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THE COSMIC CUBE 

Sixty-four small computers are connected by a network of point-to-point 
communication channels in the plan of a binary 6-cube. This “Cosmic Cube” 
computer is a hardware simulation of a future VLSI implementation that 
will consist of single-chip nodes. The machine offers high degrees of 
concurrency in applications and suggests that future machines with 
thousands of nodes are both feasible and attractive. 

CHARLES L. SEITZ 

The Cosmic Cube is an experimental computer for ex- 
ploring the practice of highly concurrent computing. 
The largest of several Cosmic Cubes currently in use at 
Caltech consists of 64 small computers that work con- 
currently on parts of a larger problem and coordinate 
their computations by sending messages to each other. 
We refer to these individual small computers as nodes. 
Each node is connected through bidirectional, asyn- 
chronous, point-to-point communication channels to 
six other nodes, to form a communication network that 
follows the plan of a six-dimensional hypercube, what 
we call a binary 6-cube (see Figure 1). An operating 
system kernel in each node schedules and runs proc- 
esses within that node, provides system calls for proc- 
esses to send and receive messages, and routes the mes- 
sages that flow through the node. 

The excellent performance of the Cosmic Cube on a 
variety of complex and demanding applications and its 
modest cost and open-ended expandability suggest that 
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highly concurrent systems of this type are an effective 
means of achieving faster and less expensive computing 
in the near future. The Cosmic Cube nodes were de- 
signed as a hardware simulation of what we expect to 
be able to integrate onto one or two chips in about five 
years. Future machines with thousands of nodes are 
feasible, and for many demanding computing problems, 
these machines should be able to outperform the fastest 
uniprocessor systems. Even with current microelec- 
tronic technology, the 64-node machine is quite power- 
ful for its cost and size: It can handle a variety of de- 
manding scientific and engineering computations five 
to ten times faster than a VAX1 l/780. 

THE MESSAGE-PASSING ARCHITECTURE 
A significant difference between the Cosmic Cube and 
most other parallel processors is that this multiple- 
instruction multiple-data machine uses message passing 
instead of shared variables for communication between 
concurrent processes. This computational model is re- 
flected in the hardware structure and operating system, 
and is also the explicit communication and synchroni- 
zation primitive seen by the programmer. 
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The hardware structure of a message-passing ma- 
chine like the Cosmic Cube differs from a shared- 
storage multiprocessor in that it employs no switching 
network between processors and storage (see Figure 2). 
The advantage of this architecture is in the separation 
of engineering concerns into processor-storage commu- 
nication and the interprocess communication. The crit- 
ical path in the communication between an instruction 
processcr and its random-access storage, the so-called 
von Neumann bottleneck, can be engineered to exhibit 
a much smaller latency when the processor and storage 
are physically localized. The processor and storage 
might occupy a single chip, hybrid package, or circuit 
board, depending on the technology and complexity of 
the node. 

It was a premise of the Cosmic Cube experiment that 
the internode communication should scale well to very 
large numbers of nodes. A direct network like the hy- 
percube satisfies this requirement, with respect to both 
the aggregate bandwidth achieved across the many con- 
current Icommunication channels and the feasibility of 
the implementation. The hypercube is actually a dis- 
tributed variant of an indirect logarithmic switching 
network like the Omega or banyan networks: the kind 
that might be used in shared-storage organizations. 
With the! hypercube, however, communication paths 
traverse different numbers of channels and so exhibit 

A hypercube connects N = 2” small computers, called nodes, 
through point-to-point communication channels in the Cosmic 
Cube. Shown here is a two-dimensional projection of a six- 
dimensional hypercube, or binary G-cube, which corresponds to 
a 64-node machine. 

FIGURE 1. A Hypercube (also known as a binary cube or a 
Boolean mcube) 

different latencies. It is possible, therefore, to take ad- 
vantage of communication locality in placing processes 
in nodes. 

Message-passing machines are simpler and more eco- 
nomical than shared-storage machines; the greater the 
number of processors, the greater this advantage. How- 
ever, the more tightly coupled shared-storage machine 
is more versatile, since it is able to support code and 
data sharing. Indeed, shared-storage machines can eas- 
ily simulate message-passing primitives, whereas 
message-passing machines do not efficiently support 
‘code and data sharing. 

Figure z emphasizes the differences between shared- 
storage and message-passing organizations by represent- 
ing the extreme cases. We conjecture that shared- 
storage organizations will be preferred for systems with 
tens of processors, and message-passing organizations 
for systems with hundreds or thousands of processing 
nodes. Hybrid forms employing local or cache storage 
with each processor, with a message-passing approach 
to nonlocal storage references and cache coherence, 
may well prove to be the most attractive option for 
systems having intermediate numbers of processors. 

