
ARTCLES

THE COSMIC CUBE

Sixty-four small computers are connected by a network of point-to-point
communication channels in the plan of a binary 6-cube. This “Cosmic Cube”
computer is a hardware simulation of a future VLSI implementation that
will consist of single-chip nodes. The machine offers high degrees of
concurrency in applications and suggests that future machines with
thousands of nodes are both feasible and attractive.

CHARLES L. SEITZ

The Cosmic Cube is an experimental computer for ex-
ploring the practice of highly concurrent computing.
The largest of several Cosmic Cubes currently in use at
Caltech consists of 64 small computers that work con-
currently on parts of a larger problem and coordinate
their computations by sending messages to each other.
We refer to these individual small computers as nodes.
Each node is connected through bidirectional, asyn-
chronous, point-to-point communication channels to
six other nodes, to form a communication network that
follows the plan of a six-dimensional hypercube, what
we call a binary 6-cube (see Figure 1). An operating
system kernel in each node schedules and runs proc-
esses within that node, provides system calls for proc-
esses to send and receive messages, and routes the mes-
sages that flow through the node.

The excellent performance of the Cosmic Cube on a
variety of complex and demanding applications and its
modest cost and open-ended expandability suggest that

The research described in this paper was sponsored by the Defense Advanced
Research Projects Agency, ARPA order number 3771, and monitored by the
Office of Naval Research under contract number Nooo14-79-C-0597.

0 1985 ACM OOOl-0782/85/0100-00’22 756

highly concurrent systems of this type are an effective
means of achieving faster and less expensive computing
in the near future. The Cosmic Cube nodes were de-
signed as a hardware simulation of what we expect to
be able to integrate onto one or two chips in about five
years. Future machines with thousands of nodes are
feasible, and for many demanding computing problems,
these machines should be able to outperform the fastest
uniprocessor systems. Even with current microelec-
tronic technology, the 64-node machine is quite power-
ful for its cost and size: It can handle a variety of de-
manding scientific and engineering computations five
to ten times faster than a VAX1 l/780.

THE MESSAGE-PASSING ARCHITECTURE
A significant difference between the Cosmic Cube and
most other parallel processors is that this multiple-
instruction multiple-data machine uses message passing
instead of shared variables for communication between
concurrent processes. This computational model is re-
flected in the hardware structure and operating system,
and is also the explicit communication and synchroni-
zation primitive seen by the programmer.

22 Communications of the ACM]anuary 1985 Volume 28 Number 2

Articles

The hardware structure of a message-passing ma-
chine like the Cosmic Cube differs from a shared-
storage multiprocessor in that it employs no switching
network between processors and storage (see Figure 2).
The advantage of this architecture is in the separation
of engineering concerns into processor-storage commu-
nication and the interprocess communication. The crit-
ical path in the communication between an instruction
processcr and its random-access storage, the so-called
von Neumann bottleneck, can be engineered to exhibit
a much smaller latency when the processor and storage
are physically localized. The processor and storage
might occupy a single chip, hybrid package, or circuit
board, depending on the technology and complexity of
the node.

It was a premise of the Cosmic Cube experiment that
the internode communication should scale well to very
large numbers of nodes. A direct network like the hy-
percube satisfies this requirement, with respect to both
the aggregate bandwidth achieved across the many con-
current Icommunication channels and the feasibility of
the implementation. The hypercube is actually a dis-
tributed variant of an indirect logarithmic switching
network like the Omega or banyan networks: the kind
that might be used in shared-storage organizations.
With the! hypercube, however, communication paths
traverse different numbers of channels and so exhibit

A hypercube connects N = 2” small computers, called nodes,
through point-to-point communication channels in the Cosmic
Cube. Shown here is a two-dimensional projection of a six-
dimensional hypercube, or binary G-cube, which corresponds to
a 64-node machine.

FIGURE 1. A Hypercube (also known as a binary cube or a
Boolean mcube)

different latencies. It is possible, therefore, to take ad-
vantage of communication locality in placing processes
in nodes.

Message-passing machines are simpler and more eco-
nomical than shared-storage machines; the greater the
number of processors, the greater this advantage. How-
ever, the more tightly coupled shared-storage machine
is more versatile, since it is able to support code and
data sharing. Indeed, shared-storage machines can eas-
ily simulate message-passing primitives, whereas
message-passing machines do not efficiently support
‘code and data sharing.

Figure z emphasizes the differences between shared-
storage and message-passing organizations by represent-
ing the extreme cases. We conjecture that shared-
storage organizations will be preferred for systems with
tens of processors, and message-passing organizations
for systems with hundreds or thousands of processing
nodes. Hybrid forms employing local or cache storage
with each processor, with a message-passing approach
to nonlocal storage references and cache coherence,
may well prove to be the most attractive option for
systems having intermediate numbers of processors.

PROCESS PROGRAMMING
The hardware structure of the Cosmic Cube, when
viewed at the level of nodes and channels, is a difficult
target for programming any but the most highly regular
computing problems. The resident operating system of
the Cosmic Cube creates a more flexible and machine-
independent environment for concurrent computations.
This process model of computation is quite similar to
the hardware structure of the Cosmic Cube but is use-
fully abstracted from it. Instead of formulating a prob-
lem to fit on nodes and on the physical communication
channels that exist only between certain pairs of nodes,
the programmer can formulate problems in terms of
processes and “virtual” communication channels be-
tween processes.

