed will switch at speeds of less than 3 nsec, and the circuit environment is such
that delay is approximately 5 nsec per circuit level. Organizationally, primary emphasis is placed on (1) alleviating the disparity between
storage time and circuit speed, and (2) the development of high speed floating-point arithmetic algorithms.

This paper deals mainly with item (1) of the organization. A design is described which improves the ratio of storage bandwidth and
access time to cycle time through the use of storage interleaving and CPU buffer registers. It is shown that history recording (the reten-
tion of complete instruction loops in the CPU) reduces the need to exercise storage, and that sophisticated employment of buffering
techniques has reduced the effective access time. The system is organized so that execution hardware is separated from the instruction
unit; the resulting smaller, semiautonomous “packages” improve intra-area communication.

Introduction

This paper presents the organizational philosophy utilized
in IBM’s highest performance computer, the System/3601
Model 91. The first section of the paper deals with the
development of the assembly-line processing approach
adopted for the Model 91. The organizational techniques
of storage interleaving, buffering, and arithmetic execution
concurrency required to support the approach are dis-
cussed. The final topic of this section deals with design
refinements which have been added to the basic organiza-
tion. Special attention is given to minimizing the time lost

Figure 1 Typical instruction function time sequence.
-TIME

&INSTRUCTION+STORAGE + OPERAND+STORAGE+
ACCESS REGEN ACCESS REGEN

due to conditional branches, and the basic interrupt prob-
lem is covered.

The second section is comprised of a treatment of the
instruction unit of the Model 91. It is in this unit that
the basic control is exercised which leads to attainment
of the performance objectives. The first topic is the fetching
of instructions from storage. Branching and interrupting
are discussed next. Special handling of branching, such
that storage accessing by instructions is sometimes elimi-
nated, is also treated. The final section discusses the inter-
locks required among instructions as they are issued to
the execution units, the initiation of operand fetches from
storage, status switching operations, and 1/0 handling.

CPU organization

The objective of the Model 91 is to attain a performance
greater by one to two orders of magnitude than that of

I the IBM 7090. Technology (that is, circuitry and hardware) m m advances* alone provide only a fourfold performance
, , increase, so it is necessary to turn to organizational tech-

GENERATE DECODE INSTRUCTION
INSTRUCTION AND GENERATE OPERAND

ADDRESS ADDRESS

8
CIRCUIT FUNCTION

H STORAGE FUNCTION

* INSTRUCTION niques for the remaining improvement. The appropriate
EXECUTION

an in-environment switching time in the 5 nsec range.
Circuits employed are from the IBM ASLT family and provide

1 IBM JOURNAL JANUARY 1967
I

”rJINSTRUCTION ACCESS, +OPERAND ACCESS1

INSTRUCTION
1 ST RESULT 1

“IGENERATE I- ADDRESS^ “I DECODE, GENERATE OPERAND, ADDRESS “IEXECUTE INST. 1

INSTRUCTION ACCESSz Y O P E R A N D ACCESS2

INSTRUCTION
2ND RESULT 2

“I GENERATE I-ADDRESS2 4 DECODE, GENERATE OPERAND, ADDRESS “IEXECUTE INST. 2

INSTRUCTION ACCESS, Y O P E R A N D ACCESS3

3RD
INSTRUCTION

“IGENERATE I.ADDRESS3 -!DECODE, GENERATE OPERAND, ADDRESS “I EXECUTE INST. 3

”rJ INSTRUCTION ACCESS4 +OPERAND ACCESS4

INSTRUCTION
4TH --rm RESULT 4

“I GENERATE I-ADDRESS4 “I DECODE, GENERATE OPERAND4 ADDRESS “I EXECUTE INST. 4

Figure 2 Illustration of concurrency among successive instructions.

selection of existing techniques and the development of
new organizational approaches were the objectives of the
Model 91 CPU design.

The primary organizational objective for a high per-
formance CPU is concurrency-the parallel execution of
different instructions. A consideration of the sequence of
functions involved in handling a typical processor in-
struction makes the need for this approach evident. This
sequence-instruction fetching, instruction decoding, oper-
and address generating, operand fetching, and instruction
execution-is illustrated in Fig. 1. Clearly, a primary
goal of the organization must be to avoid the conventional
concatenation of the illustrated functions for successive
instructions. Parallelism accomplishes this, and, short of
simultaneously performing identical tasks for adjacent
instructions, it is desired to “overlay” the separate in-
struction functions to the greatest possible degree. Doing
this requires separation of the CPU into loosely coupled
sets of hardware, much like an assembly line, so that
each hardware set, similar to its assembly line station
counterpart, performs a single specific task. It then
becomes possible to enter instructions into the hardware
sets at shortly spaced time intervals. Then, following the
delay caused by the initial filling of the line, the execution
results will begin emerging at a rate of one for each time
interval. Figure 2 illustrates the objective of the technique.

Defining the time interval (basic CPU clock rate) around
which the hardware sets will be designed requires the
resolution of a number of conflicting requirements. At
first glance it might appear that the shorter the time interval
(i.e., the time allocated to successive assembly line sta-
tions), the faster the execution rate will be for a series of
instructions. Upon investigation, however, several param-
eters become apparent which frustrate this seemingly
simple pattern for high performance design. The param-
eters of most importance are:

1. An assembly-line station platform (hardware “trigger”)
is necessary within each time interval, and it generally adds
a circuit level to the time interval. The platform “overhead”
can add appreciably to the total execution time of any
one instruction since a shorter interval implies more
stations for any pre-specified function. A longer instruction
time is significant when sequential instructions are logically
dependent. That is, instruction n cannot proceed until
instruction n f 1 is completed. The dependency factor,
therefore, indicates that the execution time of any indi-
vidual instruction should not be penalized unnecessarily
by overhead time delay.

2. The amount of control hardware-and control com-
plexity-required to handle architectural and machine
organization interlocks increases enormously as the
number of assembly line stations is increased. This can
lead to a situation for which the control paths determining
the gating between stations contain more circuit levels
than the data paths being controlled.

Parameters of less importance which influence the
determination of the basic clock rate include:

1. The number of levels needed to implement certain
basic data paths, e.g., address adders, instruction decoders,
etc.

2. Effective storage access time, especially when this time
is relatively short. Unless the station-to-station timeinterval
of the CPU is a sub-multiple of storage access time the
synchronization of storage and CPU functions will involve
overhead time.

Judgment, rather than algorithms, gave the method by
which the relative weights of the above parameters were
evaluated to determine the basic station-to-station time 9

MODEL 91 MACHINE PHILOSOPHY

10

BASIC TIME
INTERVAL

I I I I I I I I I I I I
GENERATE
OPERAND

MOVE ADDRESS

' OPERAND
ACCESS

ACCESS ADDRESS
AREA TRANSMIT

EXECUTION
FLOATING DECODE ,EX$;;;; AEs",',,',9c UNIT "-

INSTRUCTION UNIT

FUNCTIONS

INSTR~CTION
UNIT

FUNCTION

MAIN STORAGE CONTROL UNIT """""""_ AND STORAGE FUNCTIONS L---k FLOATING- POINT 4
FLOATING POINT INSTRUCTION

UNIT FUNCTIONS
EXECUTION
FUNCTION

Figure 3 CPU "assembly-line stations required to accommodate a typical floating-point storage-to-register instruction.

interval.* The interval selected led to a splitting of the
instruction handling functions as illustrated in Fig. 3.+

It can be seen in Fig. 3 that the basic time interval
accommodates the assembly line handling of most of the
basic hardware functions. However, the storage and many
execution operations require a number of basic intervals.
In order to exploit the assembly line processing approach
despite these time disparities, the organizational techniques
of storage interleaving,' arithmetic execution concurrency,
and buffering are utilized.