PROCESS PROGRAMMING 
The hardware structure of the Cosmic Cube, when 
viewed at the level of nodes and channels, is a difficult 
target for programming any but the most highly regular 
computing problems. The resident operating system of 
the Cosmic Cube creates a more flexible and machine- 
independent environment for concurrent computations. 
This process model of computation is quite similar to 
the hardware structure of the Cosmic Cube but is use- 
fully abstracted from it. Instead of formulating a prob- 
lem to fit on nodes and on the physical communication 
channels that exist only between certain pairs of nodes, 
the programmer can formulate problems in terms of 
processes and “virtual” communication channels be- 
tween processes. 

The basic unit of these computations is the process, 
which for our purposes is a sequential program that 
sends and receives messages. A single node may con- 
tain many processes. All processes execute concur- 
rently, whether by virtue of being in different nodes or 
by being interleaved in execution within a single node. 
Each process has a unique (global) ID that serves as an 
address for messages. All messages have headers con- 
taining the destination and the sender ID, and a mes- 
sage type and length. Messages are queued in transit, 
but message order is preserved between any pair of 
processes. The semantics of the message-passing opera- 
tions are independent of the placement of processes in 
nodes. 

Process programming environments with interprocess 
communication by messages are common to many mul- 
tiprogramming operating systems. A copy of the resi- 
dent operating system of the Cosmic Cube, called the 
“kernel,” resides in each node. All of these copies are 
concurrently executable. The kernel can spawn and 
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kill processes within its own node, schedule their exe- 
cution, spy on them through a debug process, manage 
storage, and deal with error conditions. The kernel also 
handles the queuing and routing of messages for proc- 
esses in its node, as well as for messages that may pass 
through its node. Many of the functions that we would 
expect to be done in hardware in a future integrated 
node, such as message routing, are done in the kernel 
in the Cosmic Cube. We are thus able to experiment 
with different algorithms and implementations of low- 
level node functions in the kernel. 

The Cosmic Cube has no special programming nota- 
tion. Process code is written in ordinary sequential pro- 
gramming languages (e.g., Pascal or C) extended with 
statements or external procedures to control the send- 
ing and receiving of messages. These programs are com- 
piled on other computers and loaded into and relocated 
within a node as binary code, data, and stack segments. 

PROCESS DISTRIBUTION 
It was a deliberate decision in the design of the kernel 
that once a process was instantiated in a node, the 
kernel would not relocate it to another nod% One con- 
sequence of this restriction is that the physical node 
number can be included in the ID for a process. This 
eliminates the awkward way in which a distributed 
map from processes to nodes would otherwise scale 
with the number of nodes. Messages are routed accord- 
ing to the physical address part of the destination proc- 
ess ID in the message header. 

This decision was also consistent with the notion that 
programmers should be able to control the distribution 
f nrocesses onto the nodes on the under- basis of an 

&+- -- 
standin of the structure of the concurrent computation 

erformed.natively, since it is only the effi- 
ciency of a multiple-process program that is influenced 
by process placement, the choice of the node in which 
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(a) Most multiprocessors are structured with a switching 
network, either a crossbar connection of buses or a multi- 
stage routing network, between the processors and storage. 
The switching network introduces a latency in the communi- 
cation between processors and storage, and does not scale 

well to large sizes. Communication between processes run- 
ning concurrently in different processors occurs through 
shared variables and common access to one large address 
space. 

(b) Message-passing multicomputer systems retain a physi- 
tally close and fast connection between processors and their 
associated storage. The concurrent computers (nodes) can 
send messages through a network of communication chan- 

nets. The network shown here is a three-dimensional cube, 
which is a small version of the communication plan used in 
six dimensions in the 64-node Cosmic Cube. 

NOTE; Actual machines need not follow one model or the other absolutely: Various hybrids are possible 

FIGURE 2. A Comparison of Shared-Storage Multiprocessors and Message-Passing Machines 
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a process is to be spawned can be deferred to a library 
process that makes this assignment after inquiring 
about processing load and storage utilization in nearby 
nodes. 

A careful distribution of processes to nodes generally 
involves some trade-offs between load balancing and 
message locality. We use the term process structure to 
describe a set of processes and their references to other 
processes. A static process structure, or a snapshot of a 
dynamic process structure, can be represented as a 
graph of process vertices connected by arcs that repre- 
sent reference (see Figure 3). One can also think of the 
arcs as virtual communication channels, in that process 
A having reference to process B is what makes a mes- 
sage from A to B possible. 

The hardware communication structure of this class 
of message-passing machines can be represented simi- 
larly as a graph of vertices for nodes and (undirected) 
edges for the bidirectional communication channels. 

The mapping of a process structure onto a machine is 
an embedding of the process structure graph into the 
machine graph (see Figure 4). In general, the arcs map 
not only to internal communication and single edges, 
but also to paths representing the routing of messages 
in intermediate nodes. It is this embedding that deter- 
mines both the locality of communication achieved and 
the load-balancing properties of the mapping. 

CONCURRENCY APPROACH 
Most sequential processors, including microprocessors 
like the RISC chips described elsewhere in this issue,’ 
are covertly concurrent machines that speed up the in- 
terpretation of a single instruction stream by tech- 
niques such as instruction prefetching and execution 
pipelining. Compilers can assist this speedup by re- 
covering the concurrency in expression evaluations and 

‘See David A. Patterson’s article, “Reduced Instruction Set Computers” (Com- 
mun. ACM 28.1 ()an. 1985)). on pages S-21 of this issue. 

