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Abstract

This thesis is motivated by the difficulty in writing correct high-performance programs. Writ-
ing shared-memory multithreaded programs imposes a complex trade-off between programming
ease and performance, largely due to subtleties in coordinating access to shared data. To ensure
correctness programmers often rely on conservative locking at the expense of performance. The
resulting serialization of threads is a performance bottleneck. Locks also interact poorly with
thread scheduling and faults, resulting in poor system performance.

We seek to improve multithreaded programming trade-offs by providing architectural support
for optimistic lock-free execution. In a lock-free execution, shared objects are never locked when
accessed by various threads. We propose two hardware techniques: Speculative Lock Elision and
Transactional Lock Removal.

Speculative Lock Elision (SLE) is a micro-architectural technique to remove dynamically
unnecessary lock-induced serialization and enable highly concurrent multithreaded execution. The
key insight is that locks do not always have to be acquired for a correct execution. Synchronization
instructions are predicted as being unnecessary and elided. This allows multiple threads to concur-
rently execute critical sections protected by the same lock. Misspeculation due to inter-thread data
conflicts is detected using existing cache mechanisms and rollback is used for recovery. Successful
elision is validated and committed without acquiring the lock and non-conflicting critical sections
execute and commit concurrently without any serialization on the lock. SLE can be implemented
entirely in the microarchitecture without instruction set support and without system-level modifi-
cations, is transparent to programmers, and requires only trivial additional hardware support.

Transactional Lock Removal (TLR) uses SLE as an enabling mechanism but in addition pro-
vides a successful lock-free execution of lock-based critical sections in the presence of data con-
flicts if sufficient resources are available for buffering speculative state. TLR elides locks using
SLE to construct an optimistic lock-free critical section execution but in addition also uses a time-
stamp-based conflict resolution scheme to provide lock-free execution even in the presence of data
conflicts. By treating the lock-free critical section as a lock-free transaction, TLR provides transac-
tional properties for critical sections and by using timestamps for conflict resolution, TLR provides

starvation freedom.



i
The benefits of SLE and TLR include improved programmability, stability, and performance.
Programmers can obtain benefits of lock-free data structures, such as non-blocking behavior and

wait freedom, while using lock-protected critical sections for writing programs.
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Chapter 1

Introduction

Processor systems are increasingly providing explicit support for multithreaded software
either in the form of low-cost multiprocessors or hardware multithreaded architectures. Tradition-
ally, processor systems have focused on improving single-thread performance and the cost of add-
ing hardware resources for additional hardware threads was prohibitive. However, increasing
transistor densities and transistor counts on chips today and improved semiconductor technology
have led to a distinct trend towards increased user-visible hardware parallelism [30, 35, 82, 131,
159, 162]. In addition to improving single-thread performance by extracting implicit instruc-
tion-level parallelism, processor systems are providing explicit support for user-visible
thread-level parallelism in hardware. Software writers now have, for the first time in computing
history, easily available and low-cost hardware threads to exploit for performance and functional-
ity. Programmers can be expected to take advantage of such hardware advances by writing multi-
threaded software.

While hardware systems have improved dramatically in terms of performance and functional-
ity, the complexity of software systems has also risen owing to their increased functionality. For
example, the concept of a web browser as we know it today did not exist a decade ago. Software
aspects of reliability, stability, and portability are becoming increasingly important along with per-
formance.

Writing correct, high-performance, and stable code is a complex and difficult task. The cost
of developing such programs is increasing rapidly as their complexity and use increases. This cost
includes both the one-time development cost and the recurring costs of maintenance, performance
tuning, porting, and debugging.

While writing correct and high-performance single-thread code is difficult, writing multi-

threaded software is more so. Programming complexity is the single most significant problem in
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writing multithreaded applications [27, 69]. Although the use of threads simplifies the conceptual

design of programs, care and expertise is required to coordinate correct interaction among various
threads. This expertise is higher than for most single thread programs because coordinating shar-
ing of data objects among various threads requires complex reasoning—actions of a thread can
influence the subsequent behavior of other threads. Synchronization mechanisms are used to cor-
rectly coordinate thread accesses to shared objects. These mechanisms often enforce some form of
serialization while threads access shared objects to ensure a consistent view of the object. Conser-
vative use of such mechanisms aid in writing correct programs but unfortunately, these mecha-
nisms unnecessarily enforce serialization of thread execution and degrade performance.

Writing correct, high-performance, and stable multithreaded programs thus entails a careful
trade-off among various aspects of the program. These aspects include the ease of writing a correct
program, its performance, and its behavior under unexpected conditions.

Before we discuss the above aspects, we briefly discassactionsandcritical sectionsas

popular mechanisms for coordinating concurrent access to shared data.

1.1 Transactions and critical sections

Transactions serve as an intuitive model for writing multithreaded prograni@n&action
[39] comprises a series of read and write operations that provide the following properties: fail-
ure-atomicity, consistency, and durabilifailure-atomicitystates a transaction must either exe-
cute to completion, or in the presence of failures, must appear not to have executed at all.
Failure-atomicity provides an all-or-nothing property of execution and guarantees a data structure
remains in a consistent state, even in the presence of failDogsistencyequires the transaction
to follow a protocol that provides threads with a consistent view of the data object. Serializability
IS an intuitive and popular consistency criterion for transacti&esializabilityrequires the result
of executions of concurrent transactions todseif there were some global order in which these
transactions had executed serially [3Blrability states that once a transaction is committed, its
effects cannot be undone.

Serializability is similar to sequential consistency with regard to memory operations. Lamport
[98] defined an execution to Eequentially consistetiftthe result of any execution is the same as
if the operations of all the processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order specified by its program. Similarly,
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an execution of transactions is considesedalizableif it appears as if all transactions were exe-

cuted in some sequential (serial) order with no interleaving within transaction boundaries.

While the concept of transactions is simple and convenient for programmers to reason with
[57], processors today provide only restricted support for such transactions in their instruction sets.
Examples are the atomic read-modify-write operations on a single word. The restricted size for
these operations and limitations placed on their use render them ineffective in providing function-
ality of general transactions.

A lack of general transaction support in processors has led to programmers often relying on
critical sections to achieve some of the functionality of transactiGritical sectionsare software
constructs used by programmers to enforce mutually exclusive access among threads to shared
objects—only one thread is allowed to operate on the object at any given time—and thus trivially
satisfy serializability. Providing failure-atomicity with critical sections is difficult since it requires
support for logging modifications performed by the transaction, and then making these changes
visible instantaneously using an atomic operation to commit the transaction. Critical sections
therefore do not provide failure-atomicity. Critical sections are most commonly implemented
using a software construct known aoak. A lock is associated with a shared object and deter-
mines whether the shared object is currently available. Nearly all architectures support instructions
for implementing lock operations. Locks have become the synchronization mechanism of choice
for programmers and are extensively used in various software such as operating systems, database
servers, and web servers.

Critical sections provide an intuitive interface for reasoning about data sharing because they
trivially satisfy serializability. Today, critical sections are arguably the most popular abstraction for

reasoning about correctness and coordinating sharing in multithreaded programs.

1.2 Multithreaded program aspects

Three important aspects of multithreaded programs are: 1) ease of writing a correct program,

2) performance of the program, and 3) stability of the program.



1.2.1 Programmability

Programmability, i.e., the ability to write a correct program easily, is perhaps the determining
factor for wide-spread use of multithreaded programs [27]. Two common approaches to writing
correct multithreaded programs easily are: a) conservative synchronization, and b) coarse-grain
locking.

To ensure correct interaction of multiple threads while accessing data objects, programmers
can conservatively use a lock to protect the object even though at run time the interactions would
not cause an incorrect execution for that particular instance. We catidhgervative synchroniza-
tion. When multiple locks are used in the program, they must be managed with care or else dead-
lock and other related issues arise. A solution to this problem involves minimizing the number of
locks in the program. Thus, if a thread potentially accesses multiple data objects, one lock is used
to protect these objects. Thisgsarse-grain locking-a lock protects a large set of shared data,
even though only a small part of it may be accessed at any time.

While conservative synchronization and coarse-grain locking assist in writing correct and
reliable programs quickly, they limit concurrency of the program—execution of threads accessing
disjoint data sets protected by the same lock are unnecessarily serialized. Furthermore, lock con-
tention may limit scalabilityLock contentioroccurs when a requested lock is currently held by
another thread. Lock contention may not be a problem for a two processor system, but may
become a severe bottleneck for an eight processor system. Often, improving scalability requires an
expensive process of code restructuring, debugging, and performance tuning. An example is the
linux kernel [13]. The initial versions used a single global lock protecting all shared data in the ker-
nel. Uniprocessor versions were not affected by this but as linux became more widely used on

larger systems, severe scalability issues were encountered.

1.2.2 Performance

To extract high performance, synchronization use must be optimized. To improve the scal-
ability of the linux kernel, fine-grain locking was employed. In contrast to coarse-grain locks
where one lock protects a large data set, a fine-grain lock protects a smaller (finer granularity) data
set. Efforts in breaking down locks and employing fine-grain synchronization has led to numerous

subtle synchronization errors that are hard to find and debug. Another example where fine-grain
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locking may actually be detrimental is a thread-safe hash-table. Given a good hashing function,
bucket conflicts between threads are rare but must be avoided for correct operation. Using a single
lock makes programming easy because all access to hash tables is guaranteed to occur consis-
tently. Obviously, this limits concurrency because threads accessing different buckets in the hash
table are unnecessarily serialized. However, adding fine-grain locks is not a simple solution. Add-
ing locks to each bucket may increase the footprint of the hash table itself resulting in poor mem-
ory system behavior and this can be critical for very large hash tables. Further, if multiple buckets
are accessed, managing multiple locks gets tricky resulting in a higher probability of deadlocks
and broken code. If the hash table needs to be rehashed, all locks must be acquired with care to
avoid deadlocks and doing so is not an easy task.

Programmability and performance thus appear to be an either-or proposition. While conserva-
tive locking methodologies help in writing correct and reliable code, they severely limit perfor-
mance. Extracting performance requires the error prone and difficult task of fine-tuning the

locking methodology.

1.2.3 Stability

We define stability as the behavior of the program under unexpected conditions. If a thread is
descheduled by the operating system or a thread terminates due to software or hardware errors, the
application must be stable enough to allow other non-faulty threads to proceed. These non-faulty
threads can take corrective action if necessary and the system does not crash or encounter arbitrary
long delays. Using lock-based critical sections makes it exceedingly difficult to provide stability.
The difficulty arises from the notion of a programmer-specified wait while some thread is in the
critical section. A lock marked held forces other threads to wait for the lock to become free. If a
thread is descheduled while holding a lock, other threads waiting for the lock cannot proceed
because the lock is not free. This results in convoying. Convoying occurs when a convoy of wait-
ing threads is formed and the lock for which these threads are waiting will not be available for a
while.This may result in a critical problem of priority inversion if one is not careful [104]. Further,
if a thread terminates due to an error while holding a lock, other threads waiting for the lock never
complete as the lock is never free again. The problem is catastrophic in a transaction oriented envi-
ronment where threads are largely independent except while accessing some critical shared struc-

tures. Data modified within the critical section are left in an inconsistent state resulting in
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application failure. This occurs primarily because critical sections typically do not provide fail-

ure-atomicity.

1.2.4 Limitations and solutions

In summary, using locks for coordinating access to shared data structures results in the fol-

lowing key limitations:

1. Lock acquisitions limit performanc&emory system behavior for lock variables is often poor
because multiple processors read and attempt to write the variable simultaneously but only one
processor succeeds in the write operation. The coherence protocol serializes write accesses to
lock variables and transferring write permissions among various processors using the cache
coherence protocol is expensive and introduces long latencies. Locks also serialize execution of

threads even if the threads access disjoint data sets.

2. Lock acquisitions limit stabilityThreads wait for the lock value to change from a held state to a
free state and this “wait” is a key reason for the lack of non-blocking and wait-free behaviors of
conventional lock implementations.

Current proposals for addressing the trade-off among various aspects can broadly be divided
in two categories: lock-based and lock-free mechanisms.

The lock-based mechanism supporters believe lock-based critical sections are here to stay
because they are easy to use and supported widely. Thus, the performance of lock primitives must
be improved to provide fast and efficient coordination among threads. The programmer can and
will decide how and when to use synchronization and has to reason about program correctness.
Often programmers must optimize synchronization by hand to achieve high performance. This
results in a complex trade-off between programmability and performance and does not address sta-
bility issues. Most work to-date has focused on overlapping computation with communication
latency of the lock and many modern processors how support this in a limited form by employing
speculative execution.

The lock-free mechanisms use special data structures to address inherent limitations of locks
and attempt to address the trade-off between programmability and performance. Lock-free
schemes often optimistically provide concurrent data structure implementations without a critical

section or a software wait on a lock variable. While these techniques help address the stability
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aspect of programs, they often require more complex operations than critical sections. Program-
mers still have to reason about correctness in the presence of complex data structures and formal
proof techniques are often required for correct implementations in software. These techniques
often also suffer from high software overhead and thus unfortunately aggravate the complexity/
performance trade-off. Lack of portability and generality, and often poor performance with respect

to lock-based schemes have resulted in lock-free approaches not being popular.