The basic unit of these computations is the process,
which for our purposes is a sequential program that
sends and receives messages. A single node may con-
tain many processes. All processes execute concur-
rently, whether by virtue of being in different nodes or
by being interleaved in execution within a single node.
Each process has a unique (global) ID that serves as an
address for messages. All messages have headers con-
taining the destination and the sender ID, and a mes-
sage type and length. Messages are queued in transit,
but message order is preserved between any pair of
processes. The semantics of the message-passing opera-
tions are independent of the placement of processes in
nodes.

Process programming environments with interprocess
communication by messages are common to many mul-
tiprogramming operating systems. A copy of the resi-
dent operating system of the Cosmic Cube, called the
“kernel,” resides in each node. All of these copies are
concurrently executable. The kernel can spawn and

January 1585 Volume 28 Number 1 Communications of the ACM 23

Articles

kill processes within its own node, schedule their exe-
cution, spy on them through a debug process, manage
storage, and deal with error conditions. The kernel also
handles the queuing and routing of messages for proc-
esses in its node, as well as for messages that may pass
through its node. Many of the functions that we would
expect to be done in hardware in a future integrated
node, such as message routing, are done in the kernel
in the Cosmic Cube. We are thus able to experiment
with different algorithms and implementations of low-
level node functions in the kernel.

The Cosmic Cube has no special programming nota-
tion. Process code is written in ordinary sequential pro-
gramming languages (e.g., Pascal or C) extended with
statements or external procedures to control the send-
ing and receiving of messages. These programs are com-
piled on other computers and loaded into and relocated
within a node as binary code, data, and stack segments.

PROCESS DISTRIBUTION
It was a deliberate decision in the design of the kernel
that once a process was instantiated in a node, the
kernel would not relocate it to another nod% One con-
sequence of this restriction is that the physical node
number can be included in the ID for a process. This
eliminates the awkward way in which a distributed
map from processes to nodes would otherwise scale
with the number of nodes. Messages are routed accord-
ing to the physical address part of the destination proc-
ess ID in the message header.

This decision was also consistent with the notion that
programmers should be able to control the distribution
f nrocesses onto the nodes on the under- basis of an

&+- --
standin of the structure of the concurrent computation

erformed.natively, since it is only the effi-
ciency of a multiple-process program that is influenced
by process placement, the choice of the node in which

t
s s S S S S S S

.
I I I ' A I I I I

I

I Switching network

I I . I I I I ’
P P P P P P P P

.

Storage
modules

Processors

(a) Most multiprocessors are structured with a switching
network, either a crossbar connection of buses or a multi-
stage routing network, between the processors and storage.
The switching network introduces a latency in the communi-
cation between processors and storage, and does not scale

well to large sizes. Communication between processes run-
ning concurrently in different processors occurs through
shared variables and common access to one large address
space.

(b) Message-passing multicomputer systems retain a physi-
tally close and fast connection between processors and their
associated storage. The concurrent computers (nodes) can
send messages through a network of communication chan-

nets. The network shown here is a three-dimensional cube,
which is a small version of the communication plan used in
six dimensions in the 64-node Cosmic Cube.

NOTE; Actual machines need not follow one model or the other absolutely: Various hybrids are possible

FIGURE 2. A Comparison of Shared-Storage Multiprocessors and Message-Passing Machines

24 Communications of the ACM lanuary 1985 Volume 28 Number 1

a process is to be spawned can be deferred to a library
process that makes this assignment after inquiring
about processing load and storage utilization in nearby
nodes.

A careful distribution of processes to nodes generally
involves some trade-offs between load balancing and
message locality. We use the term process structure to
describe a set of processes and their references to other
processes. A static process structure, or a snapshot of a
dynamic process structure, can be represented as a
graph of process vertices connected by arcs that repre-
sent reference (see Figure 3). One can also think of the
arcs as virtual communication channels, in that process
A having reference to process B is what makes a mes-
sage from A to B possible.

The hardware communication structure of this class
of message-passing machines can be represented simi-
larly as a graph of vertices for nodes and (undirected)
edges for the bidirectional communication channels.

The mapping of a process structure onto a machine is
an embedding of the process structure graph into the
machine graph (see Figure 4). In general, the arcs map
not only to internal communication and single edges,
but also to paths representing the routing of messages
in intermediate nodes. It is this embedding that deter-
mines both the locality of communication achieved and
the load-balancing properties of the mapping.

CONCURRENCY APPROACH
Most sequential processors, including microprocessors
like the RISC chips described elsewhere in this issue,’
are covertly concurrent machines that speed up the in-
terpretation of a single instruction stream by tech-
niques such as instruction prefetching and execution
pipelining. Compilers can assist this speedup by re-
covering the concurrency in expression evaluations and

‘See David A. Patterson’s article, “Reduced Instruction Set Computers” (Com-
mun. ACM 28.1 ()an. 1985)). on pages S-21 of this issue.