In this example, the processes are computing the time evolu- 
tion, or orbital positions, of seven bodies interacting by a 
symmetrical force, such as gravity. Messages containing the 
position and mass of each particle are sent from each proc- 
ess (N - 1)/2 steps around the ring, accumulating the forces 
due to each interaction along the way, while the process that 
is host to that body accumulates the other (N - 1)/2 forces. 
The messages are then returned over the chordal paths to 

the host process, where the forces are summed and the 
position and velocity of the body are updated. This example 
is representative of many computations that are demanding 
simply because of the number of interacting parts, and not 
because the force law that each part obeys is complex. 
However, this is not the formulation one would use for very 
many bodies. 

FIGURE 3. The Process Structure for a Concurrent Formulation of the N-Body Problem 
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Node 0 Node 1 

Node 3 

The distribution of the processes does not influence the com- 
puted results, but it does, through load balancing and mes- 
sage locality, influence the speedup achieved by using four 
computers for this task instead of one. 

FIGURE 4. The Prqcess Structure for the ‘I-Body Example 
Embedded into a 4-Node Machine 

in the innermost iterations of a program, and then gen- 
erating code that is “vectorized” or in some other way 
allows the processor to interpret the sequential program 
with some concurrency. These techniques, together 
with caching, allow about a ten-fold concurrency and 
speedup over naive sequential interpretation. 

We can use such techniques within nodes, where we 
are tied to sequential program representations of the 
processes. In addition, we want to have at least as many 
concurrent processes as nodes. Where are such large 
degrees of concurrency to be discovered in a computa- 
tion? One quick but not quite accurate way of describ- 
ing the approach used in the Cosmic Cube is that we 
overtly exploit the concurrency found in the outermost, 
rather than innermost, program constructs of certain 
demanding computations. It appears that many highly 
demanding computing problems can be expressed in 
terms of concurrent processes with either sparse or pre- 
dictable interaction. Also, the degree of concurrency 
inherent in such problems tends to grow with the size 
and computing demands of the problem. 

It is important to understand that the compilers used 
to generate process code for the Cosmic Cube do not 
“automatically” find a way to run sequential programs 

concurrently. We do not know how to write a program 
that translates application programs represented by old, 
dusty FORTRAN decks into programs that exploit con- 
currency between nodes. In fact, because efficient con- 
current algorithms may be quite different from their 
sequential counterparts, we regard such a translation as 
implausible, and instead try to formulate and express a 
computation explicitly in terms of a collection of com- 
municating concurrent processes. 

Dataflow graphs, like those discussed in this issue in 
the article on the Manchester dataflow machine,* also 
allow an explicit representation of concurrency in a 
computation. Although we have not yet tried to do so, 
dataflow computations can be executed on machines 
like the Cosmic Cube. One of the reasons we have not 
done so is that many of the computations that show 
excellent performance on the Cosmic Cube or on other 
parallel machines, and are very naturally expressed in 
terms of processes (or objects), are simulations of physi- 
cal systems. With such simulations, the state of a sys- 
tem is repeatedly evaluated and assigned to state vari- 
ables. The functional (side-effect free) semantics of da- 
taflow, in pure form, appears to get in the way of a 
straightforward expression of this type of computation. 
The process model that we use for programming the 
Cosmic Cube is relatively less restrictive than dataflow 
and, in our implementation, is relatively more demand- 
ing of attention to process placement and other 
details. 

CONCURRENT FORMULATIONS 
The crucial step in developing an application program 
for the Cosmic Cube is the concurrent formulation: It is 
here that both the correctness and efficiency of the 
program are determined. It is often intriguing, and even 
amusing, to devise strategies for coordinating a myriad 
of concurrent computing activities in an orderly way. 

For many of the demanding computations encoun- 
tered in science and engineering, this formulation task 
has not proved to be very much more difficult than it is 
on sequential machines. These applications are often 
based on concurrent adaptations of well-known se- 
quential algorithms or are similar to the systolic algo- 
rithms that have been developed for regular VLSI com- 
putational arrays. The process structure remains static 
for the duration of a computation, 

At the risk of creating the impression that all of the 
application programs for the Cosmic Cube are as sim- 
ple, let us offer one concrete example of a formulation 
and its process code. The problem is to compute the 
time evolution of a system of N bodies that interact by 
gravitational attraction or some other symmetrical 
force. Because each of the N bodies interacts with all of 
the other N - 1 bodies, this problem might not seem to 
be as appropriate for the Cosmic Cube as matrix, grid- 
point, finite-difference, and other problems based solely 

‘See J.R. Gurd. C.C. Kirkham, and I. Watson’s article. “The Manchester Proto- 
type Dataflow Computer” (Commun. ACM 28.1 (Jan. 1985)). on pages 34-52 
of this issue. 
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on local interaction. Actually, universal interaction is The process also accumulates the forces and integrates 
easy because it maps beautifully onto the ring process the position of the body it hosts. As can be seen in the 
structure shown for N = 7 in Figure 3. C process code in Figure 5, the process that is host to 