1.3 Problem statement

In summary, while lock-based critical sections are easy to use for writing correct and portable
code, lock-free approaches overcome the inherent limitations of locks by avoiding using locks.
Lock-based critical sections often outperform lock-free implementations but require careful pro-
gramming methodologies for high performance. The three aspects—programmability, perfor-
mance, and stability—appear to be at odds; with only one, or at-most two, being satisfied by
current methodologies.

The natural question then is this:it possible to maintain a lock-based critical section as the
programming model while transparently obtaining the benefits of lock-free approaches and achiev-
ing high-performance while doing so?

This dissertation answers the above question in the affirmative and for the first time shows
how one can maintain a lock-based critical section as the programming model of choice and use
modest hardware support for automatically achieving behavior of lock-free data structures with
high performance. The dissertation demonstrates how to address the multithreaded program

trade-offs dynamically and transparently.

1.4 Contributions

This dissertation provides the first solution that bridges the long-standing gap between writ-
ing correct and stable multithreaded code and writing high-performance multithreaded code. The
underlying philosophy behind the solution lies in maintaining the current programming model

while transparently transforming the model in hardware to a concurrent one.



1.4.1 Primary contributions

The thesis makes two primary contributions:

1. Speculative Lock Elision Speculative Lock Elision (SLE) [139] for the first time demon-
strates that it is possible to execute and commit concurrently, critical sections protected by the
same lock without acquiring (or requiring exclusive permissions on) the lock if the critical sec-
tion executions do not experience any data conflict. SLE is a microarchitectural technique to
remove dynamically unnecessary lock-induced serialization of threads. Synchronization
instructions are dynamically predicted as being unnecessary for a particular dynamic execution
and elided. This allows multiple threads to concurrently execute critical sections protected by
the same lock and without any dependence on the lock. Misspeculation due to inter-thread data
conflicts is detected using existing cache coherence mechanisms and a rollback mechanism is
used for recovery. Successful elision is validated and committed without acquiring the lock.
SLE can be implemented entirely in the microarchitecture without instruction set support and
without system-level modifications. It is transparent to programmers and requires modest addi-
tional hardware support. SLE thus provides the mechanism to extract a lock-free execution
from a lock-based execution. However, SLE provides a lock-free execution only if data con-
flicts do not occur. In the presence of data conflicts, SLE may require a lock acquisition. Since
lock-based critical sections do not provide failure-atomicity, SLE cannot provide full transac-

tional semantics (serializability and failure atomicity) in the presence of data conflicts.

2. Transactional Lock Removal Transactional Lock Removal [140] uses SLE as an enabling
mechanism but in addition provides a successful lock-free execution even in the presence of
data conflicts if sufficient resources are available for buffering speculative state. TLR treats crit-
ical sections as optimistic lock-free transactions. TLR elides locks using SLE to construct an
optimistic lock-free transaction but in addition also uses a timestamp-based conflict resolution
scheme to provide lock-free execution even in the presence of data conflicts. A single, globally
unique, timestamp is assigned to all memory requests generated for data within the optimistic
lock-free transaction. Existing cache coherence protocols are used to detect data conflicts. On a
conflict, some threads may restart (employing hardware misspeculation recovery mechanisms)
but the same timestamp determined at the beginning of the optimistic lock-free transaction is

used for subsequent re-executions until the transaction is successfully executed. A timestamp
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update occurs only after a successful execution. Doing so guarantees each thread will eventu-
ally win any conflict by virtue of having the earliest timestamp in the system and thus will suc-
ceed in executing its optimistic lock-free transaction. If the speculative data can be locally
buffered, all non-conflicting transactions proceed and complete concurrently without serializa-
tion or dependence on the lock. Transactions experiencing data conflicts are ordered without
interfering with non-conflicting transactions and without lock acquisitions.

Both SLE and TLR avoid writing to the lock variables. By not writing to the lock variables,
both, the overhead of lock acquires and the wait for lock variables to change value, are eliminated.
We show in this thesis that TLR performs better than common lock-based algorithms even in the
presence of high lock contention and data conflicts.

Since SLE and TLR use hardware resources, they are applicable only if the data set accessed
within the critical section can be locally cached. Other implementation specific constraints may
exist and are discussed in later chapters. Importantly, if any situation arises where SLE and TLR
cannot be applied, the lock can always be acquired normally and a correct execution is guaranteed.
In these cases, complete transactional semantics and starvation freedom cannot be provided
because the execution falls back on the conventional lock acquire sequence.

Our techniques are different from earlier approaches in two significant ways.

1. Rather than change the programming model to obtain transactional semantics, we change the
hardware implementation to transparently provide such semantics. A transaction is semanti-
cally stronger than a critical section since it also provides failure atomicity. A critical section is
treated as a transaction and optimistically executed without lock operations. The intuition lies
in treating locks as defining the scope of a transaction, using a conflict resolution scheme to
order conflicting transactions correctly, and using a technique to give the appearance of an

atomic commit of the transaction, such as is provided by SLE.

2. TLR uses a conflict resolution scheme to provide starvation freedom and thus can provide
wait-free execution of critical sections subject only to potential resource limitations.

SLE and TLR maintain the programming interface of a familiar lock-protected critical section
and thus programmers do not have to learn new methods to write programs. Additionally, existing
legacy code using critical sections can directly benefit from our proposals. By treating critical sec-
tions as lock-free optimistic transactions, inherent concurrency in the transactions is exposed inde-

pendent of lock granularity. By using a fair conflict resolution scheme and providing sufficient
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Figure 1-1: Solution overviewSpeculative Lock Elision (Chapter 3) and Transactional Lock
Removal (Chapter 4) form the core contributions of the thesis. While we target lock-based pro-
grams, TLR can be used without SLE if the input program to TLR is already lock-free and the

transactions are identified.

resources for buffering speculative updates, we guarantee high-performance lock-free and
wait-free executions of lock-based critical section.

Figure 1-1 shows how the two techniques fit together. Conceptually, SLE accepts as input a
program that uses locks as a synchronization mechanism and transforms the execution dynami-
cally and transparently into a lock-free execution. TLR takes the lock-free execution output of
SLE, or may take a pre-processed output from some other source with transactions already identi-

fied, and provides a high-performance transactional lock-free execution.
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1.4.2 Other contributions

Some of the other contributions are:

1. First technique to achieve transparent lock-free execution of lock-based programs. This shows

how concurrency can be naturally exposed and exploited for improving performance.

2. First proposal for achieving wait-free execution of critical sections subject only to potential
resource limitations. This can allow programmers to write high-performance wait-free algo-
rithms using the basic mechanisms developed in this thesis as building blocks for wait-free syn-

chronization.

3. A distributed lightweight deadlock avoidance protocol for concurrency control using a general

cache coherence protocol.

4. Demonstrate a lock-free algorithm can outperform lock-based techniques using modest hard-

ware support.

1.5 Evaluation

Two aspects form the evaluation.

1. Performance. We use detailed cycle-accurate architectural simulations and a set of microbench-
marks and benchmarks to study the performance of our proposals. We identify the conditions
under which high performance is achieved and the conditions under which performance loss

may occulr.

2. Implementation overhead. We estimate the additional hardware required to implement our pro-
posals. We do not provide a detailed implementation as it is highly dependent upon the underly-
ing microarchitecture and system architecture. We however outline and discuss the key

mechanisms to help estimate the implementation overhead in a system independent manner.

1.6 Organization

Chapter 2 provides background information and surveys relevant previous work. The chapter
attempts to provide a common ground for understanding the thesis. It provides sufficient back-

ground for multiprocessor system issues such as memory consistency and cache coherence and
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discusses speculative execution techniques in modern processors. We also discuss some formal

aspects of concurrency control, namely their safety and liveness properties. This discussion moti-
vates our correctness arguments and the design of our techniques. Apart from background, related
work is discussed. The discussion includes lock-based, lock-free, and wait-free synchronization
techniques and some work in database concurrency control.

Chapter 3 describes Speculative Lock Elision. We provide the key insight for eliding locks
and present the complete algorithm. We also present various implementation strategies for SLE.

Chapter 4 presents Transactional Lock Removal. TLR is analogous to database concurrency
control. We identify certain implementation-independent invariants that allow TLR to be imple-
mented on systems. We also discuss the limitations of TLR and the stability and programmability
aspects of TLR, specifically non-blocking behavior, wait-free behavior, and operating systems
interactions.

Chapter 5 and Chapter 6 focus on performance evaluation. Chapter 5 outlines the perfor-
mance evaluation methodology, discusses the simulation infrastructure and presents the various
microbenchmarks and benchmarks. Chapter 6 presents performance evaluation results for both
SLE and TLR using microbenchmarks and benchmarks.

Chapter 7 summarizes the contributions of the dissertation and suggest future topics for

research.
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Chapter 2

Background

This chapter provides the background for understanding the thesis and presents related work.
The chapter is divided into four main sections. Section 2.1 provides a background into
shared-memory multiprocessing. Shared-memory systems are the target architecture for the work
in this thesis. We focus on two important and relevant features of shared-memory systems: the
memory consistency model and mechanisms for maintaining cache coherence.

Section 2.2 focuses on concurrency control mechanisms and synchronization techniques. We
discuss techniques such as lock-based, lock-free, wait-free, and non-blocking synchronization. We
do not provide a comparison between prior work and the techniques proposed in this thesis—the
specific comparisons are left to the related work sections of each individual chapter.

Section 2.3 lays the foundations for reasoning about correctness of our techniques by discuss-
ing safety and liveness properties.

The techniques proposed in this thesis use speculative execution as an enabling mechanism

and Section 2.4 presents a background on common speculative execution techniques in processors.

2.1 Shared-memory multiprocessing

Multiprocessor architectures are increasingly becoming a viable and cost-effective technol-
ogy even for small processor counts. Most multiprocessor systems are differentiated based on the
communication mechanism among different processors. Two popular classifications are Mes-
sage-Passing Architectures and Shared-Memory Architectinresessage-passing systems, each
processor has a local memory accessible only by that processor, and communication among vari-
ous processors occurs through explicit messages. On the other hand, shared-memory systems
make at least part of the memory accessible to all processors and thus allow processors to commu-

nicate directly through read and write operations to memory. This thesis is concerned with
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shared-memory multiprocessor architectures. A typical shared-memory system is shown in
Figure 2-1.

Shared-memory architectures have emerged as the dominant class of systems today largely
due to the relative ease of writing shared-memory parallel programs [26, 47, 72, 105, 115, 148] as
compared to writing message-passing parallel programs.

Two important aspects of shared-memory systems related to the thesiearery consis-
tencyandcache coherencé memory consistency model is a conceptual model for semantics of
memory operations that allow programmers to use shared memory correctly. Such a model speci-
fies how memory behaves with respect to read and write operations from multiple processors.
Cache coherence is one of the mechanisms required to implement a memory consistency model on
systems that support caching of shared data at the processors. In the remainder of this section, we

discuss memory consistency and cache coherence.

___________________________________________________

__________________________________________________

memory, memaory, memaory,

Interconnection network

Figure 2-1: A typical shared-memory multiprocess@&ach node consists of a processor, multi-
ple levels of cacheslthrough L,, and inter-cache buffers. The interconnection network may be

an ordered broadcast network or an unordered network. The cache coherence protocol imple-
mented may be snoop-based or directory-based.
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2.1.1 Memory consistency

From the programmer’s perspective, a memory model allows for correct reasoning about
memory operations in a program, and from a system designer’s perspective, the model specifies
acceptable memory behavior for the system.

The program for each processor imposes a conceptual total order on the operations issued by
the processor in a given execution. Tgregram orderis defined as a partial order on all memory
operations that is consistent with the per-processor total order on memory operations defined for
each processor. An operation is consideatomic if the operations appear to occur instanta-
neously with respect to all processors.

An intuitive memory model is based on the sequential semantics of memory operations in
uniprocessors and viewing a multiprocessor as a multiprogrammed uniprocessor. Lamport for-

mally defined such a model ssquential consisten¢98]:

“...the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.”

Sequential consistency provides an interface that most people expect [69]. Figure 2-2 shows a
conceptual representation of sequential consistency. Memory is shared among multiple processors.
Each processor issues its memory operation in program order. Operations are serviced by memory
one-at-a-time; thus they appear to occur atomically with respect to other memory operations. The
order of servicing of operations from different processors may be arbitrary thus leading to an arbi-
trary ordering of memory operations from different processors into a single sequential order. An
execution of a program is sequentially consistent if there exists at least one execution on a sequen-
tially consistent system that provides the same result.

Architectural and compiler innovations, such as write buffers and caching, have introduced
complexity in supporting sequential consistency as a model of choice on shared-memory multipro-
cessors. These have led to extensive work in specifying, defining, and implementing various mem-
ory consistency models on modern shared-memory multiprocessors [2, 3, 4, 44, 45, 46, 133, 147].

Relaxed memory models have been proposed to enable the use of more optimizations by

relaxing the limitations on the ordering of memory operations as imposed by strict memory mod-



16

Memory

Figure 2-2: Conceptual view of sequential consistenEgch processor interacts with shared
memory through a single switch in a one-at-a-time fashion.

els such as sequential consistency. While sequential consistency requires the illusion of program
order and atomicity to be maintained for all operations, relaxed models allow certain memory
operations to execute out of program order and/or non-atomically.

Categorization of various relaxed memory consistency models is based on two characteristics
[44]:

1. How the program order requirement is relaxékhis may involve the relaxation of the order of
a write to a following read, a read to a following read or write, and between two writes. Here,

the relaxation only applies to operation pairs to different addresses.