Storage interleaving increases the storage bandwidth
by enabling multiple accesses to proceed concurrently,
which in turn enhances the assembly line handling of the
storage function. Briefly, interleaving involves the splitting
of storage into independent modules (each containing
address decoding, core driving, data read-out sense hard-
ware, and a data register) and arranging the address
structure so that adjacent words-or small groups of
adjacent words-reside in different modules. Figure 4
illustrates the technique.

the CPU storage request rate, and the desired effective
access time. The effective access time is defined as the sum
of the actual storage access time, the average time spent
waiting for an available storage, and the communication
time between the processor and storage.*

Execution concurrency is facilitated first by the division
of this function into separate units for fixed-point execu-
tion and floating-point execution. This permits instructions
of the two classes to be executed in parallel; in fact, as
long as no cross-unit dependencies exist, the execution
does not necessarily follow the sequence in which the
instructions are programmed.

Within the fixed-point unit, processing proceeds serially,
one instruction at a time. However, many of the operations
_____-

* Effective access times ranging from 180-600 nsec are anticipated,
although the design of the Model 91 is optimized around 360 nsec.

the 360 nsec effective access design poiut.
Interleaving 400 nsec/cycle storage modules to a depth of 16 satisfies

The depth of interleaving required to support a desired
concurrency level is a function of the storage cycle time,

Figure 4 Arrangement of addresses in n storage modules
of m words per module.

* T h e design objective calls for a 60 nsec basic machine clock in-
terval. The judgment exercised in this selection was tempered by a

wiring lengths required to perform some of the basic data path and
careful analysis of the number of circuit levels, fan in, fan out, and

control functions. The analysis indicated that 11 or 12 circuit levels of
5-6 nsec delay per level were required for the worst-case situations.

larger units-instruction unit, main storage control element, fixed-point
t Figure 3 also illustrates that the hardware sets are grouped into

execution unit, floating-point execution unit. The grouping is primarily

vide separately designable entities having minimum interfacing. The
caused by packaging restrictions, but a secondary objective is to pro-

total hardware required to implement the required CPU functions de-
mands three physical frames, each having dimensions 66" L X 15" D X
78" H. The units are allocated to the frames in such a way as to
minimize the effects of interframe transmission delays.

ANDERSON, SPARACIO AND TOMASULO

ADDRESS 0

(rn - 2)n

(m - 1)n

STORAGE MODULES

ADDRESS TO STORAGE DATA TO STORAGE DATA FROM STORAGE

I I I I -+"" "-" t"

INSTRUCTION

BUFFERS
FETCH

, .

INSTRUCTION UNIT

I 1 I
""""""A FRAME 1 L "" FRAME 2 1

r -" +"

c
L

1 I

FLOATING POINT

OPERATION
BUFFERS (6)

FLOATING
POINT

UNIT
EXECUTION 1

1

I '
"""A FRAME 3

'MAIN STORAGE
CONTROL ELEMENT

Figure 5 Buffer allocation and function separation.

require only one basic time interval to execute, and special
emphasis is placed on the storage-to-storage instructions to
speed up their execution. These instructions (storage-to-
storage) enable the Model 91 to achieve a performance
rate of up to 7 times that of the System/360 Model 75
for the "translate-and-test" instruction. A number of new
concepts and sequences3 were developed to achieve this
performance for normally storage access-dependent in-
structions.

The floating-point unit is given particular emphasis to
provide additional concurrency. Multiple arithmetic execu-
tion units, employing fast algorithms for the multiply and
divide operations and carry look-ahead adders, are uti-
l i ~ e d . ~ An internal bus has been designed5 to link the
multiple floating-point execution units. The bus control
correctly sequences dependent "strings" of instructions,
but permits those which are independent to be executed
out of order.

The organizational techniques described above provide
balance between the number of instructions that can be
prepared for arithmetic execution and those that can
actually be executed in a given period, thereby preventing
the arithmetic execution function from creating a "bottle-
neck" in the assembly line process.

Buffering of various types plays a major role in the
Model 91 organization. Some types are required to imple-
ment the assembly line concept, while others are, in light
of the performance objectives, architecturally imposed.
In all cases the buffers provide queueing which smooths
the total instruction flow by allowing the initiating assem-

bly line stations to proceed despite unpredictable delays
down the line. Instruction fetch, operand fetch, operand
store, operation, and address buffering are utilized among
the major CPU units as illustrated in Fig. 5."

Instruction fetch buffering provides return data "sinks"
for previously initiated instruction storage requests. This
prefetching hides the instruction access time for straight-
line (no branching) programs, thereby providing a steady
flow of instructions to the decoding hardware. The
buffering is expanded beyond this need to provide the
capacity to hold program loops of meaningful size. Upon
encountering a loop which fits, the buffer locks onto the
loop and subsequent branching requires less time, since
it is to the buffers rather than to storage. The discussion
of branching given later in this paper gives a detailed
treatment of the loop action.

Operand fetch buffers effectively provide a queue into
which storage can "dump" operands and from which
execution units can obtain operands. The queue allows
the isolation of operand fetching from operand usage for
the storage-to-register and storage-to-storage instruction
types. The required depth' of the queue is a function of
the number of basic time intervals required for storage

fers. Six 32-bit operand buffers are provided in the fixed-point execu-
*Eight 64-bit double words comprise the array of instruction buf-

tion unit, while six 64-bit buffers reside in the floating-point execution
unit. Three 64-hit store operand buffers along with three store address
and four conflict address buffers are provided in the main storage
control element. Also, there are six fixed-point and eight floating-point
operand buffers.

7 To show precise algorithms defining these and other buffering re-
quirements is impractical, since different program environments have
different needs. The factors considered in selecting specific numbers are
cited instead. 11

MODEL 91 MACHINE PHILOSOPHY

-TIME

+60 N S E C ~
DECODE
INST. n + 2 I - I-------I

Figure 6 GPR address interlock.

accessing, the instruction “mix” of the operating program,
and the relative time and frequency of execution bottle-
necks. Operand store buffering provides the same function
as fetch buffering, except that the roles of storage and
execution are reversed. The number of store buffers re-
quired is a function of the average waiting time encoun-
tered when the desired storage module is busy and the
time required for the storage, when available, to utilize
the operand.

Operation buffers in the fixed-point and floating-point
execution units allow the instruction unit to proceed with
its decoding and storage-initiating functions while the
execution units wait for storage operands or execution
hardware. The depth of the operation buffering is related
to the amount of operand buffering provided and the
“mix” of register-to-register and storage-to-register in-
struction types.

Address buffering is used to queue addresses to busy
storage modules and to contain store addresses during
the interval between decoding and execution of store
instructions. The instruction unit is thereby allowed to
proceed to subsequent instructions despite storage con-
flicts or the encountering of store operations. These
buffers have comparators associated with them to estab-
lish logical precedence when conflicting program refer-
ences arise. The number of necessary store address buffers
is a function of the average delay between decode and
execution, while the depth of the queue caused by storage
conflicts is related to the probable length of time a request
will be held up by a busy storage module.6

Concurrency limitations

The assembly line processing approach, using the tech-
niques of storage interleaving, arithmetic concurrency,

12 and buffering, provides a solid high-performance base.