Each of N identical processes is “host” to one body body 1 successively receives guests 7, 6, and 6, and 
and is responsible for computing the forces due to (N - accumulates forces due to these interactions. Mean- 
1)/Z other bodies. With a symmetrical force, it is left to while, a message containing the position, mass, accu- 
other processes to compute the other (N - 1)/Z forces. mulated force, and host process ID of body 1 is con- 

/* process for an n-body cTputation, n odd, with symmetrical forces */ 
#include “cubedef. h” * cube definitions */ 
#include ” force . h” /* procedures for computing forces and posif;ions */ 

struct body ( double pos [3] : /* body position x, y, z 
double vel[3] ; /*, velocity vector x,y,z 
double force [3] ; /* to accumulate forces 
double mass; /* body mass 
int home-id; /* id of body’s home process */ 

3 host, guest; 

struct startup ( int n; 
int next-id; 
int steps; 

3 s; 

/* number of bodies */ 
/* ID of next process on ring */ 
/* number of integration steps */ 

struct desc my-body-in, my-body-out, startu?&in; /* IH channels 
strtict desc body-in, body-out, body-bak: /* inter-process channels 

cycle0 /* read initial state, compute, and send back final state */ 
-c 

int i; double FORCE[3]; 

$* init?alize channel descriptors */ 
* init(*desc, id, type, buffer-len, buffer-address); */ 

init(&my>ody-in ,O,O,sizeof(struct body)/2,&host); recv-wait(&my>ody-in); 
init(&startupAn ,O,l,sizeof(struct startup)/2,&s); recv_wait(&startupJn); 
init (&ny&ody-out , IILID, 2, sizeof(struct body)/2, &host); 
init(&bodv-in , 0, 3, sizeof(struct bodv)/2, &quest): 
init (&ody-out ; s .next-id, 
init(&body-Mk , 

3; sizeofjstruct bod$jj2; &pestj; 
9, 4, sizeof(struct body)/2, &guest); 

while(s.steps--) /* repeat s.steps computation cycles */ 
( 

body-out.buf = &host; /* first time send out host body 

Ifor(i. = (s.n-1)/2: i--;) 
L 

sen&wait(&body-Out); 
recvqait (&body-in) ; 
COMPUTE_FORCE(&host,&guest,FORCE) ; /* 
ADD~ORCE~TOJlOST(~ost,FORCE); 
ADD~ORCE:_TQJXJEST(&guest,FORCE); 
body-out.buf = &guest; 

&od&.bak.id = guest.home-id; 

repeat (s.n-1)/2 times 

send out the hostlguest 
receive the next guest 
calculate force 
may the force be with you 
and with the guest, also 
prepare to pass the guest 

/* send guest back 
Fed&wait (&body_bak); recv-wait(&body>ak); /* the envoy returns 
ADD 

4F 
EST_FORCE~TOJIOST(&host,&guest); 

UPDd E(&host); /* integrate position 
3 
sen&wait(&uay&ody-out); /* send body back to host, complete one cycle 

3 

main0 ( while(l) cycle(): 3 /* main execute cycle repeatedly */ 

FIGURE 5. Process Code for the N-Body Example in the C Language 
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veyed through the processes that are host to bodies 2, 3, 
and 4 with the forces due to these interactions accumu- 
lated. After (N - 1)/2 visits, the representations of the 
bodies are returned in a message to the process that is 
host to the body, the forces are combined, and the posi- 
tions are updated. 

A detail that is not shown in Figure 5 is the process 
that runs in the Cosmic Cube intermediate host (IH), or 
on another network-connected machine. This process 
spawns the processes in the cube and sends messages to 
the cube processes that provide the initial state, the ID 
of the next process in the ring, and an integer specify- 
ing the number of integration steps to be performed. 
The computation in the Cosmic Cube can run autono- 
mously for long periods between interactions with the 
IH process. If some exceptional condition were to occur 
in the simulation, such as a collision or close encoun- 
ter, the procedure that computes the forces could re- 
port this event via a message back to the IH process. 

This ring of proc:esses can, in turn, be embedded sys- 
tematically into the machine structure (see Figure 4). In 
mapping seven identical processes, each with the same 
amount of work to do, onto 4 nodes, the load obviously 
cannot be balanced perfectly. Using a simple perform- 
ance model originally suggested by Willis Ware, “speed- 
up”-S-can be defined as 

s= time on 1 node 
time on N nodes ’ 

For this 7-body example on a 4-node machine, neglect- 
ing the time required for the communication between 
nodes, the speedup is clearly 7/2. Since computation 
proceeds 3.5 times faster using 4 nodes than it would 
on a single node, one can also say that the efficiency 
e = S/N is 0.875, which is the fraction of the available 
cycles that are actually used. 