2. How the write atomicity requirement is relaxethis is based on whether a read is allowed to
return the value afinotherprocessor’s write before the write is made visible to all other proces-
sors. Here, the relaxation applies to operation pairs to the same address.

Since relaxed models allow reordering of memory operations, programmers are provided
with explicit mechanisms to prevent such reordering from occurring if so desired. Such mecha-
nisms are generically referred to aafety netdor a model [3]. Examples of such safety nets
include read-modify-write operations in TSO and PC [70, 166], MEMBARSs in the ALPHA archi-
tecture [28] and SYNC in the PowerPC [31]. In all cases, there is a single point (at least one)
where all preceding operations have been completed and no succeeding operations have been exe-
cuted.

A tutorial on shared-memory models by Adve and Gharachorloo [3] and their respective the-

ses [2, 44] provide detailed background into various memory consistency models.
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2.1.2 Cache coherence protocols

Caching is a popular technique to reduce long latency memory operations and to reduce
memory bandwidth requirements—processors access the local cache for a fast path to commonly
accessed data. Caching shared data in shared-memory multiprocessor systems results in multiple
copies in the system for a given memory location. Cache coherence is the mechanism to keep all
such copies up-to-date with respect to one another. Nearly all shared-memory systems today sup-
port some form of cache coherence. While memory consistency models issues exist even in the
absence of caches, cache coherence is a central component for correctly implementing memory
consistency models on multiprocessor systems that cache shared data. This section provides a

background into cache coherence protocols.

2.1.2.1 Aspects of cache coherence protocols

Two mechanisms of any cache coherence protocol are:
1. Mechanism for locating all cached copies of a memory location

2. Mechanism for keeping all cached copies of a memory location up-to-date

Two common schemes for locating all copies of a memory locationsmr@op-base@nd
directory-basedschemes. In a snoop-based scheme, the address of the memory location is broad-
cast to all caches. In a directory-based scheme, a directory per memory location is maintained that
identifies the list of copies. Snoop-based schemes are more popular than directory-based schemes
in commercial implementations. Two popular approaches distribute directories either with mem-
ory or with caches. Memory-based schemes store directory information for a cache block at the
home node of the block. Examples of memory-based directory protocol systems include the SGI
Origin 2000 [105]. In cache-based schemes, most of the sharing information is distributed among
the various copies (rather than at the home node). Each cache block contains a pointer to the node
that has the next cached copy of the block in a distributed linked-list organization. The home node
still needs to know if the memory block is cached and where one copy is. The IEEE 1596-1992
Scalable Coherent Interface (SCI) standard indicates a full specification and C code for a standard-
ized cache-based directory organization and protocol [72]. Commercial implementations of the
SCl include the Sequent NUMAQ [115] and the Convex Exemplar X [21].
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A write operation must ensure all cached copies are kept up-to-date. This can be accom-
plished by either invalidating any stale copies or updating the cached copies to the newly written
value. Such an action is often accompanied by an acknowledgement response to signal completion
of the action. Cache coherence protocols serialize the effect of simultaneous write operations to a
given memory location. If two processors simultaneously issue a write to the same location with
different values, cache coherence ensures the two writes are observed in the same order by all pro-
cessors with the same value persisting at all copies.

In most invalidation-based cache coherence protocols, the cache hierarchy with the dirty copy
(modified with respect to memory) of the cache block is responsible for servicing read requests
from other processors for either shared copies or exclusive copies of the cache block since the data
in memory is stale. A cache hierarchy that does not have the cache block in dirty state does not
need to respond. For such caches, an incoming read request is simply ignored and an incoming

read-for-exclusive-ownership request is treated as an invalidate request.

2.1.2.2 Coherence granularity and false sharing

Most systems today support cache coherence mechanisms in hardware [26, 29, 47, 59, 72, 82,
105, 115, 132] and typically maintain coherence at the granularity of a cache block, specifically, at
the coherence granularity [49]. This thesis deals with hardware shared-memory cache coherence
protocols and we only discuss hardware cache coherence here. Cache block fetches and invalida-
tions are performed at the granularity of a cache block. While a larger granularity helps when good
spatial locality in data accesses is present, poor spatial locality may result in a performance degra-
dation due tdalse sharingGoodman and Woest [51] were the first to define false sharing as a sit-
uation when two processors alternately read or write different parts of the same coherency block,
resulting in the block’s being moved repeatedly between the two processors as if the data were

shared when in fact no sharing is occurring.

2.1.2.3 Correctness issues for cache coherence protocols

Gharachorloo [44] formalized three correctness conditions for implementing coherence pro-
tocols and we restate them here. The three conditions that must be satisfied by the cache coherence

protocol for a correct implementation are:
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1. Termination condition for writesEvery write issued by a processor is eventually completed

with respect to all processors.

2. Value condition for readg-or read and write operations to the same address, a read operation

by a processorReturns a value that satisfies the following conditions: a) If there is a write
operation issued by;Fhat has not yet completed with respect {d&fore the read completes,
then the value returned by the read must be from the last such write that has been issgied by P
b) Otherwise, the value returned by the read must be from the latest write (from any processor)
that has completed with respect tpldefore the read completes; c) If there are no writes that

satisfy either of the above two categories, then the read must return the initial value of the loca-

tion.

3. Coherence requirement for writéd/rites to the same address complete in the same order with
respect to every processor.
In later chapters we show how our proposals do not change these underlying mechanisms for

cache coherence and thus maintain the correctness conditions for cache coherence protocols.

2.1.2.4 Cache coherence protocol mechanisms

Sweazey and Smith [160] proposed thlodified Owned Exclusive Shared and Invalid
(MOESI) classification of cache coherence protocols based on the stable states of a cache block. A
cache block in stable state has valid data and the block is not waiting for any state transition to
occur. Many cache coherence protocols can be represented as a subset of the five-state MOESI
protocols. The five states are defined as follows: Modified—the block is dirty (memory is stale)
and exclusively owned by the cache; Owned—the block is dirty (memory is stale), the block is
possibly shared among multiple caches, and this cache is responsible for ensuring memory is kept
up-to-date; Exclusive—the block is clean (memory is up-to-date) and exclusively owned by the
cache; Shared—the block is clean (memory is up-to-date) and the block is possibly shared among
multiple caches; Invalid—the block is not present in the cache.

While cache coherence protocols are referred to by their stable states, implementing high-per-
formance cache coherence protocols often requires additional states, also known as transient or
pending states. This is because a non-zero time may exist between the request initiation and

request completion phases of a memory operation during which other operations may be per-
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formed. A cache block makes a transition out of the stable state (one of the MOESI states) at the

request initiation phase and makes another transition into a stable state at the end of the request
completion phase (which may involve the completion of a data transfer). The cache block remains
in a pending state between the two phases and may transition to multiple subsequent pending
states depending upon the coherence events occurring. Hennessy and Patterson [62] provide an
example demonstrating the complications introduced by the addition of pending states to a con-
ventional cache coherence protocol.

We briefly discuss some common cache coherence protocol mechanisms. We focus on two
common classes of multiprocessors: snoop-based and directory-based.

Snoop-based systems typically rely ofogical busto propagate address requests to all pro-
cessors simultaneously. A common design spht-transactionbus where address requests that
require a response (typically a data response) are split into two independent sub transactions—a
request transaction and a response transaction. Buffering is used to allow multiple transactions to
be outstanding on the bus waiting for responses from the controllers. While this adds complexity
to the design, the bus is more effectively utilized.

The design space for such split-transaction logical buses is large. While conventional logical
buses have been implemented as actual “physical buses”, modern systems adopt an aggressive
approach. The logical bus is often organized as a complex interconnect and a logical ordering is
emulated on the interconnect. Examples include commercial systems such as the Sun Giga-
plane-XB [26].

Next we discuss two protocols: the Sun Gigaplane and the SGI Origin 2000. Since we employ
the cache coherence protocol in this thesis to track shared data and track write operations to shared
data, we focus on how write operations are serialized and how requests to exclusively-owned

cache blocks are handled.

Sun Gigaplane. The Sun Gigaplane uses a split-transaction, pipelined address bus with support
for a large number of outstanding transactions and out-of-order responses (the data responses
return in any order irrespective of the order in which the address requests were generated and hard-

ware is used to match up the requests appropriately). The bus implements an invalidation-based
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three-state (OwnédShared, Invalid) snooping cache coherence protocol and the coherent caches
implement the five-state MOESI protocol. The cache with the requested block in Owned state (as
seen by the bus) will respond to the next request for that block.

An interesting aspect of the protocol is the wagerventionsare handled. An intervention
occurs when a processor issues a request for a cache block that is currently in another processor’s
cache. Consider the case where processors issue read-for-exclusive-owmdrstipréquests in
sequence. Amd_X request gets the cache block in an exclusively-owned state. Assume address
block A resides in memory and is not cached by any processor. Assume procgssargR. Py
issues ad_X request for the bloclA. The request misses in the local cache, a pending buffer is
allocated to record the request, and the request is sent to the memory system. When this request is
serialized by the coherence protocaoal, i.e., all processorasmemedo have seen the request in a
given order, B gains exclusive ownership of the block. The memory, on observing the request on
the coherency network, initiates a data transfer. Nowssues ad_X request for the same block
A and this request is serialized by the coherency network afferréquest but before the data
transfer for blockA from memory to i§'s cache completes. Sincg Bwns the block, P, receives
P;’s request. However,Rloes not have the corresponding data ygbu#fers R’s request locally.

Now, since R's rd_X has been serialized; Bwns the block. However,fitself does not have the
data yet. Now, if B also issues and_X for block A, P; will respond to B. Thus, a chain of

requests is automatically formed according to the order of request-serialization in the coherency

network. At some time later,J¥eceives the data block from memory, performs its operations on
the block, and then serviceg'®buffered request. Pdoes the same and so on—the actual write

operations on the cache block lag the time at which the request is serialized at the coherency net-
work and the requests are serviced in the form of a queue. This results in an efficient and fast
cache-to-cache transfer when multiple writes appear on the coherency network for the same
address.

We shall see in the next protocol discussion an alternative approach where rather than buffer-

ing requests for cache blocks in a valid state but currently without valid data (i.e., the block is in a

1. The Owned state here is different from the Owned state of the MOESI classification discussed earlier.
Here, the Owned state determines which processor responds with the data and subsumes the MOE states
of the MOESI classification.
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pending state), a negative acknowledgement is sent and the requestor is asked to retry at a later

time.

SGI Origin 2000. The SGI Origin 2000 protocol supports the MESI (Modified, Exclusive,
Shared, Invalid) states and is non-blocking: memory does not buffer requests while waiting for
other messages to arrive. The protocol supports request forwarding for interventions. The protocol
does not rely on an ordered network. Only two virtual channels are provided and deadlock in the
request network (due to request forwarding) is broken by the use of backoff messages. Details of
the SGI Origin 2000 protocol can be found elsewhere [34, 105].

In the protocol, memory is the owner for all clean cache blocks in the system: thus any
request for clean data is immediately serviced by memory. In addition, for read-for-exclusive-own-
ership requests, ownership is transferred to the requestor and invalidates are sent to other cached
copies. The cached copies subsequently send invalidate acknowledgements to the requestor.

Requests to a cache block not owned by memory are forwarded to the owner and in the case
of a read-for-exclusive-ownership request, the requestor becomes the owner. The directory goes to
a pending busy state for that cache block until a revision message is received from the previous
owner. All requests received by the directory while in busy state are NACKed (a negative acknowl-
edgement is sent to the requestor) and asked to retry at a later time. On receipt of a revision mes-
sage, a transition to a stable state occurs. A processor receives only one intervention request for a
given block at any time.

The SCI protocol [72] and newer directory protocols such as the Alpha server GS320 [47]
support the non-nack-based approach similar to the Sun Gigaplane protocol discussed above and

form chains of requestors.

2.2 Synchronization techniques and concurrency control

Concurrency controf16] is the activity of coordinating concurrent access to a shared object;
i.e., of controlling the relative order of conflicting operations from different thre&gschroniza-
tion techniqud16] is the algorithm to perform such concurrency control.

We start by discussing the classic mutual exclusion problem in Section 2.2.1. In Section 2.2.2
and Section 2.2.3 we discuss relevant research in the area of lock-based, lock-free, and wait-free

synchronization. Much of this discussion focuses on shared-memory multiprocessors. Then in
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Section 2.2.4 we discuss database concurrency control as we borrow some of its concepts in our

work.

2.2.1 Mutual exclusion problem

The mutual exclusion problem is as follows. There is a collection of asynchronous processes,
each alternately executing a critical and a non-critical section. These processes must be synchro-
nized so that no two processes ever execute their critical sections concurrently. The mutual exclu-
sion problem was first described and solved by Dijsktra [36].

Since mutual exclusion is an intuitive model for reasoning about concurrency, it is the most
popular way to coordinate correct access to shared data and has been extensively studied over the
years.

Almost all formal models of concurrent processing are based on the underlying assumption of
mutually exclusive atomic operations. Lamport however demonstrated that atomic reads and
writes can be implemented from non-atomic reads and writes without mutual exclusion [94, 100,
101].

Mutual exclusion has similarities to concurrency control techniques. Discussion regarding
differences between mutual exclusion and concurrency control can be found elsewhere [25].