FIX UNIT INST. n
DECODE
INST. n 1 (ET$ CT.)

FIX EXECUTE

FIX UNIT
DECODE
INST. n + 1

DECODE
n + 4 1

The orientation is toward smooth-flowing instruction
streams for which the assembly line can be kept full. That
is, as long as station n need only communicate with
station n + 1 of the line, highest performance is achieved.
For example, floating-point problems which fit this cri-
terion can be executed internally on the Model 91 at up to
100 times the internal speed of the 7090.’

There are, however, cases where simple communication
between adjacent assembly line stations is inadequate, e.g.,
list processing applications, branching, and interrupts.
The storage access time and the execution time are neces-
sarily sequential between adjacent instructions. The organ-
ization cannot completely circumvent component delay
in such instances, and the internal performance gain di-
minishes to about one order of magnitude greater than
that of the 7090.

The list processing application is exemplified by sequen-
tialism in addressing, which produces a major interlock
situation in the Model 91. The architecturally specified
usage of the general purpose registers (GPR’s) for both
address quantities and fixed-point data, coupled with the
assembly line delay between address generation and fixed-
point execution, leads to the performance slowdown.
Figure 6 illustrates the interlock and the resulting delay.
Instructions n and n + 1 set up the interlock on GPR X
since they will alter the contents of X. The decode of
n + 3 finds that the contents of X are to be used as an
address parameter, and since the proper contents are not
available n + 3 must wait until n + 1 is executed. The inter-
lock technique involves assigning the decode area a status
count for each GPR. A zero status count indicates avail-
ability. As fixed-point instructions pass through the decode,
they increment the appropriate counter(s). A decode re-
quiring an unavailable (non-zero status count) GPR can-
not be completed. As the fixed-point execution unit

ANDERSON, SPARACIO AND TOMASULO

- TIME

REMOVE
DECODE ABILITY OF

(SETS CC) INST. TO
SET CC I -

I I -

INST. n 1. 1 I -
DECODE
INST. n - 3 _ _ _ _
RRANPU WAIT-----

Figure 7 Condition code interlock.

completes instructions it decrements the appropriate
counter(s), thus eventually freeing the register.

Branching leads to another sequential situation, since
a disruption in the instruction supply is created. (Tech-
niques employed to minimize or circumvent the storage
access delay involved in obtaining the new instructions
are discussed under Znstruction supplying in the following
section of this paper.) Conditional branching poses an
additional delay in that the branch decision depends on the
outcome of arithmetic operations in the execution units.
The Model 91 has a relatively lower performance in cases
for which a large percentage of conditional branch in-
structions lead to the branch being taken. The discontinuity
is minimized, when the branch is not taken, through special
handling of the condition code (CC) and the conditional
branch instruction (BC). The condition code is a two-bit
indicator, set according to the outcome of a variety of in-
structions, and can subsequently be interrogated for
branching through the BC instruction. Since the code is to
represent the outcome of the last decoded CC-affecting in-
struction, and since execution can be out of sequence,
interlocks must be established to ensure this. This is ac-
complished, as illustrated in Fig. 7, by tagging each in-
struction at decode time if it is to set the CC. Simulta-
neously, a signal is communicated throughout the CPU
to remove all tags from previously decoded but not exe-
cuted instructions. Allowing only the execution of the
tagged instruction to alter the code insures that the correct
CC will be set. The decode hardware monitors the CPU
for outstanding tags; only when none exists is the condition
code considered valid for interrogation.

The organization assumes that, for a conditional branch,
the CC will not be valid when the “branch-on-condition”
(BC) is decoded (a most likely situation, considering that

- I - 1 - EXECUTE
INST. n + 1

most arithmetic and logical operations set the code).
Rather than wait for a valid CC, fetches are initiated for
two instruction double-words as a hedge against a success-
ful branch. Following this, it is assumed that the branch
will fail, and a “conditional mode” is established. In
conditional mode, shown in Fig. 8, instructions are de-
coded and conditionally forwarded to the execution units,
and concomitant operand fetches are initiated. The execu-
tion units are inhibited from completing conditional in-
structions. When a valid condition code appears, the
appropriate branching action is detected and activates
or cancels the conditional instructions. Should the no-
branch guess prove correct, a substantial head start is
provided by activating the conditionally issued and
initiated operand fetches for a number of instructions. If
the branch is successful, the previously fetched target words
are activated and provide work while the instruction
fetching is diverted to the new stream. (Additional op-
timizing techniques are covered under the discussion of
branching in a subsequent section of this paper.)

Interrupts, as architecturally constrained, are a major
bottleneck to performance in the assembly line organiza-
tion. Strict adherence to a specification which states that
an interrupt on instruction n should logically precede
and inhibit any action from being taken on instruction
n + 1 leaves two alternatives. The first would be to force
sequentialism between instructions which may lead to an
interrupt. In view of the variety of interrupt possibilities
defined, this course would totally thwart high performance
and is necessarily discarded. The second is to set aside
sufficient information to permit recovery from any inter-
rupt which might arise. In view of the pipeline and execu-
tion concurrency which allows the Model 91 to advance
many instructions beyond n prior to its execution, and to 13

MODEL 91 MACHINE PHILOSOPHY

-TIME

DECODE
INST. n

\ .“,
OPERAND ACCESS

OPERAND ACCESS

\ v
OPERAND ACCESS

”_“

\ “
OPERAND ACCESS

_””

OPERAND ACCESS
_””

Figure 8 Conditional instruction issuing: the branch-on-condition philosophy.

execute independent instructions out of sequence (n + m
before n), the recovery problem becomes extremely com-
plex and costly. Taking this approach would entail hard-
ware additions to the extent that it would severely degrade
the performance one is seeking to enhance. The impracti-
cality of both alternatives by which the interrupt specifica-
tions could be met made it mandatory that the specifications
themselves be altered. The architecture was compromised
by removing the above-mentioned “precedence” and
“inhibit” requirements. The specification change led to
what is termed the “imprecise interrupt” philosophy of the
Model 91 and reduced the interrupt bottleneck to an
instruction supply discontinuity. The imprecise interrupt,
and the manner in which the instruction discontinuity
is minimized, are covered in the next section of the paper.

The bottlenecks discussed above gave rise to the major
interlocks among the separate CPU areas. Within each
of the areas, however, additional considerations hold.
These are discussed as appropriate in the next section

14 or in following papers.

Instruction unit

The central control functions for the Model 91 CPU are
performed in the instruction unit. The objective here is
to discuss these functions in terms of how they are per-
formed and to include the reasons for selecting the present
design. However, before proceeding with this discussion it
will be useful to examine some over-all design considera-
tions and decisions which directly affect the instruction unit
functions. In approaching the design of the instruction unit,
many program situations were examined, and it was found
that while many short instruction sequences are nicely
ordered, the trend is toward frequent branching. Such
things as performing short work loops, taking new action
based on data results, and calling subroutines are the
bases upon which programs are built and, in many in-
stances, these factors play a larger role in the use of avail-
able time than does execution. Consequently, emphasis
on branch sequencing is required. A second finding was
that, even with sophisticated execution algorithms, very

ANDERSON. SPARACIO AND TOMASULO

few programs can cause answers actually to flow from
the assembly line at an average rate in excess of one every
two cycles. Inherent inter-instruction dependencies, stor-
age and other hardware conflicts, and the frequency of
operations requiring multi-cycle execution all combine to
prevent it.