More generally, if k .is taken as the fraction of the 
steps in a computation that, because of dependen- 
cies, must be sequential, the time on N nodes is 
max(k, l/N), so that the speedup cannot exceed 
min(l/k, N). This expression reduces to “Amdahl’s ar- 
gument,” that l/k, the reciprocal of the fraction of the 
computation that must be done sequentially, limits the 
number of nodes that can usefully be put to work con- 
currently on a given problem. For example, nothing is 
gained in this formulation of an N-body problem by 
using more than N nodes. 

Thus we are primarily interested in computations for 
which l/k >> N: in effect, in computations in which the 
concurrency opportunities exceed the concurrent re- 
sources. Here the speedup obtained by using N nodes 
concurrently is limited by (1) the idle time that results 
from imperfect load balancing, (2) the waiting time 
caused by communication latencies in the channels 
and in the message forwarding, and (3) the processor 
time dedicated to processing and forwarding messages, 
a consideration that can be effectively eliminated by 
architectural improvements in the nodes. These factors 
are rather complex functions of the formulation, its 

mapping onto N nodes, the communication latency, and 
the communication and computing speed of the nodes. 
We lump these factors into an “overhead” measure, Q, 
defined by the computation exhibiting a speedup of S = 
N/(1 + u). A small (r indicates that the Cosmic Cube is 
operating with high efficiency, that is, with nodes that 
are seldom idle, or seldom doing work they would not 
be doing in the single-node version of the computation. 

COSMIC CUBE HARDWARE 
Having introduced the architecture, computational 
model, and concurrent formulations, let us turn now to 
some experimental results. 

Figure 6 is a photograph of the 64-node Cosmic Cube. 
For such a small machine, only 5 feet long, a one- 
dimensional projection of the six-dimensional hyper- 
cube is satisfactory. The channels are wired on a back- 
plane beneath the long box in a pattern similar to that 
shown in Figure 2b. Larger machines would have nodes 
arrayed in two or three dimensions like the two- 
dimensional projection of the channels shown in Figure 
1. The volume of the system is 6 cubic feet, the power 
consumption is TOO watts, and the manufacturing cost 
was $80,000. We also operate a 3-cube machine to sup- 
port software development, since the 6-cube cannot 
readily be shared. 

Most of the choices made in this design are fairly 
easy to explain. First of all, a binary n-cube communi- 
cation plan was used because this network was shown 
by simulation to provide very good message-flow prop- 
erties in irregular computations. It also contains all 
meshes of lower dimension, which is useful for regular 
mesh-connected problems. The binary n-cube can be 
viewed recursively. As one can see from studying Fig- 
ure 1, the n-cube that is used to connect 2” = N nodes 
is assembled from two (n - I)-cubes, with correspond- 
ing nodes connected by an additional channel. This 
property simplifies the packaging of machines of vary- 
ing size. It also explains some of the excellent message- 
flow properties of the binary n-cube on irregular prob- 
lems. The number of channels connecting the pairs of 
subcubes is proportional to the number of nodes and 
hence on average to the amount of message traffic they 
can generate. 

With this rich connection scheme, simulation 
showed that we could use channels that are fairly slow 
(about 2 Mbit/set) compared with the instruction rate. 
The communication latency is, in fact, deliberately 
large to make this node more nearly a hardware simu- 
lation of the situation anticipated for a single-chip 
node. The processor overhead for dealing with each 
64-bit packet is comparable to its latency. The commu- 
nication channels are asynchronous, full duplex, and 
include queues for a 64-bit “hardware packet” in the 
sender and in the receiver in each direction. These 
queues are a basic minimum necessary for decoupling 
the sending and receiving processes. 

The Intel 8086 was selected as the instruction proces- 
sor because it was the only single-chip instruction proc- 
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The nodes are packaged as one circuit board per node in the 
long card frame on the bench top. The six communication 
channels from each node are wired in a binary 6cube on the 
backplane on the underside of the card frame. The separate 

units on the shelf above the long G-cube box are the power 
supply and an “intermediate host” (IH) that connects through 
a communication channel to node 0 in the cube. 

FIGURE 6. The 64.Node Cosmic Cube in Operation 

essor available with a floating-point coprocessor, the 
Intel 8087. Reasonable floating-point performance was 
necessary for many of the applications that our col- 
leagues at Caltech wished to attempt. The system cur- 
rently operates at a 5 MHz clock rate, limited by the 
8087, although it is designed to be able to run at 8 MHz 
when faster 8087 chips become available. After our first 
prototypes, Intel Corporation generously donated chips 
for the 64-node Cosmic Cube. 

The storage size of 128K bytes was decided upon 
after a great deal of internal discussion about “balance” 
in the design. It tias argued that the cost incurred in 
doubling the storage size would better be spent on more 
nodes. In fact, this choice is clearly very dependent on 
target applications and programming style. The dy- 
namic RAM includes parity checking but not error cor- 
rection. Each node also includes 8 Kbytes of read-only 

storage for initialization, a bootstrap loader, dynamic 
RAM refresh, and diagnostic testing programs. 