Lamport et al. recently introduced the notion of virtual mutual exclusion [103]. With virtual
mutual exclusion, operations are executed in a way that makes it appear as if one critical section
precedes another. If only memory accesses are performed during critical sections, then virtual
mutual exclusion is sufficient to achieve mutually exclusive access. However, if I/O operations are
also performed during the critical section, then it can be shown that true mutual exclusion is
needed. Thus, in the absence of any I/O operations, critical sections may concurrently execute as

long as they appear to execute as if one critical section precedes another.

2.2.2 Lock-based synchronization

Lock-based synchronization techniques rely on the use of a software variable, called a lock,
to guard entry into a critical region of code, known as a critical section. The lock ensures only one

thread is in the critical section at any time and access to shared data occurs within the critical sec-
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tion. Lock-based techniques typically imply mutual exclusion—no two processes ever execute

their critical sections concurrently.
A lock is a software construct associated with a shared object and determines whether the

shared object is currently available. Once a process acquires a lock, no other process will be able to

do so until the current lock holder releases the ddhe process wishing to perform the critical

section must acquire the corresponding lock first, which, once granted, guarantees its current
owner that no other process will access the locations accessed in the critical section. When the lock
owner completes its critical section, it releases the lock, allowing other processes to observe the

updates performed by the now committed critical section.

2.2.2.1 Locking primitives

Lock-based synchronization has been extensively studied. The first synchronization primitive
was test&set supported in the IBM System/360 series [7]. Test&set performs an atomic swap on a
location in memory. Test&set performs well in the absence of contention but is quite inefficient
under heavy load. Test&set can generate a large amount of traffic on the interconnection network.
Rudolph and Segal proposed test&test&set [145] which reduces load on the network by having
waiting processors spin on a local copy of the lock. This mechanism increases traffic for uncon-
tended locks in exchange for reducing it when the locks are contended. The traffic can still be sub-
stantial in the presence of lock contention.

Queue-based locking primitives attempt to minimize the number of network transactions
required to acquire and release a lock to a constant factor. These primitives maintain a queue of
waiting processors in which each node typically maintains pointers to adjacent processors in the
queue. Network traffic is minimized by performing arbitration for access to a critical section at the
time of the lock request, by allowing processors to locally spin waiting for a lock, and by limiting

the number of nodes involved in the actual lock transfer.

2. Variations such as read locks have also been proposed and these are useful when one has multiple readers
concurrently accessing the shared object.

3. Possibly, a process other than the lock holder may also release the lock by simply writing the variable.
Lock acquire and release operations are merely software conventions and thus must be used with care
because they rely on the programmer’s involvement for providing an execution free of data races.
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Goodman et al. proposed the first queue-based locking primitive, known as
Queue-On-Lock-Bit (QOLB) [50f. QOLB maintains the queue of waiting processors in hard-
ware, storing pointers to adjacent queue entries in the fields associated with each cache block.
When a processor requests a lock, it first allocates a cache block and then sends a request to join
the queue. The processor waits for the lock by spinning locally until the cache block contains valid
data sent from the previous lock owner. When the holder releases the lock, it sends the correspond-
ing cache block directly to the next processor, thus transferring the lock in exactly one network
message.

Following the QOLB proposal, the Stanford DASH prototype implemented a variant of the
gqueue-based synchronization primitive [110]. Unlike QOLB, their proposal stored the queue at the
directory rather than the caches. Doing so introduced an indirection in transferring locks—the lock
can no longer be transferred directly from the releaser to the next waiter; instead the lock must go
through the directory. Lee and Ramachandran proposed an extension to QOLB with support for
read locks [107]. Recently, Rajwar et al. proposed Implicit QOLB (IQOLB) [141]. IQOLB is a
hardware technique that transparently converts the test&set-based locking primitive to a hardware
queue-based lock using modest extensions to the cache coherence protocol. Unlike QOLB,
IQOLB does not require any instruction set support nor does it require any software changes.

Software queue-based locking schemes were proposed by Anderson [9, 10] and Graunke and
Thakkar [55]. Mellor-Crummey and Scott proposed MCS, an improvement to Anderson’s algo-
rithm. The MCS scheme [120, 121] is a software-based queued lock scheme. MCS adds requesters
for a held lock into a software queue at the time of the request, using atomic operations such as
swap and compare&swap to update the list. Arbitration for the eventual recipient of the lock is
therefore performed in advance, first-come, first-served. Extensions to the above techniques have
been proposed [33, 116].

Maintaining the requester queue in software has large overhead, especially in the absence of
contention. When a lock is released, however, communication occurs only between the releaser
and the requester at the head of the queue. Network traffic is thus reduced to a constant number of
network traversals per synchronization access. In addition, each processor waiting for the lock

spins locally on distinct memory addresses (instead of a single address as with test&test&set),

4. QOLB was initially called QOSB (Queue-On-Synch-Bit).
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which further reduces the load on the network. Each processor in the queue maintains a pointer to
the address on which the next processor in the queue spins. When the current lock holder leaves
the critical section, it simply clears the value pointed to by the address it maintains.

Lim and Agarwal proposed reactive synchronization, a technique that attempts to select the
software primitive best suited for a given level of lock contention [113].

Woest and Goodman [168] present a quantitative and qualitative comparison of test&set,
MCS, and QOLB. Kagi et al. [81] were the first to perform a comprehensive performance compar-
ison of various popular synchronization algorithms. The study concluded that for the set of bench-
marks used, QOLB consistently performed the best among known synchronization primitives.

In addition to the synchronization primitives, additional mechanisms have been proposed to
reduce the overhead of synchronization operations. Software techniques in the form of collocation
[19, 50] and fuzzy acquires [133] and hardware techniques in the form of speculative execution

[45] have been proposed to overlap the transfer of lock and data.

2.2.2.2 Limitations of locking primitives

We discussed the limitations of locking primitives earlier in Section 1.2 and we summarize
them again here. Lock-based synchronization techniques suffer from a lack of stability due to an
inherent limitation of their conventional implementation. The limitation of the locking construct
stems from the notion of the programmer-specified wait while some thread is in the critical sec-
tion. A lock marked as held forces other threads to wait for the lock value to be free. This limita-

tion manifests itself in two potentially catastrophic ways:

1. Poor system wide interactions with thread schedullhg.thread holding a lock is descheduled
by the operating system, other threads waiting for the lock cannot proceed because the lock is
not free. In a high concurrency environment, all threads may wait until the descheduled thread
runs again. This results in convoying (a convoy of waiting threads is formed) and may result in
a deadlier problem of priority inversion (no thread may ever proceed). This is known as the

blocking problem where one thread blocks other threads from running.

2. Fault-tolerance limitationsIf a thread holding a lock terminates due to a fault, other threads
waiting for the lock never complete as the lock is never free again. This problem is catastrophic

in a transaction oriented environment where threads are largely independent except while
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accessing some critical shared structures. Data modified within the critical section is left in an

inconsistent state resulting in application failure.

Locking algorithms can be modified to address these limitations but require significant effort
and creativity from the programmer. Software proposals have been made to make lock-based criti-
cal sections non-blocking [163] and thread scheduling that is aware of blocking locks [87, 123].
Bohannon et al. present a recovery strategy to allow a system to recover from a lock held by a pro-
cess believed to have failed [20].

Locks also restrict parallelism: two operations on the same object cannot execute in parallel,
even if they access disjoint parts of the object. In some cases, this problem can be addressed by
using finer granularity locks. By using several locks per object, operations that access disjoint parts
of the object can execute in parallel. Unfortunately, such an approach requires dynamic informa-
tion about the operations at the time of writing the program and is error-prone because of complex

reasoning required on the part of the programmer.

2.2.3 Lock-free and wait-free synchronization

Lock-free synchronization was proposed as an alternative to lock-based synchronization to
overcome the limitations of lock-based techniques. Lock-free synchronization techniques coordi-
nate correct access to shared resources without relying on mutual exclusion and thus access shared
resources without employing a critical section. However, they rely on mechanisms other than locks
to guarantee a correct execution.

Lock-free synchronization is a loosely used term referring to the absence of locking seman-
tics. Two formally defined terms are non-blocking and wait-free synchronization and are most
commonly used when referring to concurrent object operations.

A synchronization technique r®on-blockingif some process will complete an operation in a
finite number of steps, regardless of the relative execution speeds of the processes [64]. The
non-blocking condition guarantees the system as a whole makes progress despite individual halt-
ing failures or delays.

A synchronization technique gait-freeif any process can complete any operation in a finite
number of steps, regardless of the execution speeds of other processes [64]. Wait freedom adds

starvation freedom, even in the presence of failures, to the non-blocking condition. Thedérm
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freedomimplies “not waiting forever.” It does not imply the processes never wait—processes may
have to wait for a finite time—but they never wait for a process that has failed and aborted.

We briefly discuss key work in lock-free and wait-free techniques. As we shall see, these

techniques suffer from difficulty of use and often poor performance.

2.2.3.1 Lock-free and wait-free techniques

Lamport introduced lock-free synchronization to allow multiple threads to work on a data
structure concurrently without a lock [95]. In Lamport’s lock-free read/write buffer, the buffer con-
sists of a sequence of digits which are read and written atomically. Only one writer is assumed, so
there is no need to consider concurrent write operations. The writer may interfere with concurrent
read operations. If a read operation is interfered with, then it must be retried. Repeated retries may
be needed before a read can successfully complete. Two version niilzardV2 are associated
with the buffer. These version numbers allow readers to detect when interference has occurred. To
perform a write operation, the writer incremeits writes the buffer, and then incremeM&. To
perform a read operation, a reader red@sreads the buffer, and then reads If the values read
from V1andV2 are identical, then a consistent value was read from the buffer. The order in which
the sequence numbers and the buffer are read is the opposite of the order in which they were writ-
ten. The version number themselves are multi-digit numbers with each digit written and read in
opposite directions.

The above algorithm is optimistic in nature; in other words, a failed read operation retries
until successful. As mentioned earlier, Lamport demonstrated that, in a sequentially consistent
memory, atomic reads and writes can be implemented from non atomic reads and writes without
mutual exclusion [94, 100, 101]. Since then, extensive research has been conducted in lock-free
and wait-free synchronization [8, 11, 17, 58, 63, 64, 65, 66, 75, 78, 119, 126, 127, 128, 138, 149,
158, 164].

Lock-free and wait-free operation implementations consist of code that typically executes
multiple atomic statements and does not involve mutual exclusion. The correctness conditions for
lock-free and wait-free implementations are necessarily more complicated than for mutual-exclu-
sion-based implementations. To reason about correctness of concurrent dbjeesizability
was proposed as a correctness condition [68]. Each operation is “invoked” in an “interval” of time.

Since concurrent invocation of operations is possible by multiple processes, such intervals may
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overlap. Thus, for a correct execution of a series of invocations, each invocation on an object must
appear to the invoking process to be executed instantaneously at some distinct point during the
invocation’s interval.

Relevant here is the notion of a universal synchronization primitive. An objectiversalif

it can be used as a building block to provide a wait-free implementation of any other object. Her-

lihy drew the link between universality and the consensus prob[@B6] and proved that any
object with a consensus numbeis universal in a system of at masprocessors [63]. He further
showed that compare&swap and load-linked/store-conditional are both universal if one assumed
unbounded memory (these primitives are discussed later). Plotkin proposed a sticky bit and
showed it to be universal even with bounded memory [138].

Until the late 1980s, most architectures did not have support for universal synchronization
primitives. To implement such primitives, Bershad proposed an efficient software-only mechanism
[17] and restartable atomic sequences [18]. Both techniques assume that the operating system is
aware of any long delay a process may encounter. The operating system can thus restart an atomic
action that experiences the delay before the operation completes. A lock can be implemented with-
out a universal synchronization primitive and protects the sequence. Waiting processors spin on
the lock before performing the operation. The time the lock is held is bounded because the operat-
ing system releases the lock if the process is delayed. The operation is atomic with respect to pro-
cesses on the same processor since the operating system will restart the sequence if preempted.
The operation is atomic with respect to processes on other processors because it is protected by a
lock.

While substantial research has been conducted in lock-free and wait-free synchronization,
such techniques are quite difficult to design and verify as correct [64, 126]. To allow the easy
development of correct concurrent objects, Herlihy propasedersal constructionf63]. A uni-
versal construction takes as input a sequential implementation of an object and produces a
lock-free or wait-free implementation of the given object.

While practical universal constructions have been proposed, these implementations still suffer
from significant time and space overhead and complexity of reasoning about correctness. Herlihy’s

constructions [64, 65] required copying of the entire shared object, sometimes multiple times. The

5. The consensus problem involves an asynchronous system of processes, some of which may be unreliable.
The problem is for the reliable processes to agree on a binary value.
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space and time overhead for performing and maintaining the copies is quite large for large objects.
While optimizations have been proposed for reducing this overhead, the process of doing so is
quite complex. Further, concurrent access to the object is not allowed. Barnes presented a mecha-
nism allowing concurrent access to the object [11]. The proposal required the object be protected
by a number of locks. Operations on the object acquire locks associated with relevant parts of the
object in such a way that processes can “help” each other to perform operations and release locks.
Barnes’ technique is not wait-free. Since locks are used, the programmer must still deal with con-
currency. Another drawback is the presence of “useless helping”. If a procisd is helping
another procesgencounters a lock that is held by a third proceseenp must helpr before help-
ing g. This gives rise to long chains of useless helping.