Consideration of branching and execution times indi-
cates that, for overall balance, the instruction unit should
be able to surge ahead of the execution units by issuing
instructions at a faster-than-execution rate. Then, when a
branch is encountered, a significant part of the instruction
unit slowdown will be overlapped with execution catch-up.
With this objective in mind it becomes necessary to con-
sider what constitutes a fast issue rate and what “trade-
offs” would be required to achieve it. It is easily shown
that issuing at a rate in excess of one instruction per cycle
leads to a rapid expansion of hardware and complexity.
(Variable-length instructions, adjacent instruction inter-
dependencies, and storage requirements are prime factors
involved.) A one-cycle maximum rate is thereby estab-
lished, but it too presents difficulties. The assembly line
process requires that both instruction fetching and instruc-
tion issuing proceed concurrently in order to hide storage
delays. It is found through program analysis that slightly
more than two instructions will be obtained per 64-bit
instruction fetch* and that approximately 80% of all
instructions require an operand reference to storage. From
this it is concluded that issuing the average instruction
entails approximately 1.25 storage accesses : 0.45 (instruc-
tion fetches) + 0.80 (operand fetches). This figure, with
the one-per-cycle issue rate goal, clearly indicates a need
for either two address paths to storage and associated re-
turn capabilities, or for multiple words returned per fetch.
In considering these options, the initial tendency is to
separate instruction and operand storage access paths.
However, multiple paths to storage give rise to substantial
hardware additions and lead to severe control problems,
particularly in establishing storage priorities and inter-
locks due to address dependencies. With a one-at-a-time
approach these can be established on each new address
as it appears, whereas simultaneous requests involve
doing considerably more testing in a shorter time interval.
Multiple address paths to storage were considered im-
practical because of the unfavorable compromise between
hardware and performance.

The multiple-words-returned-per-fetch option was con-
sidered in conjunction with instruction fetching since the
instruction stream is comprised of sequential words. To
prevent excessive storage “busying” this approach re-
-

can be viewed as macro-operations and are treated as such by the
* Storage-to-storage (SS) instructions are not considered here. They

hardware. The macro-operations are equivalent to basic instructions,
and the number of micro-instructions involved in periorming an SS
function indicates that many instruction fetches would be required to
perform the same iunction using other System/360 instructions.

quires multiple word readout at the storage unit along
with a wider data return path. Also, the interleaving
factor is altered from sequential to multi-sequential, i.e.,
rather than having sequential double words in different
storage modules, groups of sequential words reside in
the same module. The interlock problems created by this
technique are modest, the change in interleaving tech-
nique has little performance effect,* and storage can be
(is, in some cases) organized to read out multiple words,
all of which make this approach feasible. However, packag-
ing density (more hardware required for wide data paths),
storage organization constraints, and scheduling were
such that this approach was also discarded. As a con-
sequence, the single-port storage bus, which allows se-
quential accessing of double words, was adopted. This
fact, in conjunction with the 1.25 storage accesses re-
quired per instruction, leads to a lowering of the average
maximum issue rate to 0.8 instructions per machine cycle.
The instruction unit achieves the issue rate through an
organization which allows concurrency by separating the
instruction supplying from the instruction issuing function.

Instruction supplying
Instruction supplying includes the provision of an instruc-
tion stream which will support the desired issue rate in a
sequential (non-branch) environment, and the ability to
switch readily to a new instruction stream when required
because of branching or interrupts.

Sequential instruction fetching
Provision of a sequential string of instructions has two
fundamental aspects, an initiation or start-up transient,
and a steady-state function. The initial transient entails
filling the assembly line ahead of the decode station with
instructions. In hardware terms, this means initiating
sufficient instruction fetches so that, following a wait of
one access time, a continuous flow of instruction words
will return from storage. Three double-word fetches are
the minimum required to fill the assembly line, since
approximately two instructions are contained within a
double word, and the design point access time is six ma-
chine cycles. The actual design exceeds the minimum
for several reasons, the first being that during start-up no
operand requests are being generated (there are no instruc-
tions), and consequently the single address port to storage
is totally available for instruction fetching. Second, the
start-up delay provides otherwise idle time during which to
- ~

* This is more intuitive than analytical. Certainly for strictly random
addressing, the interleave technique is irrelevant. However, in real
applications, programs are generally localized with (1) the instructions

thousands o i words. Data is more random because, even though it is
sequential and (2) branches jumping tens or hundreds rather than

often ordered in arrays, quite frequently many arrays are utilized
concurrently. Also, various data constants are used which tend to
randomize the total use. A proper analysis must consider all these fac-

factor remains fixed the interference appears little affected by small
tors and so becomes complex. In any event, as long as the interleave

changes in the interleaving pattern. 15

MODEL 91 MACHINE PHILOSOPHY

16

I

IS THE CPU ENVIRONMENT

INSTRUCTION FETCHING?
ALLOWING SEQUENTIAL

IS THIS THE START-UP AND, IF SO,
HAVE THE FIRST TWO DOUBLE

WORDS ALREADY BEEN FETCHED
TO THE BRANCH TARGET BUFFERS?
\ I

I FETCHING OF THE FIRST TWO
SKIP THE NORMAL STARTLJP

DOUBLE WORDS

IS THE INSTRUCTION
BUFFER WHICH WILL RECEIV

THE NEXT DOUBLE
WORD FETCH AVAILABLE?

I

STORAGE BUSY WITH
OPERAND FETCHING?

I -
I L

HAVE FOUR DOUBLE WORDS

BEEN FETCHED?

J
THE NEXT DOUBLE WORD
INITIATE THE FETCH FOR

Figure 9 Flow chart of the sequential instruction-supply
function.

initiate more fetches, and the eight double words of instruc-
tion buffering provide space into which the words can
return. A third point is that, should storage requiring
more than six cycles of access time be utilized, more
fetching-ahead will be required. Finally, establishing an
excess queue of instructions during the transient time will
allow temporary maintenance of a full assembly line with-
out any further instruction fetching. The significance of this
action is that it allows the issuing of a short burst of
instructions at a one-per-cycle rate. This follows from the
fact that the single, normally shared storage address port
becomes exclusively available to the issue function. A
start-up fetching burst of five double instruction words
was the design point which resulted when all of these
factors had been considered.*

Steady-state instruction supplying serves the function

* The one disadvantage to over-fetching instructions is that the extra
fetches may lead to storage conflicts, delaying the subsequently initiated
operand fetches. This is a second-order effect, however, first because
it is desirable for the instruction fetches to win conflicts unless these

and secondly because the sixteen-deep interleaving of storage signifi-
fetches are rendered unnecessary by an intervening branch instruction,

cantly lowers the probability of the conflict situation.

of maintaining a full assembly line by initiating instruction
fetches at appropriate intervals. The address port to
storage is multiplexed between instruction fetches and
operand fetches, with instructions receiving priority in
conflict situations. An additional optimization technique
allows the instruction fetching to re-advance to the start-
up level of five double words ahead if storage address
time “slots” become available. A flow chart of the basic
instruction fetch control algorithm is shown in Fig. 9,*
while Fig. 10 is a schematic of the data paths provided for
the total instruction supplying function. Some of the deci-
sion blocks contained in the flow chart result from the
effects of branch instructions; their function will be clari-
fied in the subsequent discussion of branching. There are
two fundamental reasons for checking buffer availability in
the algorithm. First, the instruction buffer array is a
modulo-eight map of storage that is interleaved by sixteen.
Second, fetches can return out of order because storage
may be busy or of varying performance. For example,
when a branch is encountered, point one above implies
that the target may overlay a fetch which has not yet
returned from storage. In view of the second point, it is
necessary to ensure that the unreturned fetch is ignored, as
it would be possible for a new fetch to return ahead of it.
Proper sequencing is accomplished by “tagging” the buffers
assigned to outstanding fetches, and preventing the initia-
tion of a new fetch to a buffer so tagged.