Since building a machine is not a very common en- 
terprise in a university, an account of the chronology of 
the hardware phase of the project may be of interest. A 
prototype 4-node (2-cube) system on wirewrap boards 
was designed, assembled, and tested in the winter of 
1981-1982, and was used for software development and 
application programs until it was recently disassem- 
bled. The homogeneous structure of these machines 
was nicely exploited in the project when a small hard- 
ware prototype, similar to scaled-up machines, was 
used to accelerate software development. Encouraged 
by our experience with the 2-cube prototype, we had 
printed circuit boards designed and went through the 
other packaging logistics of assembling a machine of 
useful size. The Cosmic Cube grew from an 8-node to a 
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64-node machine over the summer of 1983 and has 
been in use since October 1983. 

In its first year of operation (560,000 node-hours), the 
Cosmic Cube has experienced two hard failures, both 
quickly repaired: a soft error in the RAM is detected by 
a parity error on everage once every several days. 

COSMIC CUBE SOFTWARE 
As is the case in many “hardware” projects, most of the 
work on the Cosmic Cube has been on the software. 
This effort has been considerably simplified by the 
availability of cross-compilers for the Intel 8086/8087 
chips and because most of the software development is 
done on conventional computers. Programs are written 
and compiled in familiar computing environments, and 
their concurrent execution is then simulated on a small 
scale. Programs are downloaded into the cube through 
a connection managed by the intermediate host. In the 
interest of revealing all of the operational details of this 
unconventional machine, we begin with the start-up 
procedures. 

The lowest level of software is part of what we call 
the machine intrinsic environment. This includes the in- 
struction set of the node processor, its I/O communica- 
tion with channels, and a small initialization and boot- 
strap loader program stored along with diagnostic pro- 
grams in read-only storage in each processor. A start-up 
packet specifies the size of the cube to be initialized 
and may specify that the built-in RAM tests be run 
(concurrently) in the nodes. As part of the initialization 
process, each of the identical nodes discovers its posi- 
tion in whatever size cube was specified in the start-up 
packet sent from the intermediate host by sending mes- 
sages to the other nodes. The initialization, illustrated 
in Figure 7, also involves messages that check the func- 
tion of all of the communication channels to be used. 
Program loading following initialization typically loads 
the kernel. 

A crystalline applications environment is character- 
ized by programs written in C in which there is a single 
process per node and in which messages are sent by 
direct I/O operations to a specified channel. This sys- 
tem was developed by physics users for producing very 
efficient application programs for computations so regu- 
lar they do not require message routing. 

The operating system kernel, already described in 
outline, supports :I distributed vrocess environment with 
a copy of the kernel runnina in each node. The kernel 
is 9 Kbytes of code and 4 Kbytes of tables, and is di- 
vided into an “inner” and an “outer” kernel. Any stor- 
age in a node that is not used for the kernel or for 
processes is allocated as a kernel message buffer for 
queuing messages. 

The inner kernel, written in 8086 assembly language, 
sends and receives messages in response to system calls 
from user processes. These calls pass the address of a 
message descriptor, which is shared between the kernel 
and user process. There is one uniform m-t 
that hides all hardware chara- ch -- as packet 

Ethernet 

In the initialization, each of the identical nodes discovers its 
identity and checks all the communication channels with a 
message wave that traverses the 3-c&a from node 0 to 
node 7. and then from node 7 to node 0. If node 3, for 
instance, did not respond to messages, then nodes 1, 2, and 
7 would report this failure back to the host over other chan- 
nels. 

FIGURE 7. The Initialization of the Cosmic Cubs 

size. The kernel performs the construction and inter- 
pretation of message headers from the descriptor infor- 
mation. The hardware communication channels allow 
very fast and efficient “one-trip” message protocols; 
long messages are automatically fragmented. Messages 
being sent are queued in the sending process instead of 
being copied into the kernel message buffer, unless the 
message is local to the node. Local messages are either 
copied to the destination if the matching receive call 
has already been executed, or copied into the message 
buffer to assure a consistency in the semantics of local 
and nonlocal send operations. 

Processes are often required to manage several con- 
current message activities. Thus the send and receive 
calls do not “block.” The ca!ls return after creating a 
request that remains pending until the operation is com- 
pleted. The completion of the message operation is 
tested by a lock variable in the message descriptor. 
Program execution can continue concurrently with 
many concurrently pending communication activities. 
A process can also use a probe call that determines 
whether a message of a specified type has been re- 
ceived and is queued in the kernel message buffer. A 
process that is in a situation where no progress can be 
made until some set of message areas is filled or emp- 
tied may elect to defer execution to another process. 
The inner kernel schedules user processes by a simple 
round robin scheme, with processes running for a fixed 
period of time or until they perform the system call 
that defers to the next process. The storage manage- 
ment and response to error conditions are conventional. 