Moir [126] extended Herlihy’s universal constructions and developed more efficient universal
constructions. Recently, Moir proposed the use of a lock-free multi-word compare-and-swap
(MWCAS) operation for efficient support for software wait-free transactions [127]. Israeli and
Rappoport proposed lock-free constructions for multi-word synchronization primitives [76].

The compare&swap (CAS) was introduced in the IBM System/370 architecture [24] and is
supported in some current architectures [166]. A CAS operation atomically swaps the value of a
memory location with that of a register subject to a comparison.

The load-linked/store-conditional instructions (LL/SC), originally proposed by Jensen et al.
[78] have emerged as popular primitives for lock-free read-modify-write operations on a single
word. These instructions expose the steps involved in performing an atomic read-modify-write
operation to the programmer and normally rely on the cache coherence mechanism to ensure cor-
rectness. The load-linked (LL) instruction loads a memory location into a processor register. This
is followed by an arbitrary sequence of operations involving the register. The second special
instruction in the pair, store-conditional (SC), attempts to write to the same memory location as the
previous LL instruction. The store-conditional will succeed only if the hardware can guarantee that
no other processor has successfully written to the memory location since the previous LL instruc-
tion was executed. The success of an SC instruction implies that a read-modify-write sequence has
occurred atomically, completing at the time of the SC. In the case of a failure, the entire sequence
may be retried.

The LL/SC paradigm has been adapted for several architectures, including Alpha [28], MIPS

[54], and IBM PowerPC [31] and is also known as load-locked/store-conditional and
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load-with-reservation/store-conditional in various architectures. In various implementations, a link
flag and registers are used to store the load-link information. A register typically stores the physi-
cal address to which the LL was issued. The link flag is set when the LL is issued. The success of
an SC can only be determined at the point of coherency, that is, at the time a write operation can be
performed on the designated memory location. If, at that point, the link flag was still set, and no
incoming invalidate to the address in the locked physical address register is encountered, the
store-conditional can successfully complete. Implementations differ among architectures, and
implementation details vary considerably depending on the type of coherence mechanism pro-
vided. In either snoop-based or directory-based implementations, a store-conditional is treated dif-
ferently from a traditional write operation, because the write of the store-conditional may or may
not be completed on a given execution, and because the success of the operation must be reported
back for testing by the processor.

While the basic concept is elegant and simple, in theory permitting the implementation of
arbitrarily complex synchronization primitives, in practice it is difficult to design a system that can
reliably guarantee success of the sequence. Two obvious problems that must be accommodated
demonstrate the difficulty: (1) A memory conflict that forces the cache block containing the vari-
able to be evicted. This problem could be dealt with in a variety of ways, but the simplest is to pro-
hibit memory operations that might cause such an eviction; (2) An intervening page fault or other
interrupt that may result in a large delay between the LL and SC. It is difficult to account for all
possible actions that might occur before the following SC is executed, and a simple implementa-
tion will simply reset the link flag upon encountering most or all types of traps. Because of such
considerations, each architecture provides a set of guidelines or requirements to increase the likeli-
hood of success, but even with such constraints, guarantees of success are very carefully worded.
For example, according to the Alpha Architecture Handbook [28], a write of a different word on
the samélock(the size of a block being an implementation-dependent constant of some power of
two, being no smaller than a cache block, and no larger than a page) as the target address may
cause the SC to fail. In addition, numerous system calls or traps will cause the link flag to be reset.
Other restrictions apply as well, with the handbook indicating that “no useful program should do
this” because a sequence may always fail for some implementations. Such restrictions include (1)
that there be no instructions that access memory between the LL and SC instructions, (2) that there

be no taken branches between the immediately preceding LL and SC instructions (the processor
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may execute multiple LL instructions before it attempts the SC), and (3) that a “large number” of
instructions not be executed between the LL and SC. The term “large number” is not defined —
though the specification does require a minimum number of instructions every implementation
must execute between timer resets.

The requirements are similar in other architectures and implementations. A requirement in all
implementations we have studied is that an LL instruction on one processor must not affect any
architecturally visible state on another processor, and in particular cannot cause a SC on another
processor to fail. This restriction is necessary to make possible forward progress claims, though
great care is necessary in the design of the inter-processor communication mechanism to prevent
starvation of processor nodes relying on LL/SC for fairness.

The load-linked/store-conditional primitives were later extended by Herlihy and Moss [66]
and Stone et al. [158].

Herlihy and Moss proposed Transactional Memory [66]—a hardware mechanism that allows
programmers to write transactions that execute atomically or fail without updating memory and
thus implement lock-free data structures. Transactional Memory requires six new instructions for
programmers to use and uses an extra cache called the transactional cache to buffer optimistic
updates. Transactional Memory supports arbitrary read-modify-write operations and the size of the
operations is limited only by the processor’s transactional cache. The basic insight behind Transac-
tional Memory is that invalidation-based cache coherence protocols can be used to detect transac-
tion conflicts. By using the existing cache coherence protocol, atomic transactions can be
supported cheaply. Transactional Memory still requires programmers to reason about correctness
of lock-free algorithms. The evaluation results showed that Transactional Memory outperforms
locking implementations for all their benchmarks. Transactional memory relies on exponential
backoff to provide forward progress and thus is strictly not non-blocking.

Stone et al. proposed Oklahoma Update [158], which exploits the existing cache coherence
protocol in the same fashion as Transactional Memory. The Oklahoma Update adds a set of special
reservation registers to each processor and uses the concepts of transactional loads and stores.
Transactional loads are like normal loads except they also update the reservation registers. Trans-
actional stores do not update memory and only update the reservation registers. At commit, the
Oklahoma Update resorts to a two-phase commit protocol. In the first phase, the precommit phase,

addresses are sorted in ascending order, are checked for validity, and exclusive ownership for the
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appropriate addresses is requested. If any reservation is invalid, or the exclusive ownership request

fails, the transaction aborts and restarts. During the precommit phase, all external ownership
requests for addresses lower than the currently active address are deferred until after commit. If the
precommit phase is successful, the commit phase atomically updates all modified shared variables
by writing the data in the registers to the cache. During the commit phase, all external requests are
deferred. They do not provide any simulation numbers. While the Oklahoma Update is hon-block-
ing, it is not wait-free.

Shavit and Touitou proposed Software Transactional Memory [149], a purely software imple-
mentation of Transactional Memory. Their scheme as presented does not support dynamic transac-
tions (i.e., if the set of locations accessed by the transaction are not known at the start of the
transaction). Software transactional memory is lock-free but not wait-free.

Object specific lock-free implementations have also been proposed. Such implementations
take advantage of the semantics of the object under consideration to improve performance. These
techniques also suffer from the complexity of reasoning about correctness. Some techniques use
instructions stronger than normal reads and writes. Various concurrent queue implementations not
relying on mutual exclusion fall in this category [67, 75, 99, 122, 167]. Valois proposed lock free
implementations of common data structures such as queues, trees, and lists [164, 165]. Massalin
and Pu implemented an operating system using only lock-free synchronization techniques [119].

The terms non-blocking synchronization and lock-free synchronization have been used inter-
changeably. A lock-based synchronization primitive can be made non-blocking with some effort.
However, locking algorithms, implemented conventionally, are blocking. On the other hand, all
lock-free and wait-free techniques are, by definition, non-blocking. The most effective use of
non-blocking synchronization has been in the area of data-structure-specific algorithms. Green-
wald provides an extensive discussion of non-blocking synchronization techniques in his thesis
[58].

2.2.3.2 Limitations of lock-free and wait-free techniques

Lock-free and wait-free techniques often require more complex operations than critical sec-
tions and rely on programmers to write appropriate code. Programmers have to reason about cor-
rectness in the presence of complex data structures. These alternatives commonly suffer from

difficulty of use, complex programming methodologies, and often high software overheads, thus



34
aggravating the trade-off between complexity and performance. These techniques have been
shown to perform poorly with respect to lock-based schemes in the absence of failures and delays
[5, 17] primarily due to excessive data copying to allow rollback.

While substantial theoretical and practical research has been conducted in making lock-free
and wait-free techniques more efficient, a performance gap nevertheless remains and nearly all
proposals have required programmers to reason about correctness of the algorithms. Such tech-
nigues are quite difficult to design and verify as correct. Most software, such as database servers,
web servers, and virtual machines, still rely on the intuitive parallel correctness reasoning model of

mutual exclusion and lock-based synchronization.

2.2.4 Database concurrency control

Extensive research has been conducted in databases on concurrency control and Thomasian
[161] provides a good summary and further references. Bernstein and Goodman present an exten-
sive discussion of concurrency control mechanisms in distributed database systems [16]. Books by
Papadimitriou [135] and Bernstein, Hadzilacos, and Goodman [15] cover the topic of concurrency
control in detail.

Optimistic Concurrency Control (OCC) was proposed by Kung and Robinson [90] as an
alternative to locking in database systems. OCC involves a read phase where objects are accessed
(with possible updates to a private copy of these objects) followed by a serialized validation phase
to check for data conflicts (read/write conflicts with other transactions). This is followed by the
write phase if the validation is successful.

In spite of extensive research, there are no commercially successful database systems that use

OCC as a concurrency control mechanf$hiaerder [60] was the first to point out potential prob-

lems with OCC schemes. An excellent discussion regarding the issues involved with OCC
approaches and their shortcomings which make OCC unattractive for high-performance database
systems is provided by Mohan [124]. Special requirements of and guarantees required by database
systems, specifically for storage management, access path maintenance, recovery models,

fine-granularity conflict checking, fine-grain locking and semantically-rich lock modes [125],

6. Some objected-oriented database systems (such as Ontos) used to provide options for specifying optimis-
tic concurrency control or locking as the concurrency control mechanism but these systems have not been
successful [130]. OCC in relational vendors is summarized elsewhere [142]
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make OCC hard to use for high performance. To provide these guarantees, substantial state infor-
mation must be stored in software resulting in large overheads in executing transactions. In addi-

tion, with OCC, the validation phase is often serialized, thus limiting performance.

2.3 Safety and liveness in concurrency control algorithms

Safety and liveness were first described by Lamport [96]. We consider two properties under
safety: serializability and deadlock freedom. In later chapters, we will construct arguments to show
why TLR provides a correct execution. We also discuss liveness and show how to provide a sense

of fairness.

2.3.1 Safety

Lamport informally defined safety as “bad things do not happen” [96]. A safety property con-
strains permitted actions, and therefore the allowed state changes of a program—actions an algo-
rithm may do. In general, a safety specification may be any safety property which is one that holds
for an execution if and only if it holds for all finite initial segments of the execution. Mutual exclu-
sion, deadlock freedom, serializability, FIFO processing, and partial correctness are all safety
properties. Two safety properties we are interested in are: serializability and freedom from dead-

lock.

2.3.1.1 Serializability

Serializability is a correctness condition commonly assumed by database and distributed sys-
tems.Serializability requires the result of executions of concurrent transactions tsbethere
were some global order in which these transactions had executed serially [39]. While similarities
exist between serializability and sequential consistency, the two correctness conditions target dif-
ferent problem domains. By treating critical sections as transactions and thus constraining them to
satisfy serializability conditions, we can transparently apply much of the theoretical work in trans-
actions while allowing programmers to use critical sections as their model of choice for reasoning
about sharing. For our discussion, sequential consistency is orthogonal to serializability consider-
ations mainly because sequential consistency deals with ordering among individual memory loca-

tions while serializability deals with ordering among multiple memory locations.
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Our solution, while maintaining the appropriate underlying memory consistency model as
specified by the system, also meets serializability as a correctness condition, thus achieving the
semantics of critical sections without requiring explicit lock acquires. One can envisage critical
section executions that are not serializable (i.e., programs that have data race constructs in them)
that may nevertheless be correct in a given execution, but all serializable executions will provide
the functionality and semantics of critical sections.

Since we are treating critical sections as optimistic lock-free transactions, we are interested in

serializability as a safety property. Let E denote an execution of transactjonsT. E is a serial

execution if no transactions execute concurrently in E; i.e., each transaction is executed to comple-
tion before the next one begins. Every serial execution is defined to be correct because the proper-
ties of transactions imply that a serial execution terminates properly and preserves memory
consistency. An execution is serializable if it is computationally equivalent to a serial execution,
that is, if it produces the same output and has the same effect on the memory image as some serial
execution. Since serial executions are correct and every serializable execution is equivalent to a
serial one, every serializable execution is also correct.

We reproduce two theorems provided by Bernstein [14] and Papadimitriou [134] to character-
ize serializable executions precisely. Much of the discussion in this section is taken from Bernstein

and Goodman [16] and provides a context for the discussion of correctness of our proposal.

Theorem 1

Let T = {T4,..., Ty} be a set of transactions and let E be an execution of these transactions
modeled by logs {...., Ly}. E is serializable if there exists a total ordering of T such that each
pair of conflicting operations and Q from distinct transactions;and T; (respectively), Qpre-
cedes Qin any log l,..., Ly if and only if T precedes jTin the total ordering.

The order hypothesized by theorem 1 is called a serialization order. To attain serializability,
all executions must satisfy the condition of theorem 1, namely, that conflicting reads and writes be
processed in a certain relative order.