In this example, the processes are computing the time evolu-
tion, or orbital positions, of seven bodies interacting by a
symmetrical force, such as gravity. Messages containing the
position and mass of each particle are sent from each proc-
ess (N - 1)/2 steps around the ring, accumulating the forces
due to each interaction along the way, while the process that
is host to that body accumulates the other (N - 1)/2 forces.
The messages are then returned over the chordal paths to

the host process, where the forces are summed and the
position and velocity of the body are updated. This example
is representative of many computations that are demanding
simply because of the number of interacting parts, and not
because the force law that each part obeys is complex.
However, this is not the formulation one would use for very
many bodies.

FIGURE 3. The Process Structure for a Concurrent Formulation of the N-Body Problem

Articles

januay 1985 Volume 28 Number I Communications of the ACM 25

Articles

Node 0 Node 1

Node 3

The distribution of the processes does not influence the com-
puted results, but it does, through load balancing and mes-
sage locality, influence the speedup achieved by using four
computers for this task instead of one.

FIGURE 4. The Prqcess Structure for the ‘I-Body Example
Embedded into a 4-Node Machine

in the innermost iterations of a program, and then gen-
erating code that is “vectorized” or in some other way
allows the processor to interpret the sequential program
with some concurrency. These techniques, together
with caching, allow about a ten-fold concurrency and
speedup over naive sequential interpretation.

We can use such techniques within nodes, where we
are tied to sequential program representations of the
processes. In addition, we want to have at least as many
concurrent processes as nodes. Where are such large
degrees of concurrency to be discovered in a computa-
tion? One quick but not quite accurate way of describ-
ing the approach used in the Cosmic Cube is that we
overtly exploit the concurrency found in the outermost,
rather than innermost, program constructs of certain
demanding computations. It appears that many highly
demanding computing problems can be expressed in
terms of concurrent processes with either sparse or pre-
dictable interaction. Also, the degree of concurrency
inherent in such problems tends to grow with the size
and computing demands of the problem.

It is important to understand that the compilers used
to generate process code for the Cosmic Cube do not
“automatically” find a way to run sequential programs

concurrently. We do not know how to write a program
that translates application programs represented by old,
dusty FORTRAN decks into programs that exploit con-
currency between nodes. In fact, because efficient con-
current algorithms may be quite different from their
sequential counterparts, we regard such a translation as
implausible, and instead try to formulate and express a
computation explicitly in terms of a collection of com-
municating concurrent processes.

Dataflow graphs, like those discussed in this issue in
the article on the Manchester dataflow machine,* also
allow an explicit representation of concurrency in a
computation. Although we have not yet tried to do so,
dataflow computations can be executed on machines
like the Cosmic Cube. One of the reasons we have not
done so is that many of the computations that show
excellent performance on the Cosmic Cube or on other
parallel machines, and are very naturally expressed in
terms of processes (or objects), are simulations of physi-
cal systems. With such simulations, the state of a sys-
tem is repeatedly evaluated and assigned to state vari-
ables. The functional (side-effect free) semantics of da-
taflow, in pure form, appears to get in the way of a
straightforward expression of this type of computation.
The process model that we use for programming the
Cosmic Cube is relatively less restrictive than dataflow
and, in our implementation, is relatively more demand-
ing of attention to process placement and other
details.

CONCURRENT FORMULATIONS
The crucial step in developing an application program
for the Cosmic Cube is the concurrent formulation: It is
here that both the correctness and efficiency of the
program are determined. It is often intriguing, and even
amusing, to devise strategies for coordinating a myriad
of concurrent computing activities in an orderly way.

For many of the demanding computations encoun-
tered in science and engineering, this formulation task
has not proved to be very much more difficult than it is
on sequential machines. These applications are often
based on concurrent adaptations of well-known se-
quential algorithms or are similar to the systolic algo-
rithms that have been developed for regular VLSI com-
putational arrays. The process structure remains static
for the duration of a computation,

At the risk of creating the impression that all of the
application programs for the Cosmic Cube are as sim-
ple, let us offer one concrete example of a formulation
and its process code. The problem is to compute the
time evolution of a system of N bodies that interact by
gravitational attraction or some other symmetrical
force. Because each of the N bodies interacts with all of
the other N - 1 bodies, this problem might not seem to
be as appropriate for the Cosmic Cube as matrix, grid-
point, finite-difference, and other problems based solely

‘See J.R. Gurd. C.C. Kirkham, and I. Watson’s article. “The Manchester Proto-
type Dataflow Computer” (Commun. ACM 28.1 (Jan. 1985)). on pages 34-52
of this issue.

26 Communications of the ACM Janus y 1985 Volume 28 Number 1

Articles

on local interaction. Actually, universal interaction is The process also accumulates the forces and integrates
easy because it maps beautifully onto the ring process the position of the body it hosts. As can be seen in the
structure shown for N = 7 in Figure 3. C process code in Figure 5, the process that is host to

Each of N identical processes is “host” to one body body 1 successively receives guests 7, 6, and 6, and
and is responsible for computing the forces due to (N - accumulates forces due to these interactions. Mean-
1)/Z other bodies. With a symmetrical force, it is left to while, a message containing the position, mass, accu-
other processes to compute the other (N - 1)/Z forces. mulated force, and host process ID of body 1 is con-