Branch Handling
Branching adds to the complexity of the instruction supply-
ing function because attempts are made to minimize dis-
continuities caused by the branching and the consequent
adverse effects on the issue rate. The discontinuities result
because for each branch the supply of instructions is dis-
rupted for a time roughly equivalent to the greater of the
storage access period (start-up transient previously men-
tioned), or the internal testing and “housekeeping” time
required to make and carry out the branch decision. This
time can severely limit the total CPU performance in
short program loops. It has a somewhat less pronounced
effect in longer loops because the branch time becomes a
smaller percentage of the total problem loop time and,
more important, the instruction unit has greater oppor-
tunity to run ahead of the execution units (see Fig. 11).
This last makes more time available in which to overlap
the branch time with execution catch-up.

The detrimental performance effect which stems from
short loops led to a dual branch philosophy. The first
aspect deals with branches which are either forward into
the instruction stream,+ beyond the prefetched instruc-
tions, or if backward from the branch instruction, greater

a “wait” state will exist until the required condition has been satisfied.
I n this flow chart, unlabeled exits from decision blocks imply that

target for this case.
t In the actual program the branch instruction would precede the

ANDERSON, SPARACIO AND TOMASULO

BRANCH START-UP
ADDRESS FROM
OPERAND ADDRESS -
REGISTER

DATA BUS FROM MSCE (64)

1
ARRAY BYPASS
FROM STORAGE

4
000
00 1
010
011 INSTRUCTION
100
101

BUFFER
ARRAY

BRANCH TARGET BUFFER 1 (64)

I +
BRANCH TARGET BUFFER 2 (64)

I I
ARRAY BYPASS
FROM BRANCH wrrms J I . . ,

TO INSTRUCTION REGISTER

0 , 4 q ; ; - - - ; & T ’

NEW PSW START-UP ADDRESS
- - - -__-

1 CONTROLS
4

2 BRANCH
3. INTERRUPT

c 1. INSTRUCTION FETCH -
TO MSCE’FOR
STORING CURRENT PSW

I ARRAY I I ARRAY I 1 1 COND BR. 1
UPPER BOUND LOWER BOUND ADDRESS

CONDITIONAL
TO MSCE
INSTRUCTION

TO OPERAND BRANCH RECOVERY

FETCH
ADDRESS DETECT ADDRESS
STORE INTO INSTRUCTION

ADDRESS BUFFER ARRAY

Figure 10 Data paths for the basic instruction supply.

than eight double-words back. In these situations the
branch storage-delay is unavoidable. As a hedge against
such a branch being taken, the branch sequencing (Fig. 12)
initiates fetches for the first two double words down the
target path. Two branch buffers are provided (Fig. 10-the
instruction supply data flow) to receive these words, in
order that the instruction buffer array will be unaffected
if the result is a no branch decision. The branch house-
keeping and decision making are carried on in parallel
with the access time of the target fetches. If a branch deci-
sion is reached before the access has been completed,
additional optimizing hardware routes the target fetch
around the buffer and directly to the instruction register,
from which it will be decoded. Minor disadvantages of
the technique are that the “hedge” fetching results in a
delay of the no-branch decision and may lead to storage
conflicts. Consequently, a small amount of time is lost for a
branch which “falls through.”

The second aspect of the branch philosophy treats the
case for which the target is backward within eight double
words of the branch instruction. A separation of eight
double words or less defines a “short” loop-this number
being chosen as a hardware/performance compromise.
Part of the housekeeping required in the branch sequencing
is a “back eight” test. If this test is satisfied the instruction
unit enters what is termed “loop mode.” Two beneficial

results derive from loop mode. First, the complete loop
is fetched into the instruction buffer array, after which
instruction fetching ceases. Consequently, the address
port to storage is totally available for operand fetching
and a one instruction per cycle issue rate is possible. The
second advantage gained by loop mode is a reduction by a
factor of two to three in the time required to sequence the
loop-establishing branch instruction. (For example, the
“branch on index” instruction normally requires eight

Figure 11 Schematic representation of execution delays
caused by (branch) discontinuities in the instruction issuing
rate, for the case in which the issuing rate is faster than the
execution rate.

r lME IN CYCLES -

17

MODEL 91 MACHINE PHILOSOPHY

ESTABLISHED? I

GENERATE THE TARGET
ADDRESS AND FETCH TWO DOUBLE

INTO THE BRANCH TARGET BUFFERS
WORDS, DOWN THE TARGET PATH,

1 DECISION ARITHMETIC 1 1. DO THE BRANCH

d IS THE LOOP MODE ESTABLISHED
AND WAS IT ESTABLISHED BY
THIS CONDITIONAL BRANCH?

I“I
1. GENERATE AND SET ASIDE THE

ADDRESS OF THE TARGET OF
THE CONDITIONAL BRANCH

2. DO THE “BACK EIGHT” ARITHMETIC
TO DETERMINE IF THIS INSTRUCTION
SHOULD ESTABLISH THE LOOP MODE

INSTRUCTION IN CONDITIONAL MODE
3. PROCEED TO NEXT SEQUENTIAL

. GENERATE AND SET ASIDE THE
ADDRESS OF THE SEQUENTIAL
INSTRUCTION FOLLOWING THE

CONDITIONAL BRANCH

(CONTAINED WITHIN THE
INSTRUCTION ARRAY)

PROCEED DOWN BRANCH PATH

IN COND~TIONAL MODE

HAS THE CONDITION CODE

IS THE LOOP MODE ESTABLISHED
AND WAS IT ESTABLISHED BY
THIS BRANCH INSTRUCTION?

IS THE LOOP MODE
AND WAS IT ESTABLISHED BY
THIS CONDITIONAL BRANCH’

I ’ ’ I t
1. SET UP INSTRUCTION

FETCHING TO START-UP INSTRUCTION BUFFERS
ALONG BRANCH PATH AND PROCEED

GET TARGET FROM

2. DO THE “BACK EIGHT”
LOOP DETERMINATION

AVAILABLE FROM
STORAGE, BUFFER

1
1. DECODE TARGET
2. ESTABLISH THE LOOP MODE,

IF APPROPRIATE I
Figure 12 Flow chart of the branching sequence.

I ‘ I

1. ACTIVATE THE CONDITIONAL

2. REMOVE THE CONDITIONAL
ISSUED INSTRUCTIONS

2 REMOVE THE CONDITIONAL
ISSUED INSTRUCTIONS

I I I I

1. RECOVER THE INSTRUCTION STREAM
TO THE TARGET OF THE BRANCH

2. ESTABLISH THE LOOP MODE,
IF APPROPRIATE

cycles for a successful branch, while in loop mode three
cycles are sufficient.) In many significant programs it is
estimated that the CPU will be in loop mode up to 300/, of
the time.