The outer kernel is structured as a set of privileged 
processes that user processes communicate with by 
messages rather than by system calls. One of these 
outer kernel processes spawns and kills processes: A 
process can be spawned either as a copy of a process 
already present in the node, in which case the code 
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segment is shared, or from a file that is accessed by 
system messages between the spawn process and the 
intermediate host. Because process spawning is invoked 
by messages, it is equally possible to build process 
structures from processes running in the cube, in the 
intermediate host, or in network-connected machines. 
One other essential outer kernel process is known as 
the spy process and permits a process in the intermedi- 
ate host to examine and modify the kernel’s tables, 
queued messages, and process segments. 

Our current efforts are focused on intermediate host 
software that will allow both time- and space-sharing of 
the cube. 

APPLICATIONS AND BENCHMARKS 
Caltech scientists in high-energy physics, astrophysics, 
quantum chemistry, fluid mechanics, structural me- 
chanics, seismology, and computer science are develop- 
ing concurrent application programs to run on Cosmic 
Cubes. Several research papers on scientific results 
have already been published, and other applications 
are developing rapidly. Several of us in the Caltech 
computer science department are involved in this re- 
search both as system builders and also through inter- 
ests in concurrent computing and applications to VLSI 
analysis tools and graphics. 

The simulation of an electrical circuit involves re- 
peated solution of a set of simultaneous nonlinear equa- 
tions. The usual approach, illustrated in Figure 8, is to 
compute piecewise linear admittances from the circuit 
models and then to use linear equation solution tech- 
niques. CONCISE uses a nodal admittance matrix for- 
mulation for the electrical network. The admittance 
matrix is sparse but, because electrical networks have 
arbitrary topology, does not have the crystalline regu- 
larity of the physics computations. At best the matrix is 
“clumped” because of the locality properties of the elec- 
trical network. 

Application programs on the 64-node Cosmic Cube 
execute up to 3 million floating-point operations per 
second. The more interesting and revealing bench- 
marks are those for problems that utilize the machine 
at less than peak speeds. A single Cosmic Cube node at 
a 5 MHz clock rate runs at one-sixth the speed of the 
same program compiled and run on a VAX11/780. 
Thus we should expect the 64-node Cosmic Cube to 
run at best (l/6)(64) = 10 times faster than the 
VAX11/780. Quite remarkably, many programs reach 
this performance, with measured values of (T ranging 
from about 0.025 to 0.500. For example, a typical com- 
putation with u = 0.2 exhibits a speedup S = (64)/(1.2) 
= 50. One should not conclude that applications with 
larger u are unreasonable; indeed, given the economy 
of these machines, it is still attractive to run production 
programs with d > 1. 

This program is mapped onto the cube by partition- 
ing the admittance matrix by rows into concurrent 
processes. The linear equation solution phase of the 
computation, a Jacobi iteration, involves considerable 
communication, but the linearization that requires 
about 80 percent of the execution time on sequential 
computers is completely uncoupled. Integration and 
output in computing transient solutions are small com- 
ponents of the whole computation. The computation is 
actually much more complex than we can describe 
here; for example, the integration step is determined 
adaptively from the convergence of previous solutions. 

Among the many unknowns in experimenting with 
circuit simulation is the interaction between communi- 
cation cost and load balancing in the mapping of proc- 
esses to nodes. Although “clumping” can be exploited 
in this mapping to localize communication, it may also 
concentrate many of the longer iterations occurring 
during a signal transient into a single node, thus creat- 
ing a “dynamic” load imbalance in the computation. 

FUTURE PERFECT CUBES 

A lattice computation programmed by physics post- 
dot Steve Otto at Caltech has run for an accumulated 
2500 hours on the g-cube. This program is a Monte 
Carlo simulation on a 12 X 12 X 12 X 16 lattice, an 
investigation of the predictions of quantum chromody- 
namics, which is a theory that explains the substruc- 
ture of particles such as protons in terms of quarks and 
the glue field that holds them bound. Otto has shown 
for the first time in a single computation both the short- 
range Coulombic force and the constant long-range 
force between quarks. The communication overhead in 
this naturally load balanced computation varies from 
u = 0.025 in the phase of computing the gauge field 
to u = 0.050 in computing observables by a contour 
integration in the lattice. 

Today’s system is never as perfect as tomorrow’s Al- 
though software can be polished and fixed on a daily 
basis, the learning cycle on the architecture and hard- 
ware is much longer. Let us then summarize briefly 
what this experiment has taught us so far and speculate 
about future systems of this same general class. 

Although programming has not turned out to be as 
difficult as we should have expected, we do have a long 
agenda of possible improvements for the programming 
tools. Most of the deficiencies are in the representation 
and compilation of process code. There is nothing in 
the definition of the message-passing primitives that we 
would want to change, but because we have tacked 
these primitives onto programming languages simply as 
external functions, the process code is unnecessarily 
baroque. 