/* process for an n-body cTputation, n odd, with symmetrical forces */
#include “cubedef. h” * cube definitions */
#include ” force . h” /* procedures for computing forces and posif;ions */

struct body (double pos [3] : /* body position x, y, z
double vel[3] ; /*, velocity vector x,y,z
double force [3] ; /* to accumulate forces
double mass; /* body mass
int home-id; /* id of body’s home process */

3 host, guest;

struct startup (int n;
int next-id;
int steps;

3 s;

/* number of bodies */
/* ID of next process on ring */
/* number of integration steps */

struct desc my-body-in, my-body-out, startu?∈ /* IH channels
strtict desc body-in, body-out, body-bak: /* inter-process channels

cycle0 /* read initial state, compute, and send back final state */
-c

int i; double FORCE[3];

$* init?alize channel descriptors */
* init(*desc, id, type, buffer-len, buffer-address); */

init(&my>ody-in ,O,O,sizeof(struct body)/2,&host); recv-wait(&my>ody-in);
init(&startupAn ,O,l,sizeof(struct startup)/2,&s); recv_wait(&startupJn);
init (&ny&ody-out , IILID, 2, sizeof(struct body)/2, &host);
init(&bodv-in , 0, 3, sizeof(struct bodv)/2, &quest):
init (&ody-out ; s .next-id,
init(&body-Mk ,

3; sizeofjstruct bod$jj2; &pestj;
9, 4, sizeof(struct body)/2, &guest);

while(s.steps--) /* repeat s.steps computation cycles */
(

body-out.buf = &host; /* first time send out host body

Ifor(i. = (s.n-1)/2: i--;)
L

sen&wait(&body-Out);
recvqait (&body-in) ;
COMPUTE_FORCE(&host,&guest,FORCE) ; /*
ADD~ORCE~TOJlOST(~ost,FORCE);
ADD~ORCE:_TQJXJEST(&guest,FORCE);
body-out.buf = &guest;

&od&.bak.id = guest.home-id;

repeat (s.n-1)/2 times

send out the hostlguest
receive the next guest
calculate force
may the force be with you
and with the guest, also
prepare to pass the guest

/* send guest back
Fed&wait (&body_bak); recv-wait(&body>ak); /* the envoy returns
ADD

4F
EST_FORCE~TOJIOST(&host,&guest);

UPDd E(&host); /* integrate position
3
sen&wait(&uay&ody-out); /* send body back to host, complete one cycle

3

main0 (while(l) cycle(): 3 /* main execute cycle repeatedly */

FIGURE 5. Process Code for the N-Body Example in the C Language

]anuary 1985 Volume 28 Number 1 Communications of the ACM 27

Articles

veyed through the processes that are host to bodies 2, 3,
and 4 with the forces due to these interactions accumu-
lated. After (N - 1)/2 visits, the representations of the
bodies are returned in a message to the process that is
host to the body, the forces are combined, and the posi-
tions are updated.

A detail that is not shown in Figure 5 is the process
that runs in the Cosmic Cube intermediate host (IH), or
on another network-connected machine. This process
spawns the processes in the cube and sends messages to
the cube processes that provide the initial state, the ID
of the next process in the ring, and an integer specify-
ing the number of integration steps to be performed.
The computation in the Cosmic Cube can run autono-
mously for long periods between interactions with the
IH process. If some exceptional condition were to occur
in the simulation, such as a collision or close encoun-
ter, the procedure that computes the forces could re-
port this event via a message back to the IH process.

This ring of proc:esses can, in turn, be embedded sys-
tematically into the machine structure (see Figure 4). In
mapping seven identical processes, each with the same
amount of work to do, onto 4 nodes, the load obviously
cannot be balanced perfectly. Using a simple perform-
ance model originally suggested by Willis Ware, “speed-
up”-S-can be defined as

s= time on 1 node
time on N nodes ’

For this 7-body example on a 4-node machine, neglect-
ing the time required for the communication between
nodes, the speedup is clearly 7/2. Since computation
proceeds 3.5 times faster using 4 nodes than it would
on a single node, one can also say that the efficiency
e = S/N is 0.875, which is the fraction of the available
cycles that are actually used.

More generally, if k .is taken as the fraction of the
steps in a computation that, because of dependen-
cies, must be sequential, the time on N nodes is
max(k, l/N), so that the speedup cannot exceed
min(l/k, N). This expression reduces to “Amdahl’s ar-
gument,” that l/k, the reciprocal of the fraction of the
computation that must be done sequentially, limits the
number of nodes that can usefully be put to work con-
currently on a given problem. For example, nothing is
gained in this formulation of an N-body problem by
using more than N nodes.

Thus we are primarily interested in computations for
which l/k >> N: in effect, in computations in which the
concurrency opportunities exceed the concurrent re-
sources. Here the speedup obtained by using N nodes
concurrently is limited by (1) the idle time that results
from imperfect load balancing, (2) the waiting time
caused by communication latencies in the channels
and in the message forwarding, and (3) the processor
time dedicated to processing and forwarding messages,
a consideration that can be effectively eliminated by
architectural improvements in the nodes. These factors
are rather complex functions of the formulation, its

mapping onto N nodes, the communication latency, and
the communication and computing speed of the nodes.
We lump these factors into an “overhead” measure, Q,
defined by the computation exhibiting a speedup of S =
N/(1 + u). A small (r indicates that the Cosmic Cube is
operating with high efficiency, that is, with nodes that
are seldom idle, or seldom doing work they would not
be doing in the single-node version of the computation.