Loop mode may be established by all branch instructions
except “branch and link.” It was judged highly improbable
that this instruction would be used to establish the type
of short repetitious program loops to which loop mode
is oriented. A conditional branch instruction, because it is
data dependent and therefore less predictable in its out-
come than other branch instructions, requires special con-
sideration in setting up loop mode. Initial planning was
to prevent looping with this instruction, but consultation
with programmers has indicated that loops are frequently
closed conditionally, since this allows a convenient means
for loop breaking when exception conditions arise.

18 Furthermore, in these situations the most likely out-

r”l RECOVER INSTRUCTION
STREAM TO SEQUENTIAL
INSTRUCTION FOLLOWING

THE BRANCH INSTRUCTION

come is often known and can be utilized to bias the branch
decision whichever way is desirable. For such reasons,
the “back eight” test is made during the sequencing of a
conditional branch instruction, and the status is saved
through conditional mode. Should it subsequently be deter-
mined that the branch is to be taken, and the “saved” status
indicates “back eight,” loop mode is established. There-
after the role of conditional mode is reversed, i.e., when the
conditional branch is next encountered, it will be assumed
that the branch will be taken. The conditionally issued in-
structions are from the target path rather than from the no-
branch path as is the case when not in loop mode. A
cancel requires recovery from the branch guess. Figure 12
is a flow chart of this action. In retrospect, the conditional
philosophy and its effects on loop mode, although sig-
nificant to the performance of the CPU and conceptually
simple, were found to require numerous interlocks through-

ANDERSON, SPARACIO AND TOMASULO

out the CPU. The complications of conditional mode,
coupled with the fact that it is primarily aimed at cir-
cumventing storage access delays, indicate that a careful
re-examination of its usefulness will be called for as the
access time decreases.

Interrupts

Interrupts, like branching, are another disruption to a
smooth instruction supply. In the interrupt situation the
instruction discontinuity is worsened because, following
the recognition of the interrupt, two sequential storage
access delays are encountered prior to receiving the next
instruction.* Fortunately, and this is unlike branches,
interrupts are relatively infrequent. In defining the interrupt
function it was decided that the architectural “imprecise”
compromise mentioned in the previous section would be
invoked only where necessary to achieve the required
performance. In terms of the assembly line concept, this
means that interrupts associated with an instruction which
can be uncovered during the instruction unit decode time
interval will conform with the specifications. Consequently,
only interrupts which result from address, storage, and
execution functions are imprecise.

One advantage of this dual treatment is that System/360
compatibility is retained to a useful degree. For example,
a programming strategy sometimes employed to call
special subroutines involves using a selected invalid in-
struction code. The ensuing interrupt provides a convenient
subroutine entry technique. Retaining the compatible
interrupt philosophy through the decoding time interval
in the Model 91 allows it to operate programs employing
such techniques. The manifestation of this approach is
illustrated in the flow chart of Fig. 13. In accordance with
System/360 specifications, no further decoding is allowed
once either a precise or an imprecise interrupt has been
signalled. With the assembly line organization, it is highly
probable that at the time of the interrupt there will be in-
structions still in the pipeline which should be executed
prior to changing the CPU status to that of the interrupt
routine. However, it is also desirable to minimize the effect
of the interrupt on the instruction supply, so the new status
word is fetched to the existing branch target buffer in parallel
with the execution completion. After the return from
storage of the new status word, if execution is still in-
complete, further optimizing allows the fetching of in-
structions for the interrupt routine. Before proceeding,
it becomes necessary to consider an implication resulting

This arises from the architectural technique of indirectly entering
the interrupt subroutines. I n System/360 the interrupts are divided
into classes. Each class is assigned a different, fixed low storage ad-

an interrupt of the associated class occur. Part of this status is a new
dress which contains the status to which the CPU shall he set should

program address. Consequently, interrupting requires obtaining a new
supply of instructions from storage indirectly, through the new status
word.

HAS AN INTERRUPT(S)

1. STOP DECODING INSTRUCTIONS
2. RECOGNIZE HIGHEST PRIORITY

OF PENDING INTERRUPTS I
I I I

ARE THE BRANCH TARGET

NEW PROGRAM STATUS WORD
INITIATE THE FETCH OF THE

(PSW) FROM STORAGE

HAS THE NEW

FROM STORAGE?
PSW RETURNED

I L
1. START-UP INSTRUCTION FETCHING

PORTION OF THE NEW PSW
USING THE PROGRAM ADDRESS

2. THE STATUS PORTION OF THE

BRANCH TARGET BUFFER
NEW PSW IS RETAINED IN THE

I I I I F“)y IS THIS AN IMPRECISE

b(DUE TO EXECUTION pr{
>9

HAS AN IMPRECISE
INTERRUPT OCCURRED

COMPLETION?

ACTIVITY FINISHED?
IS ALL EXECUTION

1
I I \ I

Figure 13 Flow chart of the interrupt sequence.

from the dual interrupt philosophy. Should a precise
interrupt have initiated the action, it is possible that the
execution “cleanup” will lead to an imprecise condition.
In this event, and in view of the desire to maintain com-
patibility for precise cases, the logically preceding im-
precise signal should cancel all previous precise action.
The flow chart (Fig. 13) illustrates this cancel-recovery
action. Should no cancel action occur (the more likely
situation), the completion of all execution functions re-
sults, with one exception, in the release of the new status
word and instruction supply. The 1/0 interrupts require
special consideration because of certain peculiarities in
the channel hardware (the System 360/Model 60-75
channel hardware is used). Because of them, the CPU-
channel communication cannot be carried out in parallel
with the execution completion. However, the relative in-
frequency of 1/0 interrupts renders negligible the degrada-
tion caused by this. 19

TC

GE

FROM INSTRUCTION SUPPLY (64)

I ,]-Il6;
INSTRUCTION REGISTER

CONTROL STATUS FROM
INSTRUCTION SUPPLY

FROM
FLOATING-

EXECUTION
POINT

FROM
FIXED-POINT
EXECUTION

""" ~ ""_ ~~ ""

1 I

CONTROL STATUS FROM
INSTRUCTION SUPPLY

FROM
FLOATING-

EXECUTION
POINT

111 1

t
OPERATION STACK AVAlLABlLl

'ERAND
RESS INTERFACE
?ATION

TO MSCE

Figure 14 Data flow for instruction decoding and instruc-
tion issuing.

0 instruction issuing

The instruction-issuing hardware initiates and controls
orderly concurrency in the assembly line process leading
to instruction execution. It accomplishes this by scanning
each instruction, in the order presented by the program,
and clearing all necessary interlocks before releasing the
instruction. In addition, should a storage reference be
required by the operation, the issuing mechanism performs
the necessary address calculations, initiates the storage
action, and establishes the routing by which the operand
and operation will ultimately be merged for execution.
In addition, certain essential inter-instruction dependencies
are maintained while the issue functions proceed con-
currently.

In terms of the assembly line of Fig. 3, the moving of
instructions to the decode area, the decode, and the
operand address generation comprise the issue stations.
The moving of instructions to the decode area entails
the taking of 64-bit double-words, as provided by the
instruction supply, and extracting from them the proper
instruction half-words, one instruction at a time. The
instruction register is the area through which this is ac-
complished (Fig. 14). The register efficiently handles
variable-length instructions and provides a svdble platform
from which to decode. All available space in this 64-bit
register is kept full of instructions yet to be decoded,

20 provided only that the required new instruction informa-

tion has returned from storage. The decoder scans across
the instruction register, starting at any half-word (16-bit)
boundary, with new instructions refilling any space vacated
by instruction issuing. The register is treated conceptually
as a cylinder; i.e., the end of the register is concatenated
with the beginning, since the decode scan must accommo-
date instructions which cross double-word boundaries.