While theorem 1 treatsw (read-write) andvw (write-write) conflicts together under the gen-
eral notion of conflicts, these two types of conflicts can be further distinguished. For each pair of

transactions, jTand T,
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1. T; - T if in some log of E, jTreads some data item into whichslibsequently writes

2. Tj - Tj if in some log of E, Twrites to some data item thatsubsequently reads
3. Tj »ww T; if in some log of E, {Twrites into some data item into whichstbsequently writes

4. Ti —’rerj if Ti _’rWTj orTi _’WI'Tj

5. Ti — Tj if Ti _’I’Wl’Tj orTi _’WWTJ

Every conflict between operations in E is represented by aelationship. Therefore, theo-
rem 1 can be restated in terms of. E is serializable if there is a total order of transactions that is

consistent with- , and this is possible only if- is acyclic. Theorem 1 is restated below using the

- relationship.

Theorem 2

Let -y and -, be associated with execution E. E is serializable if {g),, and -, are
acyclic, and (b) there is a total ordering of the transactions consistent with.g/), and all -,
relationships.

While different techniques can be used to guarantee the acyclic natusg,pfand - .,
there must be one serial order consistent with-alielations. Thus, to show any execution serial-
izable, we only need to show the graph to be acyclic. We will use this property later when we

describe our mechanisms in detail.

Serializability vs. atomicity. Lamport discusses the relationship between serializability and
atomicity [102]. In the absence of failures that result in transaction aborts, atomicity and serializ-
ability can be considered equivalent. For example, while a semaphore operation is atomic, a data-
base transaction appears to be atomic and the atomicity of database operations is achieved using a

serializable execution order.

Examples of serializable and non-serializable schedulesn example of a serializable
schedule is shown in the left part of Figure 2-3. Two transactions T1 and T2 are shown accessing
locationsA, B, andC. The two transactions do not conflict on any data access and thus can execute

concurrently. A non-serializable schedule occurs when two transactions access the same data item,



38

Transaction 1 Transaction 2 Transaction 1 Transaction 2

R(A) R(A)
W(A) W(A)

R(B) R(A)

W(B) W(A)

commit R(B)
R(C) W(B)
W(C) i

| R(B) commit
commit W(B)
commit
A

® ® o

Figure 2-3: Serializable and non-serializable exampléa”, “B”, and “C” are locations

accessed by the transactions. On the left, T1 and T2 do not depend on each other for the execu-
tion and can concurrently execute. On the right, T1's output depends on T2 and T2's output
depends on T1. A cyclic dependence exists and these concurrent executions cannot be serialized.

one of the transactions is modifying the data item, and the execution does not correspond to any
serial execution. A serial execution requires T1 and T2 to appear to occur in some serial order.
However, in the right part of Figure 2-3, T1 writésand read$®. In between the two actions, T2
readsA and writesB. Thus, there is a cycle in the dependence graph. Three general conflict situa-

tions are:
1. Write-read conflictT2 reads something T1 wrote
2. Read-write conflictT2 overwrites what T1 read and T1 reads it again

3. Write-write conflict.T2 overwrites what T1 wrote
All these conflict situations must be avoided or the execution must be ordered so that these

transactions do not occur concurrently.
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request/wait for A

T1 holds A e e T2 holds B

request/wait for B

Figure 2-4: Deadlock with two transaction3ransactions T1 and T2 are part of a cycle in the
waits-for graph. T1 waits for T2 for B while holding A and T2 waits for T1 for A while holding
B.

2.3.1.2 Freedom from deadlock

A transaction typically achieves serializability by obtaining ownership of various data items
the transaction is accessing, and then executing to completion. If ownership cannot be acquired,
the transaction must wait until it can be acquired. In database systems, these ownerships are
acquired via the use of locks. In the remainder of this section, we discuss common techniques by
which database systems avoid deadlock while acquiring locks.

If a lock is held by a thread, another thread may have to wait for the lock. Such waiting for
unavailable locks may be uncontrolled, thus leading to deadlock. Thus, the second safety property
we are interested in is deadlock freedom. Deadlock situations can be characterizadssfor
graphs [71]—directed graphs that indicate which transactions are waiting for which other transac-
tions. Nodes of the graph represent transactions, and edges represent the “waiting for” relation-

ship: an edge is drawn from transactiontd transaction [if T; is waiting for a lock currently
owned by T. There is deadlock in the systeifrand only ifthe waits-for graph contains a cycle.

This is illustrated in Figure 2-4.

Deadlock detection and deadlock prevention are two common techniques available for dead-
lock resolution. Deadlock detection allows deadlock to occur and the deadlocks are detected peri-
odically by explicitly constructing the waits-for graph and testing for cycles. If a cycle is found,
one transaction in the cycle is aborted thereby breaking the deadlock. Deadlock prevention is a

conservative scheme in which a transaction is restarted when a system thinks a deadlock may
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occur. A watchdog timer is also commonly employed that detects deadlock with some false posi-

tives.

Deadlock detection.The difficulty in implementing deadlock detection in a distributed system
is in the efficient construction of the waits-for graph at a global level. This technique requires peri-
odic transmission of local waits-for graph information to the deadlock detector sites in order to

construct a global picture of the waits-for graph and detect cycles.

Deadlock prevention.Consider two transactions; &nd T, and T requests a lock currently
owned by T. If T; is restarted, the deadlock prevention algorithm is considered non-preemptive. If
T; is restarted, the algorithm is considered preemptive.

A common approach to deadlock prevention is to assign priorities to transactions. Again, con-
sider two transactions; &nd T,. T; could wait for T; if T; has a lower priority than;TThis prevents
deadlock because for every edge, (T;) in the waits-for graph, jThas a lower priority than T
Since T cannot have a lower priority than itself, no cycle can exist.

Assigning static priorities can lead to cyclic restarts—a transaction may continually restart
without ever completing. Rosenkrantz et al. [144] proposed using timestamps as priorities. Each
transaction is assigned a unique timestamp. The timestamp consists of the local clock time
appended with a unigue identifier to the lower order bits. A new timestamp is not assigned until the
next clock tick. Timestamps are unique across the system and the clocks at different sites do not
have to be precisely synchronized. A restarting transaction is not assigned a new timestamp until it
successfully completes.

Two timestamp-based deadlock prevention schemes proposed are Wait-Die and Wound-Wait
[144].

1. Wait-Die This is a nonpreemptive technique in which the requesting transaction either waits or
dies (hence the name). Supposéries to wait for T. If T; has lower priority than jT then T is
permitted to wait; else it is aborted and forced to restart (“dies”).

2. Wound-WaitThis is a preemptive technique in which the requesting process in any conflict
either waits or wounds the other process or processes (hence the name). SyppeEs®Tvait
for Tj. If T; has higher priority than ;T then T is permitted to wait; else ;Tis aborted

(“wounded”) and forced to restart.
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Rosenkrantz et al. [144] present several distributed concurrency control algorithms and show
them correct. We use key concepts (such as use of timestamps for deadlock-free concurrency con-
trol and starvation freedom) developed in that work and adapt them to our proposals.

Another common approach is preordering requests to avoid restarts altogether. This approach
requires predeclaration of locks and each transaction acquires its locks before starting. Each lock
is assigned a number and the priority of a transaction is the highest numbered lock it owns. The
transaction requests locks serially (and one-at-a-time) in numeric order. No deadlock can occur
because a transaction only waits for transactions with higher priority. The disadvantages of such a
technique include the requirement for pre-declaration and the sequential acquisition of locks thus

leading to increased response times.

2.3.2 Liveness

Informally, liveness dictates that something “good” must eventually happen during execution
[96]. Examples of liveness properties include starvation freedom, termination, and guaranteed ser-
vice. Liveness does not restrict what a “good thing” can be. Liveness properties cannot stipulate
that some “good thingalwayshappens, only that #ventually(at an unspecified time later) hap-
pens [6].

Two liveness properties we are interested in are: freedom from livelock, and freedom from

starvation.

2.3.2.1 Freedom from livelock

Informally, freedom from livelock may be paraphrased as: “If some process wants to execute

a transactionsomeprocess will eventually execute the transaction.”

2.3.2.2 Freedom from starvation

Informally, freedom from starvation may be paraphrased as: “If some process wants to exe-
cute a transaction, thehat process will eventually execute the transaction.” To ensure starvation
freedom, all threads must eventually succeed. This is achieved by using an appropriate conflict res-

olution scheme guaranteeing all conflict losers eventually become winners.
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2.4 Speculative execution

Speculative execution has emerged as a key enabling technique for numerous processor inno-
vations and is supported on nearly all modern processors [35, 70, 82, 108, 170]. Speculative tech-
niques often require support for buffering speculative state and for recovering from misspeculation
conditions. While most implementations today allow speculative updates to registers in the proces-
sor, they do not allow speculative updates to be propagated to the memory system. These updates
may still be buffered in the store buffers of the processor core. Recently, proposals allowing for
speculative values to update memory have also been made and we discuss them below. We discuss

some applications of speculative execution and schemes for buffering speculative state.

2.4.1 Speculative execution proposals

In this section, we discuss some of the speculative execution proposals made. Three catego-
ries we discuss are: uniprocessor optimizations, aggressive memaory consistency implementations,

and speculative parallelization of sequential programs.

2.4.1.1 Uniprocessor program optimizations

While speculation on branch direction through the use of branch prediction is common,
recent proposals have included speculative execution based on the predicted values of memory

locations [114].

2.4.1.2 Aggressive implementation of memory consistency

Speculative execution for aggressive implementation of memory consistency models was pro-
posed by Gharachorloo et al. [45]. As we discussed earlier in Section 2.1.1, memory models
enforce an ordering on the execution of certain memory operations. Gharachorloo et al. proposed a
technique where the ordering restriction for loads was relaxed. These synchronization loads [46]
were speculatively executed using the processor reorder buffer and any violations were detected
using the cache coherence protocol. This was later extended by Ranganathan et al. [143]. They
used speculative retirement for tolerating longer latencies and used a history buffer to recover from

any misspeculation. Gniady et al. [48] further extended the techniques by using additional specula-
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tive hardware support. These techniques showed ways to reduce the performance gap between

sequential consistency and relaxed memory models.

2.4.1.3 Speculative parallelization of sequential programs

To the best of our knowledge, the first proposal for speculative parallelization of sequential
programs was by Knight in the context of functional languages [86]. Knight described an architec-
ture to automatically extract and execute parallel portions of a sequential program while giving the
appearance to the programmer that the program is being executed sequentially. Hardware was used
to dynamically check the correctness of the execution and fully associative caches were used as a
means of maintaining and enforcing dependencies between portions of the program.

The Multiscalar proposals [41, 154] have popularized and driven current research into specu-
lative parallelization. Multiscalar divided a single program into a collection of tasks by a combina-
tion of software and hardware and the tasks were distributed to numerous parallel processing units
on the processor with one task always being the non-speculative task. This research led to other
more general applications of speculation such as memory dependence speculation where memory
accesses may occur speculatively without knowledge of preceding loads or stores [129]. Other

thread-level speculations proposals followed the Multiscalar work [61, 156].

2.4.2 Handling speculative state

Buffering speculative register state is well studied and supported in modern processors either
in the form of checkpoints, history buffers, or future files [153]. Nearly all proposals for specula-
tive execution discussed earlier use local buffers to store speculative updates to memory. Knight
[86] used the “confirm cache” local to each processor to store uncommitted data. Herlihy and
Moss [66] used a “transactional cache” to track and buffer speculative updates of the transactions.
The multiscalar work proposed the “address resolution buffer” [42] and the “speculative version-
ing cache” [52] to perform memory disambiguation and store speculative memory updates.

Gharachorloo et al. [45] used the processor reorder buffer to track speculatively issued loads
and the coherence protocol to check for violations. Ranganathan et al. [143] used a history buffer

[153] to store speculatively retired instructions. These two schemes do not update memory specu-
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latively. Gniady et al. [48] use a special buffer, the Store History Queue, to buffer speculative

updates to memory.

2.4.3 Detecting violations

Nearly all technigues discussed above that speculate on memory ordering and speculate
across speculative threads use the cache coherence mechanisms to detect violations. Knight pro-
posed using cache coherence protocols in the context of speculatively parallelizing sequential code
[86]. Subsequently the Herlihy and Moss [66] used the same mechanism for implementing Trans-
actional Memory. Gharachorloo et al. [45] used cache coherence protocols for detecting violations
to memory ordering. Franklin proposed the use of the address resolution buffer for detecting data

races in shared-memory multiprocessors [40].

2.5 Chapter summary

We have presented concepts key for understanding the thesis and have provided a background
into related work in the area of synchronization, concurrency control, and speculative execution.
We use concepts developed in database concurrency control and we use much of the hardware sup-
port proposed for speculative execution in our work.

We do not study barriers as a synchronization method for coordinating activities in a parallel
program. Barriers are well studied [53, 85, 109, 137, 148] and recent work has proposed speculat-
ing past barriers in parallel programs [146]. This thesis is concerned with programs that use

lock-based synchronization.
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Chapter 3

Speculative Lock Elision

This chapter presents Speculative Lock Elidi¢BLE). SLE is a hardware technique to elide
lock operations from a dynamic execution if the locks were not required for correctness. We first
discuss two examples to demonstrate that a lock acquisition may not be necessary for executing a
critical section if data conflicts did not occur among various threads concurrently executing
threads in a particular dynamic execution. Figure 3-1 shows an example from a multithreaded
applicationocean-cont [169]. The C code and the corresponding ALPHA instructions [28] are
shown. Since a store instruction (inst. i12) is present, the lock is required to coordinate access to
the shared structure. Branch instruction (inst. i11) is a mostly taken branch because of conditional
error code calculations and most dynamic executions follow the control path
“7,8,9,10,11,13,14,15” within the critical section where the store instruction (inst. i12) is not exe-
cuted. These executions do not require a lock.