COSMIC CUBE HARDWARE
Having introduced the architecture, computational
model, and concurrent formulations, let us turn now to
some experimental results.

Figure 6 is a photograph of the 64-node Cosmic Cube.
For such a small machine, only 5 feet long, a one-
dimensional projection of the six-dimensional hyper-
cube is satisfactory. The channels are wired on a back-
plane beneath the long box in a pattern similar to that
shown in Figure 2b. Larger machines would have nodes
arrayed in two or three dimensions like the two-
dimensional projection of the channels shown in Figure
1. The volume of the system is 6 cubic feet, the power
consumption is TOO watts, and the manufacturing cost
was $80,000. We also operate a 3-cube machine to sup-
port software development, since the 6-cube cannot
readily be shared.

Most of the choices made in this design are fairly
easy to explain. First of all, a binary n-cube communi-
cation plan was used because this network was shown
by simulation to provide very good message-flow prop-
erties in irregular computations. It also contains all
meshes of lower dimension, which is useful for regular
mesh-connected problems. The binary n-cube can be
viewed recursively. As one can see from studying Fig-
ure 1, the n-cube that is used to connect 2” = N nodes
is assembled from two (n - I)-cubes, with correspond-
ing nodes connected by an additional channel. This
property simplifies the packaging of machines of vary-
ing size. It also explains some of the excellent message-
flow properties of the binary n-cube on irregular prob-
lems. The number of channels connecting the pairs of
subcubes is proportional to the number of nodes and
hence on average to the amount of message traffic they
can generate.

With this rich connection scheme, simulation
showed that we could use channels that are fairly slow
(about 2 Mbit/set) compared with the instruction rate.
The communication latency is, in fact, deliberately
large to make this node more nearly a hardware simu-
lation of the situation anticipated for a single-chip
node. The processor overhead for dealing with each
64-bit packet is comparable to its latency. The commu-
nication channels are asynchronous, full duplex, and
include queues for a 64-bit “hardware packet” in the
sender and in the receiver in each direction. These
queues are a basic minimum necessary for decoupling
the sending and receiving processes.

The Intel 8086 was selected as the instruction proces-
sor because it was the only single-chip instruction proc-

28 Communications of the ACM lanuary 1985 Volume 28 Number 1

The nodes are packaged as one circuit board per node in the
long card frame on the bench top. The six communication
channels from each node are wired in a binary 6cube on the
backplane on the underside of the card frame. The separate

units on the shelf above the long G-cube box are the power
supply and an “intermediate host” (IH) that connects through
a communication channel to node 0 in the cube.

FIGURE 6. The 64.Node Cosmic Cube in Operation

essor available with a floating-point coprocessor, the
Intel 8087. Reasonable floating-point performance was
necessary for many of the applications that our col-
leagues at Caltech wished to attempt. The system cur-
rently operates at a 5 MHz clock rate, limited by the
8087, although it is designed to be able to run at 8 MHz
when faster 8087 chips become available. After our first
prototypes, Intel Corporation generously donated chips
for the 64-node Cosmic Cube.

The storage size of 128K bytes was decided upon
after a great deal of internal discussion about “balance”
in the design. It tias argued that the cost incurred in
doubling the storage size would better be spent on more
nodes. In fact, this choice is clearly very dependent on
target applications and programming style. The dy-
namic RAM includes parity checking but not error cor-
rection. Each node also includes 8 Kbytes of read-only

storage for initialization, a bootstrap loader, dynamic
RAM refresh, and diagnostic testing programs.

Since building a machine is not a very common en-
terprise in a university, an account of the chronology of
the hardware phase of the project may be of interest. A
prototype 4-node (2-cube) system on wirewrap boards
was designed, assembled, and tested in the winter of
1981-1982, and was used for software development and
application programs until it was recently disassem-
bled. The homogeneous structure of these machines
was nicely exploited in the project when a small hard-
ware prototype, similar to scaled-up machines, was
used to accelerate software development. Encouraged
by our experience with the 2-cube prototype, we had
printed circuit boards designed and went through the
other packaging logistics of assembling a machine of
useful size. The Cosmic Cube grew from an 8-node to a

Ianuaty 1985 Volume 28 Number 1 Communications of the ACM 29

Articles

64-node machine over the summer of 1983 and has
been in use since October 1983.

In its first year of operation (560,000 node-hours), the
Cosmic Cube has experienced two hard failures, both
quickly repaired: a soft error in the RAM is detected by
a parity error on everage once every several days.

COSMIC CUBE SOFTWARE
As is the case in many “hardware” projects, most of the
work on the Cosmic Cube has been on the software.
This effort has been considerably simplified by the
availability of cross-compilers for the Intel 8086/8087
chips and because most of the software development is
done on conventional computers. Programs are written
and compiled in familiar computing environments, and
their concurrent execution is then simulated on a small
scale. Programs are downloaded into the cube through
a connection managed by the intermediate host. In the
interest of revealing all of the operational details of this
unconventional machine, we begin with the start-up
procedures.