The decoding station is the time interval during which
instruction scanning and interlock clearing take place.
Instruction-independent functions (interval timer update,
wait state, certain interrupts and manual intervention) are
subject to entry interlocks during this interval. Instruction-
associated functions also have interlocks which check for
such things as the validity of the scanned portion of the
instruction register, whether or not the instruction starts
on a half-word boundary, whether the instruction is a valid
operation, whether an address is to be generated for the
instruction (and if so, whether the address adder is avail-
able), and where the instruction is to be executed. In con-
junction with this last point, should the fixed- or floating-
point execution units be involved, availability of operation
buffering is checked. Inter-instruction dependencies are the
final class of interlocks which can oxur during the de-
coding interval. These arise because of decision predictions
which, if proven wrong, require that decoding cease im-
mediately so that recovery can be initiated with a mini-
mum of backup facilities.

Such occurrences as the discovery of a branch wrong
guess or a store instruction which may alter the prefetched
instruction stream generate these inter-instruction inter-
locks. Figure 15 illustrates the interlock function. The
placement of a store instruction in the instruction stream,
in particular, warrants further discussion because it pre-
sents a serious time problem in the instruction unit. The
dilemma stems both from the concurrency philosophy
and from the architectural specification that a store opera-
tion may alter the subsequent instruction. Recall that,
through the pipeline concept, decoding can occur on
successive cycles, with one instruction being decoded at
the same time the address for the previous instruction is
being generated. Therefore, for a decode which follows a
store instruction, a test between the instruction counter
and the storage address is required to detect whether or
not the subsequent decode is affected by the store. Unless
rather extensive recovery hardware is used, the decode,
if affected, must be suppressed. However, the assembly
line basic time interval is too short to both complete the
detection and block the decode. The simplest solution
would require a null decode time following each store
issue. However, the frequency of store instructions is high
enough that the performance degradation would be ob-
jectionable. The compromise solution which was adopted
reduces the number of decoding delays by utilizing a
truncated-address compare. The time requirements

ANDERSON, SPARACIO AND TOMASULO

INSTRUCTION UNIT

GO TO INTERRUPT
SEQUENCE

GO TO TIMER SEQUENCE

WAIT FOR INTERRUPT

I
ARE THE INSTRUCTION REGISTER HALF-WORDS
REQUIRED FOR THIS INSTRUCTION ALL VAL1

WAIT UNTIL INSTRUCTION
SUPPLYING PROVIDES

THE HALF WORDS

GO TO RECOVERY SEQUENCE

GO TO RECOVERY SEQUENCE
WAIT FOR CLARIFICATION 8,

IF NECESSARY

1
GO TO INTERRUPT

SEQUENCE GENERAL INSTRUCTION
"""

DECODE INTERLOCKS

INSTRUCTION CLASSIFYING
---""""

I

CLEAR THE APPROPRIATE
INTERLOCKS (SIMILAR TO

TO THE FIXED POINT STAGE
FLOATING POINT) & ISSUE

AND ADDRESS GENERATING
HARDWARE (IF NECESSARY)

AND GO TO DECODE OF
NEXT INSTRUCTION

2 UPDATE THE FLOATING

3 PROCEED TO DECODE
OPERATION STACK BUSY STATUS

OF NEXT INSTRUCTION

WAIT FOR EXECUTION
1 GATE ADDRESS PARAMETERS

2 GATE CONTROL INFORMATION,

TO FREE A STORE ADDRESS
WAIT UNTIL EXECUTION FREES

AN OPERAND BUFFER
TO ADDER BUFFER

TO ADDER TO BE PASSED
ONTO MAIN STORAGE
INSTRUCTION UNIT

GO TO I
SEQ

Figure 15 Decision sequence for instruction decoding and instruction issuing. 21

MODEL 91 MACHINE PHILOSOPHY

A STORE ADDRESS?

I 4 +
DOES THE STORE ADDRESS IS THE I R ADDRESS (MOD 8)

GENERATION INDICATE = STORE ADDRESS (MOD 8)?

WORD PORTION OF THE [IR & STORE ARE EQUAL]

IS THERE ANY POSSIBILITY
THAT THE CURRENT INSTRUCTION

CROSSES A DOUBLE WORD BOUNDARY
AND IF SO, W E S THE IR + 1 ADDRESS
(MOD 8) = STORE ADDRESS (MOD 8)?

A CARRY INTO THE DOUBL BITS 25.28 OF BOTH

ADDRESS (BIT 28)?

t

BLOCK THE
CURRENT DECODE

Figure 16 Decode interlock (established following the issue of a store instruction).

prohibit anything more than a compare of the low-order
six bits of the storage address currently being generated,
using the algorithm illustrated in Fig. 16.

The algorithm attaches relatively little significance to
the low-order three adder bits (dealing with byte, half-
word and full-word addresses) since the primary perform-
ance concern is with stores of double-words. It is seen,
for example, that for the full-word case the probability
of a carry into the double-word address is approximately
1/4, while for double-word handling it is negligible. The
double-word address three-bit compare wiU occur with
1/8 probability while the word boundary crossover term
has a probability of 1/16. (Probability that instruction
can cross boundary, 1/2, X probability that the cross-
over is into the store-affected-word, 1/8). The two cases
thus have the probabilities:

Full word 1/4 + 1/8 + 1/16 = 7/16, and

Double-word 1/8 + 1/16 = 3/16.

These figures indicate the likelihood of a decode time-
interval delay following the issue of a store instruction.
When such a decode delay is encountered, the follow-
ing cycle is used to complete the test, that is, to check the
total address to determine whether an instruction word has
in fact been altered. To this effect, the generated storage
address is compared with the upper and lower bounds of
the instruction array (Fig. 16). A between-the-bounds in-
dication results in a decode halt, a re-fetch of the affected
instruction double-word, then resumption of normal proc-
essing. This second portion of the interlock is only slightly
less critical in timing than the first. Figure 17 illustrates the
re-fetch timing sequence. One difficulty with the store inter-
lock is that in blocking the decode, it must inhibit action
over a significant portion of the instruction unit. This im-
plies both heavy loading and lengthy wire, each of which

22 seriously hampers circuit performance. It was therefore

important that the unit be as small as possible and that the
layout of the hardware constantly consider the interlock.

For each instruction, following the clearing of all inter-
locks, the decode decision determines whether to issue
the instruction to an execution unit and initiate address
generation, or to retain the instruction for sequencing
within the instruction unit. The issuing to an execution
unit and the operand fetching for storage-to-register (RX)
instructions constitutes a controlled splitting operation ;
sufficient information is forwarded along both paths to
effect a proper execution unit merge. For example, buffer
assignment is carried in both paths so that the main
storage control element will return the operand to the buf-
fer which will be accessed by the execution unit when it
prepares to execute the instruction. With this technique
the execution units are isolated from storage and can be
designed to treat all operations as involving only registers.