Among the most interesting and ambitious programs The way the descriptors for “virtual channels” are 

currently in development is a concurrent MOS-VLSI 
circuit simulator, called CONCISE, formulated and 
written by computer science graduate student Sven 
Mattisson. This program has been useful for developing 
techniques for less regular computations and promises 
very good performance for a computation that con- 
sumes large fractions of the computing cycles on many 
high-performance computers. 
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(Start) 

t 
Format output 

t 

Read circuit input 

Network formulation In host 

Transient solutions Process placement 

Many copies of 

in cube 

Solve matrix equation 

(Stop) 

The sequential and concurrent versions of this program differ in that the concurrent program employs many copies of the 
depicted inside the dashed circle. 

FIGURE 8. The Organization of the CONCISE Circuit Simulator 

declared, initialized, and manipulated (see Figure 3, for 
instance, is not disguised by a pretty syntax. More fun- 
damentally, the attention the programmer must give to 
blocking on lock variables is tedious and can create 
incorrect or unnecessary constraints on message and 
program sequencing. Such tests are better inserted into 
the process code automatically, on the basis of a data- 
flow analysis similar to that used by optimizing compil- 
ers for register allocation. These improvements may be 
only aesthetic, but they are a necessary preliminary for 
making these systems less intimidating for the begin- 
ning user. 

The cost/performance ratio of this class of architec- 
tures is quite good even with today’s technologies, and 
progress in microelectronics will translate into either 
increased performance or decreased cost. The present 
Cosmic Cube node is not a large increment in complex- 
ity over the million-bit storage chips that are expected 
in a few years. Systems of 64 single-chip node elements 
could fit in workstations, and systems of thousands of 
nodes would make interesting supercomputers. Al- 
though this approach to high-performance computation 
is limited to applications that have highly concurrent 
formulations, the applications developed on the Cosmic 
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Cube have shown us that many, perhaps even a major- 
ity, of the large and demanding computations in science 
and engineering are of this type. 

It is also reasonable to consider systems with nodes 
that are either larger or smaller than the present 
Cosmic Cube nodes. We have developed at Caltech a 
single-chip “Mosaic” node with the same basic struc- 
ture as the Cosmic Cube node, but with less storage, for 
experimenting with the engineering of systems of 
single-chip nodes and with the programming and appli- 
cation of finer grain machines. Such machines offer a 
cost/performance ratio superior even to that of the 
Cosmic Cube. However, we expect them to be useful 
for a somewhat smaller class of problems. Similarly, the 
use of better, faster instruction processors, higher ca- 
pacity storage chips, and integrated communication 
channels suggests machines with nodes that will be an 
order of magnitude beyond the Cosmic Cube in per- 
formance and storage capacity, but at the same physical 
size. 

The present applications of the Cosmic Cube are all 
compute- rather than I/O-intensive. It is possible, how- 
ever, to include I/O channels with each node and so to 
create sufficient I/O band width for almost any pur- 
pose. Such machines could be used, for example, with 
many sensors, such as the microphone arrays towed 
behind seismic exploration ships. The computing could 
be done in real time instead of through hundreds of 
tapes sent on to a supercomputer. It is also possible to 
attach disks for secondary storage to a subset of the 
nodes. 

APPENDIX-HISTORY AND ACKNOWLEDGMENTS 
The origins of the Cosmic Cube project can be traced to 
research performed at Caltech during 1978-1980 by 
graduate students Sally Browning and Bart Locanthi 
[l, 81. These ideas were in turn very much influenced 
by several other researchers. We sometimes refer to the 
Cosmic Cube as a homogeneous machine, from a term 
used in a 1977 paper by Herbert Sullivan and T.L. 
Brashkow [13]. They define their homogeneous ma- 
chine as a machine “of uniform structure.” C.A.R. 
Hoare’s communicating sequential processes notation, 
the actor paradigm developed by Carl Hewitt, the proc- 
essing surface experiments of Alain Martin, and the 
systolic algorithms described by H.T. Kung, Charles 
Leiserson, and Clark Thompson encouraged us to con- 
sider message passing as an explicit computational 
primitive [Z, 4, 6, lo]. 

The Cosmic Cube design is based in largest part on 
extensive program modeling and simulations carried 
out during 1980-!982 by Charles R. Lang [7]. It was 
from this work that the communication plan of a binary 
n-cube, the bit rates of the communication channels, 
and the organization of the operating system primitives 
were chosen. Together with early simulation results, a 
workshop on “homogeneous machines” organized by 
Carl Hewitt during the summer of 1981 helped give us 
the confidence to start building an experimental ma- 
chine. 

The logical design of the Cosmic Cube is the work of 
computer science graduate students Erik DeBenedictis 
and Bill Athas. The early crystalline software tools 
were developed by physics graduate students Eugene 
Brooks and Mark Johnson. The machine intrinsic and 
kernel code was written by Bill Athas, Reese Faucette, 
and Mike Newton, with Alain Martin, Craig Steele, Jan 
van de Snepscheut, and Wen-King Su contributing val- 
uable critical reviews of the design and implementation 
of the distributed process environment. 

The ongoing work described in part in this article is 
sponsored through the VLSI program of the Information 
Processing Techniques Office of DARPA. We thank Bob 
Kahn, Duane Adams, and Paul Losleben for their sup- 
port and interest. 
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