The lowest level of software is part of what we call
the machine intrinsic environment. This includes the in-
struction set of the node processor, its I/O communica-
tion with channels, and a small initialization and boot-
strap loader program stored along with diagnostic pro-
grams in read-only storage in each processor. A start-up
packet specifies the size of the cube to be initialized
and may specify that the built-in RAM tests be run
(concurrently) in the nodes. As part of the initialization
process, each of the identical nodes discovers its posi-
tion in whatever size cube was specified in the start-up
packet sent from the intermediate host by sending mes-
sages to the other nodes. The initialization, illustrated
in Figure 7, also involves messages that check the func-
tion of all of the communication channels to be used.
Program loading following initialization typically loads
the kernel.

A crystalline applications environment is character-
ized by programs written in C in which there is a single
process per node and in which messages are sent by
direct I/O operations to a specified channel. This sys-
tem was developed by physics users for producing very
efficient application programs for computations so regu-
lar they do not require message routing.

The operating system kernel, already described in
outline, supports :I distributed vrocess environment with
a copy of the kernel runnina in each node. The kernel
is 9 Kbytes of code and 4 Kbytes of tables, and is di-
vided into an “inner” and an “outer” kernel. Any stor-
age in a node that is not used for the kernel or for
processes is allocated as a kernel message buffer for
queuing messages.

The inner kernel, written in 8086 assembly language,
sends and receives messages in response to system calls
from user processes. These calls pass the address of a
message descriptor, which is shared between the kernel
and user process. There is one uniform m-t
that hides all hardware chara- ch -- as packet

Ethernet

In the initialization, each of the identical nodes discovers its
identity and checks all the communication channels with a
message wave that traverses the 3-c&a from node 0 to
node 7. and then from node 7 to node 0. If node 3, for
instance, did not respond to messages, then nodes 1, 2, and
7 would report this failure back to the host over other chan-
nels.

FIGURE 7. The Initialization of the Cosmic Cubs

size. The kernel performs the construction and inter-
pretation of message headers from the descriptor infor-
mation. The hardware communication channels allow
very fast and efficient “one-trip” message protocols;
long messages are automatically fragmented. Messages
being sent are queued in the sending process instead of
being copied into the kernel message buffer, unless the
message is local to the node. Local messages are either
copied to the destination if the matching receive call
has already been executed, or copied into the message
buffer to assure a consistency in the semantics of local
and nonlocal send operations.

Processes are often required to manage several con-
current message activities. Thus the send and receive
calls do not “block.” The ca!ls return after creating a
request that remains pending until the operation is com-
pleted. The completion of the message operation is
tested by a lock variable in the message descriptor.
Program execution can continue concurrently with
many concurrently pending communication activities.
A process can also use a probe call that determines
whether a message of a specified type has been re-
ceived and is queued in the kernel message buffer. A
process that is in a situation where no progress can be
made until some set of message areas is filled or emp-
tied may elect to defer execution to another process.
The inner kernel schedules user processes by a simple
round robin scheme, with processes running for a fixed
period of time or until they perform the system call
that defers to the next process. The storage manage-
ment and response to error conditions are conventional.

The outer kernel is structured as a set of privileged
processes that user processes communicate with by
messages rather than by system calls. One of these
outer kernel processes spawns and kills processes: A
process can be spawned either as a copy of a process
already present in the node, in which case the code

30 Communications of the ACM january 1985 Volume 28 Number 1

Articles

segment is shared, or from a file that is accessed by
system messages between the spawn process and the
intermediate host. Because process spawning is invoked
by messages, it is equally possible to build process
structures from processes running in the cube, in the
intermediate host, or in network-connected machines.
One other essential outer kernel process is known as
the spy process and permits a process in the intermedi-
ate host to examine and modify the kernel’s tables,
queued messages, and process segments.

Our current efforts are focused on intermediate host
software that will allow both time- and space-sharing of
the cube.

APPLICATIONS AND BENCHMARKS
Caltech scientists in high-energy physics, astrophysics,
quantum chemistry, fluid mechanics, structural me-
chanics, seismology, and computer science are develop-
ing concurrent application programs to run on Cosmic
Cubes. Several research papers on scientific results
have already been published, and other applications
are developing rapidly. Several of us in the Caltech
computer science department are involved in this re-
search both as system builders and also through inter-
ests in concurrent computing and applications to VLSI
analysis tools and graphics.

The simulation of an electrical circuit involves re-
peated solution of a set of simultaneous nonlinear equa-
tions. The usual approach, illustrated in Figure 8, is to
compute piecewise linear admittances from the circuit
models and then to use linear equation solution tech-
niques. CONCISE uses a nodal admittance matrix for-
mulation for the electrical network. The admittance
matrix is sparse but, because electrical networks have
arbitrary topology, does not have the crystalline regu-
larity of the physics computations. At best the matrix is
“clumped” because of the locality properties of the elec-
trical network.

Application programs on the 64-node Cosmic Cube
execute up to 3 million floating-point operations per
second. The more interesting and revealing bench-
marks are those for problems that utilize the machine
at less than peak speeds. A single Cosmic Cube node at
a 5 MHz clock rate runs at one-sixth the speed of the
same program compiled and run on a VAX11/780.
Thus we should expect the 64-node Cosmic Cube to
run at best (l/6)(64) = 10 times faster than the
VAX11/780. Quite remarkably, many programs reach
this performance, with measured values of (T ranging
from about 0.025 to 0.500. For example, a typical com-
putation with u = 0.2 exhibits a speedup S = (64)/(1.2)
= 50. One should not conclude that applications with
larger u are unreasonable; indeed, given the economy
of these machines, it is still attractive to run production
programs with d > 1.