Another example where lock acquisitions may not be necessary is when multiple threads
update disjoint fields of a shared object while holding the shared object lock. A thread-safe hash
table is such an example and is shown in Figure 3-2. This example is similar to an implementation
from SHORE, a database object repository [23]. Although hash lookups and updates can usually
proceed concurrently, the lock prevents such parallelism from being exposed to the microarchitec-
ture, thus serializing execution and limiting performance.

Critical sections provide a mechanism to obtain atomic access (all reads and writes in the crit-

ical section appear to occur atomically and instantaneously) to shared objects (Sect?dﬂéléZ).

1. Elision: the act or an instance of dropping out or omitting something.

2. Since critical sections are a software convention, atomic access (including atomic updates) is possible
only if such a convention is followed. In the presence of unprotected accesses—cases where protected
data is accessed without a lock—critical sections may not provide atomicity of updates.
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. lock ==
L (lock ==0) LOCK(locks->error_lock)
if (local_err > multi->err_multi)

s - )
oA (lock == 0) multi->err_multi = local_err;
branch UNLOCK(locks->error_lock)

(lock := 1)
L1:1. IdItO, O(t1) #t0 = lock
2. bnet0, L1: #if not free, goto L1
3. Idl_It0, O(t1) #load linked, tO = lock
4. bne tO, L1:
5. Idat0, 1(0) #0=1
6. stl_ct0, O(t1) #conditional store, lock = 1
mostly taken 7. beqtO, L1: #if stl_c failed, goto L1
branch 8. Idqt0, 0(s4)
T 9. Idt $f10, 0(t0)
10. cmplt $f10,$f11,$f10
11. fbeq $f10, L2: #if condition, goto L2
12. stt $f11, O(t0) #store to shared structure

L2:13. Idqt1, -31744(gp)
14. Idq t0, O(t1)
15. lIdq t1, 32(t0)
16. stl 0, O(t1) #lock = 0, release lock

(lock := 0)

Figure 3-1: Control-flow induced unnecessary serializatiothe lock acquire and release
sequence is shown shaded. In most executions, threads skip store inst. 12 and thus the lock is not
required. However, this cannot be determined at compile time because in other execution
instances, the store is performed. The lock often unnecessarily serializes execution of multiple
threads.

the appearance of instantaneous change is key. By acquiring a lock, a thread can prevent other
threads from observing any memory updates that are in progress until the lock is released. While
this conventional approach trivially guarantees atomicity of all access (including updates) in the
critical section, it is only one way to achieve atomicity. In this chapter, we present another way to

achieve such atomicity-Speculative Lock Elision (SLE)
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Thread 1 Thread 2

LOCK(hash_table->mutex);
var = hash_table->lookup(X);

if (Ivar)
hash_table.add(X);
UNLOCK(hash_table->mutex);

LOCK(hash_table->mutex);
var = hash_table->lookup(Y);
threads are blocked for if (var)

haSh_ta.ble->muteX hash tableadd(Y)
UNLOCK(hash_table->mutex);

Figure 3-2: Locking-granularity induced unnecessary serializatioixample of a
thread-safe hash table is shown. With good hash functions, conflicts are not common and thus
the operations to the hash table would occur without conflicts. However, access is unnecessar-
ily serialized. A similar thread-safe hash table (the table is protected by a single lock) is used in
[23], a database repository manager.

3.1 Chapter roadmap

The chapter is divided into four parts. The first part (Section 3.2 through Section 3.7) dis-
cusses the concepts behind Speculative Lock Elision. The algorithm of SLE is presented in
Section 3.4. We introduce the concept of silent store-pairs in Section 3.5 and show how it can be
employed to elide lock operations.

The second part, Section 3.9, discusses implementation details of SLE. Included in this sec-
tion is a discussion of identifying regions of speculation, buffering speculative state, conditions for
misspeculation, recovering from misspeculation, and committing speculative state.

The third part comprises of Section 3.10, Section 3.11, and Section 3.12. These sections dis-
cuss SLE’s handling of nested critical sections, and SLE’s interactions with software and hard-
ware.

The fourth part is the rest of the chapter. Related work is contrasted in Section 3.13 and a

chapter summary is presented in Section 3.14.
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reads/write writes reads/write wait on lock
, P [ [T
shared object shared object
shared memory shared memory

Figure 3-3: Data conflict and lock contention.

3.2 Data conflict and lock contention

We distinguish betweedata conflictandlock contentionConsider Figure 3-3. Two threads,

T1 and T2, operate on a shared object (represented as an array of memory locations) in shared
memory. The left half of the figure shows the threads accessing a common data memory location
unprotected by a lock. Alata conflictoccurs if at least one thread is writing to a data memory
location simultaneously while another thread is accessing the same data memory location. In such
situations, atomicity of operations (read and write operations to the data location) cannot be guar-
anteed. The right half of the figure shows the same example but now the array locations are pro-
tected by a lock. Thread T1 owns the lock and performs memory accesses to the memory location
while thread T2 waits for the lock to become free. We call this Vemik contentionSince the lock

only allows one thread to access the object at any time, no data conflicts are experienced and the
threads observe a consistent view of memory.

If the two threads access distinct memory locations, the lock is not required because a data
conflict does not exist. However, this may not be known a priori and the lock is used to serialize
access to the shared array. The lock unnecessarily inhibits concurrent access to the data structure
even though correctness is guaranteed because data conflicts are not present. Thus, only data con-
flicts limit concurrency; lock contention by itself does not. Unfortunately, processors today do not

differentiate between data conflicts and lock contention.
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In shared-memory programming models, memory locations corresponding to lock variables
are treated no different than the data variables they protect—Ilocks and data share the same address
space. The conceptual difference between locks and the data they protect is however fundamen-
tal—locks are the only locations associated with a critical section that may be touched from out-

side the critical section (this is true of programs that are free of data races). Lock contention is an

example of a conflict because multiple threads race for the lock vardattevever, we do not

consider this to be @ata conflictbecause locks are not considered part of the critical section data.

3.3 Enabling concurrency by eliding locks

SLE enables concurrency in multithreaded program execution by removing unnecessary exe-
cution serialization on control variables such as locks.

As we show next, with SLE, lock acquires can be elided and critical sections can be concur-
rently executed and committed if serializability is maintained for all memory operations within the
critical section. Serializability can be maintained by providing the “appearance” of atomicity of all
operations in the critical section. For example, in a distributed system, two events may be initiated
at the same physical time but the propagation delays inherent in the system may make them appear
to have occurred at different instances. While locks enforce ordering of critical sections in physical
time to achieve serializability, critical section executions can also be made to appear serializable
without using locks to enforce ordering.

A processor can provide the appearance of atomicity for memory operations (and thus trivi-
ally provide serializability) within the critical section without acquiring locks by ensuring the par-
tial updates performed by a thread within a critical section are not observed by other threads until
the critical section completes. The desired effect is illustrated in Figure 3-4. The entire critical sec-
tion appears to have executed atomically and program semantics are maintained.

The appropriate memory consistency model must be maintained for ordering the critical sec-
tion operations with operations prior to the critical section and operations after the critical section.
The specific ordering constraints are dependent upon the underlying memory model implemented

and are discussed in Section 3.12.2.

3. The test&set operation for implementing lock acquires constitute a race where multiple threads read the
location while one (or more) threads write the location.
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Thread 1 Thread 2 Thread 3 Thread 4

CSJ\/\ ]
CS3
o nhormal memory operations

CS4 « atomic critical section
CS4 (set of memory operations)

logical ordering

Physical time

-- — - — — — -

CS A lock-free critical section of thread i

Figure 3-4: SLE and global memory orderingVhile critical section executions (without lock
acquires) overlap in physical time (with or without data conflicts), each critical section logically
appears to be inserted atomically and instantly in a logical ordering of memory operations with
respect to other atomically inserted critical sections and individual memory operations.

For serializability, the following conditions must be true for an execution of a speculative

lock-free critical section:

1. Data read within a speculatively executing critical section does not appear to be modified by

another thread before the speculating critical section completes.

2. Data written within a speculatively executing critical section does not appear to be accessed
(read or written) by another thread before the speculative critical section execution completes.

If a data conflict occurs, i.e., two threads access the same data simultaneously other than for
reading, serializability may not be guaranteed (because atomicity of updates cannot be guaranteed)
and the lock needs to be acquired. Any execution not meeting the above two conditions is not
retired architecturally. The tracking of data access by various threads and detection of data con-
flicts among threads rely on hardware mechanisms such as processor caches and cache coherence

protocols. We discuss the details of these mechanisms in Section 3.9.

3.4 An initial algorithm for SLE

The algorithm for SLE is shown in Figure 3-5. A sequence of instructions is identified for

atomic execution—we call this sequence &temic regiom4 SLE aims at providing atomic execu-

4. An atomic region is the same as a critical section except we are allowing multiple threads concurrently
within the critical section. The term critical section typically implies mutual exclusion.
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Figure 3-5: Initial algorithm for SLE. The SLE algorithm is shown shaded. Updates of all
writes performed within the speculative lock-free execution are buffered until commit. The seri-
alizability violation check is performed as the execution proceeds.

tion without requiring lock acquires. When an intent for an atomic execution is observed or pre-

dicted (say, by the processor decoding a synchronization instruction), a prediction regarding

whether the execution can be serializable without locks is performed. If the prediction is made in

favor of speculative lock-free execution (i.e., the probability of having a successful conflict-free

lock-free execution of the critical sections is high and correctness can be guaranteed without lock

acquisitions), SLE is invoked. The lock acquire operation is elided thus leaving the lock variable in

a free state. Doing so removes serialization on the lock variable and other threads can apply the

same algorithm for higher concurrency. The critical section is speculatively executed in a lock-free
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manner. During the speculative execution if any condition precludes serializability, a misspecula-
tion is triggered and execution restarts. Since execution is speculative, any update performed to
memory or registers is speculative and thus must be buffered. End of the speculative execution
region is determined by observing a lock release operation. At such point, the lock release opera-
tion is also elided and the updates (to memory) are committed in an atomic manner.

Even though the lock was not modified, either at the time of the acquire or the release, critical
section semantics are maintained because all operations within the critical section appear to exe-

cute atomically with respect to other memory operations in the system and thus trivially guarantee

serializability® In the event of a misspeculation, a processor may repeat the speculation a bounded
number of times in the event that the execution may still succeed without lock acquisitions. The
number of times the processor restarts before explicitly acquiring the lock iestaat threshold

Forward progress is always guaranteed because the speculation can be forced to fail and the nor-
mal lock-based execution sequence is followed where locks are explicitly acquired.

Semantically, the lock is a control variable employed to provide the illusion of atomicity (by
actually enforcing mutual exclusion) and thus removing the lock variable is acceptable if the illu-
sion of atomicity of memory operations is provided by other mddowever, to show the transfor-
mation of a lock-based execution to a lock-free execution to be correct, we need to study the
instructions executed, independent of the semantics implied by the program. Further, modern
instruction set architectures do not have a special instruction for acquiring and releasing locks.
Instead, they provide atomic read-modify-write primitives that may be used to implement various
locking algorithms and may also be used for various other operations unrelated to locks. Thus,
often hardware does not have sufficient information to decide whether an instruction is accessing a
lock. The processor only observes a sequence of loads, stores and synchronization primitives but
cannot associate semantic information.

In the next section we introduce the notion of silent store-pairs and propose a technique that
allows the transformation shown in Figure 3-5 without requiring precise semantic information

from the software.

5. This is discussed in detail in the appendix at the end of the dissertation. In short, the execution achieved
by SLE corresponds to a legal execution of the critical sections if the locks had indeed been acquired.
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if (lock == UNHELD) /I these two operations
lock = HELD /I are executed atomically
lock = UNHELD
Program Semantic Instruction Stream Value of _lock

as seen byas seen by

self other threads
TEST_lock_ L1:i1 Idl tO, O(t1) FREE FREE
i2 bne toO, L1:
TEST _lock i3 1dl_It0, O(t1) FREE FREE
& i4 bne tO, L1:
SET_lock_ i5 lda t0, 1(0)
i6 stl_c t0, O(t1) HELD FREE
i7 beqtO0, I1:
critical section i8-i15
RELEASE_lock_ i16 stl 0, O(t1) FREE FREE

Figure 3-6: Silent store-pair elision.The locking algorithm shown is test&test&set. Inst. i6
and i16 can be elided if i16 restores the value of _lock_ to its value prior to i6 (i.e., value
returned by i3), and i8 through i15 appear to execute atomically with respect to other threads.
Although the speculating thread elides i6, it still observes the held value itself (because of pro-
gram order requirements within a single thread) but others observe a free value. The test corre-
sponding to instruction il is shown but is not necessary for the elision. The elision relies on two
store instructions; in this case the instructions are i6 and i16.

3.5 Silent store-pair elision

We would like to elide lock acquire and release operations without knowledge of the seman-
tics of the operations but must provide a correct execution. We make a key observation about lock
variables. Lock acquire and release operations comprise store operations that “undo” each other.
The lock acquire operation reads the lock, thaitesthe lock changing its value frorinee to
held . A lock release operation alssrites the lock changing its value frorheld to free .

Figure 3-6 shows memory references of a lock acquire and release sequence in three columns. We
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assume the lock acquire algorithm is based on the popular tet@rssttuctions are numbered in
program order. The first column shows the programmer’s view, the second column shows the oper-
ations performed by the processor, and the third column shows the value of location _lock as seen
by different threads.