A final decoding function is mentioned here, to ex-
emplify the sort of design considerations and hardware ad-
ditions that are caused by performance-optimizing tech-
niques. The branch sequencing is optimized so that no
address generation is required when a branch which es-
tablished the loop mode is re-encountered. This is done by
saving the location, within the instruction array, of the
target. It is possible, even if unlikely, that one of the in-
structions contained in a loop may alter the parameter
originally used to generate the target address which is now
being assumed. This possibility, although rare, does require
hardware to detect the occurrence and terminate the loop
mode. This hardware includes two 4-bit registers, re-
quired to preserve the addresses of the general purpose
registers (X and B) utilized in the target address generation,
and comparators which check these addresses against the
sink address (Rl) of the fixed-point instructions. Detection
of a compare and termination of loop mode are necessary
during the decoding interval to ensure that subsequent
branch sequencing will be correct.

ANDERSON, SPARACIO AND TOMASULO

The address-generating time interval provides for the
combining of proper address parameters and for the for-
warding of the associated operation (fetch or store) control
to the main storage control element through an interface
register. A major concern, associated with the address
parameters, was to decide where the physical location of
the general purpose registers should be. This concern
arises since the fixed-point execution unit, as well as the
instruction unit, makes demands on the GPRs, while the
packaging split will cause the registers to be relatively
far from one of the units. It was decided to place them in
the execution unit since, first, execution tends to change the
registers while address generation merely examines their
contents, and secondly, it was desired that a fixed-point
execution unit be able to iteratively use any particular
register on successive time intervals. In order to circumvent
the resulting time delay (long wire separation) between the
general purpose registers and the address adder, each
register is fed via "hot" lines to the instruction unit. The
gating of a particular GPR to the adder can thereby be
implemented locally within the instruction unit, and no
transmission delay is incurred unless the register contents
have just been changed.

Placing the GPRs outside the instruction unit creates
a delay of two basic time intervals before a change initiated
by the instruction unit is reflected at the address param-
eter inputs from the GPRs. This delay is particularly
evident when it is realized that the address generated im-
mediately following such a GPR change generally re-
quires the contents of the affected register as a parameter.
For example, branch on index, branch on count, branch
and link, and load address are instruction unit operations
which change the contents of a GPR. Further, in loop
situations the target of the branch frequently uses the
changed register as an index quantity in its address. Per-
formance demands led to the incorporating of controls
which recognize the above situation and effect a by-pass

Figure 17 Effect of the decode interlock on pre-fetched
instructions.

DECODE
STORE
OPERATION

GENERATE TRANSMIT
STORE ADDRESS TO
ADDRESS STORE DATA

BUFFER riT:;lH
WITH STORE sTORE
'OMPARE IC COMPARE INSTRUCTION
ADDRESS WORD
(TRUNCATED) h:;:L&!$H

FOR AFFECTED

I ARRAY BOUNDS I I i I
BLOCK
DECODE OF
INSTRUCTION BLOCK DECODE
FOLLOWING
STORE (fQC$PARE INTERLOCKS

DECODE FREE
BLOCK DECODE :iDPPd)ik\gAL

0ECODE.ISSUE
FROM D-FIELD FROM

INSTRUCTION
AREA REGISTER

FROM GENERAL PURPOSE REGISTERS
(16 SETS OF 32 BITS)

CONTROL (15)

I
I r .

I \ /

BRANCH TARGET REGISTER
TO CONDITIONAL 4 L F O R STORE INTO INSTRUCTION

EARLY ADDRESS INFORMATION

IN INSTRUCTION SUPPLY ARRAY DECISION-TO DECODE

FROM INSTRUCTION SUPPLYING
"UPPER & LOWER BOUND
VALUES TO DETECT STORE

INTO INSTRUCTIONS

TO MSCE
EXECUTION UNIT

SUPPLY CONTROL FOR FIX UP
TO DECODE & INSTRUCTION

Figure 18 Data Bow for address generation.

of the GPR. This entails substituting the content of the
adder output register (which contains the new GPR data)
for the content of the affected GPR. One performance cycle
was saved by this technique.

In addition to address generation, the address adder
serves to accomplish branch decision arithmetic, loop
mode testing, and instruction counter value generation
for various situations. In order to perform all of these
functions, it was required that the adder have two 32-bit
inputs and one input of 12 bits. One of the 32-bit inputs
is complementable and a variety of fixed, single-bit inputs
is provided for miscellaneous sequences. The data path
is illustrated in Fig. 18.

Status switching and inputloutput

The philosophy associated with status switching instruc-
tions is primarily one of design expediency. Basic existing
hardware paths are exercised wherever possible, and an
attempt is made to adhere to the architectural interrupt
specifications. When status switching instructions are
encountered in conditional mode the instruction unit is
halted and no action is taken until the condition is cleared.

The supervisor call (SVC) instruction is treated by the
interrupt hardware as a precise interrupt. The same new
status word pre-fetch philosophy is utilized in the load
program status word (LPSW) operation. 23

MODEL 91 MACHINE PHILOSOPHY

One difficulty encountered in conjunction with the
start-up fetching of instructions following a status switch
(or interrupt) is that a new storage protect key* is likely
to obtain. Consequently, a period exists during which two
protect keys are active, the first for previously delayed,
still outstanding accesses associated with the current execu-
tion clean-up, and the second for the fetching of instruc-
tions. This situation is handled by sending both keys to
the main storage control element and attaching proper
control information to the instruction fetches.

The set program mask (SPM) implementation has a
minor optimization: Whenever the new mask equals the
current mask, the instruction completes immediately.
Otherwise an execution clean-up is effected before setting
the new mask to make certain that outstanding opera-
tions are executed in the proper mask environment.

1/0 instructions, and 1 /0 interrupts, require a wait
for channel communications. The independent channel
and CPU paths to storage demand that the CPU be
finished setting up the 1 / 0 controls in storage before the
channel can be notified to proceed. Once notifled, the
channel must interrogate the instruction-addressed device
prior to setting the condition code in the CPU. This is ___
(PSW). It is a tag which accompanies all storage requests, and from

* The storage protect key is contained in the program status word

it the storage can determine when a protect violation occurs.

accomplished by lower-speed circuitry and involves units
some distance away; consequently, I/O initiation times are
of the order of 5-10 microseconds.

Acknowledgmenfs

The authors wish to thank Mr. R. J. Litwiller for his
interest, suggestions and design effort, and Mews. J. G.
Adler, R. N. Gustafson, P. N. Prentice and C. Zeitler, Jr.
for their contributions to the design of the instruction unit.

References
1. G. M. Amdahl, G. A. Blaauw and F. P, Brooks, Jr., “Archi-

tecture of the IBM System/360,” ZBM Journal 8, 81 (1964).
2. W. Buchholz et al., Planning a Computer System, McGraw-

Hill Publishing Co., Inc., New York, 1962.

4. S. F. Anderson et al., “The IBM System/360 Model 91
3. R. J. Litwiller and J. G. Adler, private communication.

Floating Point Execution Unit,” IBM Journal 11, 34 (1967)
(this issue).

5. R. M. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” ZBM Journal 11, 25 (1967)
(this issue).

6. L. J. Boland, et al., “IBM System/360 Model 91 Storage
System,’’ ZBM Journal 11, 54 (1967) (this issue).

7, M. J. Flynn and P. R. Low, “The IBM System/360 Model
91: Some Remarks on System Development” ZBM Journal
11, 2 (1967) (this issue).

Received September 21, 1965.

24

ANDERSON, SPARACIO AND TOMASULO