This program is mapped onto the cube by partition-
ing the admittance matrix by rows into concurrent
processes. The linear equation solution phase of the
computation, a Jacobi iteration, involves considerable
communication, but the linearization that requires
about 80 percent of the execution time on sequential
computers is completely uncoupled. Integration and
output in computing transient solutions are small com-
ponents of the whole computation. The computation is
actually much more complex than we can describe
here; for example, the integration step is determined
adaptively from the convergence of previous solutions.

Among the many unknowns in experimenting with
circuit simulation is the interaction between communi-
cation cost and load balancing in the mapping of proc-
esses to nodes. Although “clumping” can be exploited
in this mapping to localize communication, it may also
concentrate many of the longer iterations occurring
during a signal transient into a single node, thus creat-
ing a “dynamic” load imbalance in the computation.

FUTURE PERFECT CUBES

A lattice computation programmed by physics post-
dot Steve Otto at Caltech has run for an accumulated
2500 hours on the g-cube. This program is a Monte
Carlo simulation on a 12 X 12 X 12 X 16 lattice, an
investigation of the predictions of quantum chromody-
namics, which is a theory that explains the substruc-
ture of particles such as protons in terms of quarks and
the glue field that holds them bound. Otto has shown
for the first time in a single computation both the short-
range Coulombic force and the constant long-range
force between quarks. The communication overhead in
this naturally load balanced computation varies from
u = 0.025 in the phase of computing the gauge field
to u = 0.050 in computing observables by a contour
integration in the lattice.

Today’s system is never as perfect as tomorrow’s Al-
though software can be polished and fixed on a daily
basis, the learning cycle on the architecture and hard-
ware is much longer. Let us then summarize briefly
what this experiment has taught us so far and speculate
about future systems of this same general class.

Although programming has not turned out to be as
difficult as we should have expected, we do have a long
agenda of possible improvements for the programming
tools. Most of the deficiencies are in the representation
and compilation of process code. There is nothing in
the definition of the message-passing primitives that we
would want to change, but because we have tacked
these primitives onto programming languages simply as
external functions, the process code is unnecessarily
baroque.

Among the most interesting and ambitious programs The way the descriptors for “virtual channels” are

currently in development is a concurrent MOS-VLSI
circuit simulator, called CONCISE, formulated and
written by computer science graduate student Sven
Mattisson. This program has been useful for developing
techniques for less regular computations and promises
very good performance for a computation that con-
sumes large fractions of the computing cycles on many
high-performance computers.

January 1985 Volume 28 Number 1 Communications of the ACM 31

Articles

(Start)

t
Format output

t

Read circuit input

Network formulation In host

Transient solutions Process placement

Many copies of

in cube

Solve matrix equation

(Stop)

The sequential and concurrent versions of this program differ in that the concurrent program employs many copies of the
depicted inside the dashed circle.

FIGURE 8. The Organization of the CONCISE Circuit Simulator

declared, initialized, and manipulated (see Figure 3, for
instance, is not disguised by a pretty syntax. More fun-
damentally, the attention the programmer must give to
blocking on lock variables is tedious and can create
incorrect or unnecessary constraints on message and
program sequencing. Such tests are better inserted into
the process code automatically, on the basis of a data-
flow analysis similar to that used by optimizing compil-
ers for register allocation. These improvements may be
only aesthetic, but they are a necessary preliminary for
making these systems less intimidating for the begin-
ning user.

The cost/performance ratio of this class of architec-
tures is quite good even with today’s technologies, and
progress in microelectronics will translate into either
increased performance or decreased cost. The present
Cosmic Cube node is not a large increment in complex-
ity over the million-bit storage chips that are expected
in a few years. Systems of 64 single-chip node elements
could fit in workstations, and systems of thousands of
nodes would make interesting supercomputers. Al-
though this approach to high-performance computation
is limited to applications that have highly concurrent
formulations, the applications developed on the Cosmic

32 Communications of the ACM [amary 1985 Volume 28 Number 1

Articles

Cube have shown us that many, perhaps even a major-
ity, of the large and demanding computations in science
and engineering are of this type.

It is also reasonable to consider systems with nodes
that are either larger or smaller than the present
Cosmic Cube nodes. We have developed at Caltech a
single-chip “Mosaic” node with the same basic struc-
ture as the Cosmic Cube node, but with less storage, for
experimenting with the engineering of systems of
single-chip nodes and with the programming and appli-
cation of finer grain machines. Such machines offer a
cost/performance ratio superior even to that of the
Cosmic Cube. However, we expect them to be useful
for a somewhat smaller class of problems. Similarly, the
use of better, faster instruction processors, higher ca-
pacity storage chips, and integrated communication
channels suggests machines with nodes that will be an
order of magnitude beyond the Cosmic Cube in per-
formance and storage capacity, but at the same physical
size.

The present applications of the Cosmic Cube are all
compute- rather than I/O-intensive. It is possible, how-
ever, to include I/O channels with each node and so to
create sufficient I/O band width for almost any pur-
pose. Such machines could be used, for example, with
many sensors, such as the microphone arrays towed
behind seismic exploration ships. The computing could
be done in real time instead of through hundreds of
tapes sent on to a supercomputer. It is also possible to
attach disks for secondary storage to a subset of the
nodes.

APPENDIX-HISTORY AND ACKNOWLEDGMENTS
The origins of the Cosmic Cube project can be traced to
research performed at Caltech during 1978-1980 by
graduate students Sally Browning and Bart Locanthi
[l, 81. These ideas were in turn very much influenced
by several other researchers. We sometimes refer to the
Cosmic Cube as a homogeneous machine, from a term
used in a 1977 paper by Herbert Sullivan and T.L.
Brashkow [13]. They define their homogeneous ma-
chine as a machine “of uniform structure.” C.A.R.
Hoare’s communicating sequential processes notation,
the actor paradigm developed by Carl Hewitt, the proc-
essing surface experiments of Alain Martin, and the
systolic algorithms described by H.T. Kung, Charles
Leiserson, and Clark Thompson encouraged us to con-
sider message passing as an explicit computational
primitive [Z, 4, 6, lo].

The Cosmic Cube design is based in largest part on
extensive program modeling and simulations carried
out during 1980-!982 by Charles R. Lang [7]. It was
from this work that the communication plan of a binary
n-cube, the bit rates of the communication channels,
and the organization of the operating system primitives
were chosen. Together with early simulation results, a
workshop on “homogeneous machines” organized by
Carl Hewitt during the summer of 1981 helped give us
the confidence to start building an experimental ma-
chine.

The logical design of the Cosmic Cube is the work of
computer science graduate students Erik DeBenedictis
and Bill Athas. The early crystalline software tools
were developed by physics graduate students Eugene
Brooks and Mark Johnson. The machine intrinsic and
kernel code was written by Bill Athas, Reese Faucette,
and Mike Newton, with Alain Martin, Craig Steele, Jan
van de Snepscheut, and Wen-King Su contributing val-
uable critical reviews of the design and implementation
of the distributed process environment.

The ongoing work described in part in this article is
sponsored through the VLSI program of the Information
Processing Techniques Office of DARPA. We thank Bob
Kahn, Duane Adams, and Paul Losleben for their sup-
port and interest.

REFERENCES
1. Browning, S.A. The tree machine: A highly concurrent computing

environment. Tech. Rep. 3760:TR:EiO. Computer Science Dept.. Cali-
fornia Institute of Technology, Pasadena, 1980.

2. Clinger, W.D. Foundations of actor semantics. Ph.D. thesis. Dept. of
Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, May 1981.

3. Fox. G.C.. and Otto. SW. Aleorithms for concurrent orocessors.
Phys. Today 37, 5 (May 79843: 50-59.

4. Hoare, C.A.R. Communicating sequential processes. Commun. ACM
21,8 (Aug. 1978). 666-677.

5. Hackney, R.W.. and Jesshope. C.R. Parallel Computers. Adam Hilger.
Bristol. United Kingdom. 1681.

6. Kung. H.T. The St&tore of Parallel Algorithms. In Advances in
Conrvufcrs. vol 19. Academic Press. New York. 1980.

7. Lang. CR. The extension of object-oriented languages to a homoge-
neous. concurrent architecture. Tech. Rep. 5014:TR:82. Computer
Science Dept.. California Institute of Technology, Pasadena, 1982.

6. Locanthi. B.N. The homogeneous machine, Tech. Rep. 3759:TR:EO.
Computer Science Dept.. California Institute of Technology, Pasa-
dena. 1980.

9. Lutz, C.. Rabin, S.. Seitz. C.. and Speck, D. Design of the Mosaic
Element. In Proceedings offhe Conference on Advanced Research in
VLSI (MIT). P. Penfield. Ed, Artech House. Dedham. Mass.. 1984, pp.
l-10.

10. Martin, A.J. A distributed implementation method for parallel pro-
gramming. I$ Process. 80 (1980). 309-314. -II+-

11. Schwartz. J.T. Ultracomputers. ACM Trans. Program. Lang. Syst. 2,4
(Oct. 1980). 484-521.

12. Seitz. C.L. Experiments with VLSI ensemble machines. I. VLSI Com-
puf. Syst. I. 3 (1984).

13. Sullivan. H.. and Brashkow. T.R. A large scale homogeneous ma.
chine I & II. In Proceedings of the 4th Annual Symposi& on Computer
Archilccfurc, 1977, pp. 105-124.

14. Ware. W.H. The ultimate computer. IEEE Spectrum (Mar. 1972).
84-91.

CR Categories and Subject Descriptors: Cl.2 (Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors): C.5.4
[Computer System Implementation]: VLSI Systems: b.1.3 [Programming
Techniques]: Concurrent Programming: D.4.l [Operating Systems]:
Process Management

General Terms: Algorithms. Design, Experimentation
Additional Key Words and Phrases: highly concurrent computing.

message-oassina architectures. messane-based operatine. svstems. orocess
progra&ing. ibject-oriented programming. VLhI system;

Author’s Present Address: Charles L. Seitz. Computer Science 256-80.
California Institute of Technology. Pasadena, CA 91125.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

January 1985 Volume 28 Number I Communications of the ACM 33