If i3 returnsfree , i6 writesheld to location _lock . i16 releases the lock by marking it
free . After the lock release (i16), the value of _lock_is the same as it was at the start of the lock
acquire (i.e., before i6)—i16 restores the value of _lock_ to its value prior to i6. We exploit this
property of store operations to elide lock acquires and releases. If critical section memory opera-
tions appear to occur atomically, then stores i6 and i16 forsilent pair The architectural
changes performed by i6 are undone by i16. When executed as a pair, the staikEhtvecause
the second store undoes the effects of the first thereby not affecting the architectural state due to
the stores; individually, they are not. These two write operations (i6 and i16) delimit the set of
instructions that are executed atomicallgcation _lock _ must not be modified by another thread,
else i6 and i16 cannot form a silent p&ther threads can read memory location _lock .

The above observation means the SLE algorithm need not depend on accurate program
semantic information, specifically whether an operation is a lock acquire or lock release. SLE
merely guesses such information and does not require a validation of the guess. The lock elision
can be done by simply observing load and store sequences and the values read and to be written. If
the location _lock_ is not modified by another thread, and the memory operations in the critical
section appear to execute atomically, the two stores corresponding to i6 and i16 are elided. The
location _lock_is never modified, and other threads can proceed without being serialized on the

value of _lock .

What does store elision imply“Eliding a store means not exposing the new value outside the
processor context and not requesting write permissions for the address. The store instructions are
still fetched, dispatched, and committed by the processor core. In a multithreaded environment, if a

thread elides a store, the value that the store operation would have written to the shared memory

6. This includes the test&test&set algorithm and variants thereof. Discussion regarding other algorithms
such as ticket locks, MCS software queued locks, etc. are found later in the chapter. Note the difference
between a test&set instruction as proposed by the IBM System/360 and the test&set synchronization
algorithm. In the example above, the test&set algorithm is implemented using the load-linked/store-con-
ditional instructions. In the IBM System/360, this would correspond to a single test&set instruction.
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space is not made visible to the other threads. The assumption is that a subsequent store will follow

that will undo the changes made by the first store and thus the two stores would be silent. By elid-
ing stores associated with lock operations, the lock is not written to and exclusive coherence per-
missions arenot required. As a result, memory traffic and latency associated with lock
operations—namely obtaining exclusive permissions on them—can be eliminated.

By maintaining the illusion of atomicity of operations between the two stores that are part of
the silent store-pairs, the entire sequence of operations starting from the first store of the silent
store-pair to the second store of the silent store-pair can be considered atomic because the architec-
tural value of memory locations at the end of the sequence of operations would be identical even if
the elided stores had actually been performed.

Additionally, since the execution of a critical section appears atomic, it can arbitrarily be reor-
dered with respect to the memory operations of other threads (we discuss this later in
Section 3.12.2). However for correctness, one must maintain program dinder the value writ-
ten by the elided store must be visible to the thread that elided the store (even though the value is
not visible to other threads). This is required for maintaining program order and the implications
of doing so are discussed in Section 3.1TRe key point is that coherence ownership of the lock

variable is not required to successfully execute and commit non-conflicting critical sections.

3.6 SLE algorithm using silent store-pair elision

To use SLE when the processor core cannot precisely identify lock acquire and release opera-
tions, we augment the SLE algorithm with the concept of silent store-pairs. An additional predic-
tion is thus added to the algorithm of Figure 3-5. On a store operation, the processor predicts that
the changes performed by the store will be undone shortly by another store, and no other thread
will modify the location in question. If this occurs, the two stores can be elided because the entire
sequence is globally observed to occur atomically and the value of the memory location corre-
sponding to the two store operations remains the same at the start and at the end of the sequence.
The first store can be seen as an approximation of the lock acquire operation and the second store
can be viewed as an approximation of the lock release operation. The new SLE algorithm relying

on silent store-pair elision is shown in Figure 3-7.
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v

predict
P~ silent store-pair

no

speculate?

yes

elide first store
startpredicted
atomic region

s_erial_iza’lgility + normal execution
violation? speculative

execution

serializability

violation? endpredicted

atomic region
elide second stor
commit

k

Figure 3-7: Algorithm for SLE using silent store-pair elisiol.he SLE algorithm is shown
shaded. The second elided store completes the silent store-pair. Unlike Figure 3-5, the algorithm
shown above has no notion of lock acquire or release semantics. The algorithm identifies
regions for atomic execution as delimited by the two stores that form a silent pair.

The key difference between the new algorithm of Figure 3-7 and the earlier algorithm of
Figure 3-5 is that the new algorithm does not rely ssmanticinformation from the program.
Unlike Figure 3-5 where the notion of lock acquires and releases was present in the algorithm, the
new algorithm has no notion of lock acquires and releases. Instead, the speculation is based on the
presence of silent store-pairs.

The critical section is deduced by the presence of silent store-pairs. When the first such store

of the store-pair is identified, a determination regarding speculative execution is made. If the pre-



57

diction is made to elide the store, the store elision is performed and speculative execution mode
entered. The speculation typically ends when the second store of the silent store-pair is encoun-
tered and the speculation is committed. The two stores elided conveniently match the pattern we
are interested in eliding—the lock acquire and release sequence. If the second store is encountered
but it does not undo the effect of the first store, in other words the stores do not form a silent pair,
the second store is performed and a commit is attempted and the processor makes a transition into
a non-speculative mode.

The two stores may not actually correspond to the lock acquire and release operations since
the hardware does not have semantic information. However, a correct execution will nevertheless
be guaranteed—the instructions between the two elided stores will simply appear to be executed

atomically.

3.6.1 Predictions and their resolution in SLE

SLE involves two key predictions that make no assumptions about the program semantics:

1. On a store, predict that another store will shortly follow and undo the changes by this store. The
prediction is resolved without stores being performed (with respect to other threads) but it
requires the memory location (of the stores) to be monitored. If the prediction is validated, the

two stores are elided.

2. Predict that all memory operations within the region bounded by the two elided stores can be
made to appear to execute atomically.
The above predictions do not rely on semantics of the program. In addition, no partial updates
are made visible to other threads until the end of the critical section thus maintaining serializability
of the execution and maintaining critical section semantics. Store elision works because the archi-

tectural state at the end of the second elided store is the same, with or without SLE.

3.6.2 In search of silent store-pairs

A naive implementation of the above algorithm would apply the elision to every store opera-
tion assuming it forms part of a silent store-pair. However, most store-pairs would not form a silent

store-pair. Further, it may not always be possible to exploit such situations.
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Instruction pattern Locatioaddr value pattern
load X, addr FREE
store Y.,“ addr HELD
store X.,“ addr FREE

Figure 3-8: Detecting silent store-pairs patterngle are interested in identifying pairs of store
instructions that match the store address and value pattern shown above. X and Y are values
written to location addr.

We have discussed how common lock operations match the patterns of silent-pairs. Thus, to
detect opportunities for speculation, we only need to detect a silent-pair pattern. Silent store-pairs
can be detected using various techniques. In this dissertation, we use a simple hardware-based pre-

dictor. Alternatively, software annotations can be employed by the compiler to reduce hardware
requirements.

3.6.2.1 Simple hardware predictors

Detecting silent store-pairs involves detecting a sequence of instructions that match the store
pattern of Figure 3-8.

This pattern may match non-lock operations also, but correctness is nevertheless guaranteed.
Whenever such a pattern is detected, an atomic execution of all operations between the two store
operations is attempted and this is always a correct execution. The precise implementation of the
silent-pair predictor depends on the underlying architectural specification.

We must emphasize that while we are interested in eliding locks, our hardware detection
mechanism is not specifically trying to detect locks. The hardwarenig looking for silent
store-pair patterns. Spin-locks often match such a simple silent store-pair pattern and thus we are
able to apply it quite effectively.
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3.6.2.2 Software annotations

As an alternative to hardware-based silent store-pair predictors, compiler hints can also be
used for reducing the hardware required to detect the pattern in Figure 3-8. Importantly, these hints
can be ignored and they need not be correct because program semantics are always guaranteed
because SLE does not rely on this semantic information for correctness. Using software hints how-
ever requires either architectural support (in the form of new instructions) or a convention to pass
information from the software to the hardware (e.g., by using some specific instruction sequences

ornops).

3.6.2.3 Silent store-pairs and non-lock operations

The algorithm detects patterns independent of whether the instructions correspond to a
lock-unlock pair; it does not rely on any semantic information. As such, if any silent store pair
instructions are detected, they will be detected and potentially elided. While it is unclear whether
doing this is useful for non-lock patterns, the technique will automatically detect and exploit such
situations and provide a correct execution. Importantly, SLE will always provide a correct execu-

tion even if it detects non-lock silent store-pairs.

3.7 SLE algorithm example

Figure 3-9 shows the application of SLE to our earlier example Figure 3-1. The modified con-
trol flow is shown on the right with instructions 6 and 16 elided. All threads proceed without seri-
alization. Instructions 1 and 3 bring the _lock_into the cache in a shared state. Instruction 6 is
elided and the modified control flow is speculatively executed. The location _lock_ is monitored

for writes by other threads. All loads executed within the critical section are recorded. All stores

executed within the critical section are temporarily buffefétiinstruction 16 is reached without

any serializability violations, SLE is successful.

7. Requests for exclusive ownership for the corresponding cache blocks are issued to the memory system
but the data updates are not made visible until SLE commits.
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LOCK(locks->error_lock)
if (local_err > multi->err_multi)
multi->err_multi = local_err;

UNLOCK(locks->error_lock)

L1:1. IdltO, O(t1) #t0 = lock
2. bnet0, L1: #if not free, goto L1
3. Idl_It0, O(t1) #load linked, t0 = lock
4. bnetoO, L1:
5. Idato, 1(0) #0=1
6. stl_ctO, 0(t1) #conditional store, lock = 1
7. beqtO, L1: #if stl_c failed, goto L1
8. Idqt0, O(s4)

9. Idt $f10, O(t0)
10. cmplt $f10,$f11,$f10
11. fbeq $f10, L2: #if condition, goto L2
12. stt $f11, 0(t0) #store to shared structure
L2:13. Idqtl, -31744(gp)
14. IdqtO, O(t1)
15. Idq t1, 32(t0)
16. stl 0, O(t1) #lock = 0, release lock

Figure 3-9: Speculative Lock Elision algorithm exampl@ften, branch 11 is taken thus skip-
ping the store inst. 12. The greyed portion on the right graph is not executed. Inst. 6 and 16 are
elided and the code sequence executes with no taken branches between il and i8.
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If the thread cannot record accesses between the two stores, or the hardware cannot maintain

serializability, a misspeculation is triggered, and execution restarts from instruction 6. On a restart,
if the restart threshold has been reached, the lock is acquired and the execution occurs convention-

ally.

3.8 SLE key enablers

In this section, we discuss two key mechanisms that enable SLE implementations easily. The
first is the concept of speculative execution and the second is the emergence of invalidation-based

cache coherence protocols that make detection of data conflicts straightforward.

3.8.1 Speculative execution

The concept of speculative execution is well understood and widely used in modern proces-
sors. Keys to the success of speculative execution include a high probability of success, ability to
buffer speculative state, fast validation of successful speculation, and a low overhead recovery
from misspeculation. SLE handles speculative state (buffering state and recovering from misspec-
ulation) in a way similar to that employed by other common speculative execution techniques and
we discuss this later in Section 3.9.

SLE is unique in the way it validates a successful speculation. As discussed in Section 3.6.1,
predictions involved in SLE are resolved locally without any global information, other than the
cache coherence information, being exchanged across multiple processors (even though SLE is an
optimization that affects executions on multiple processors). While SLE elides locks and thus does
not perform lock acquisitionsialidating a successful lock-free execution of a critical section does
not require a lock acquisitionThe success is determined by simply observing the local memory
interface and the absence of any misspeculation events (such as data conflicts) by the end of the
critical section is sufficient validation of success. Thus, the validation latency for SLE in the event

of successful speculation is essentially nonexistent.

3.8.2 Cache coherence protocols

We revisit the discussion about ownership-based cache coherence protocols (Section 2.1.2).

When a data block not present in the cache is accessed, the cache coherence protocol is triggered
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and the block is brought into the cache. Writing the data block requires the cache to have exclusive
write permissions for the block. This is done by invalidating all shared copies of the block in other
caches. Once other caches have been invalidated, the local copy can be modified if necessary.
Exclusive permissions force other processors to request the latest architecturally correct data copy
from the exclusive owner of the block.

The above protocol functionality provides us with two capabilities. First, accessed data is eas-
ily tracked by local caching. Second, data conflicts are detected trivially—writes to shared data
trigger invalidation messages to sharers, and requests to exclusively owned blocks are automati-
cally forwarded to the exclusive owner. The coherence protocol typically tracks cache blocks
rather than individual words of the cache block. As a result, the information tracked is conservative
because of the potential for false sharing. While the information may not be precise it will be cor-
rect because it is conservative. This is discussed in detail later in Section 3.12.3 where we discuss

SLE'’s interactions with false sharing.

3.9 SLE implementation

We now show how SLE can be implemented using well understood and commonly used tech-
nigues. Assume the locking algorithm discussed in Section 3.5 for the discussion in this section.
Other locking algorithms are discussed in Section 3.11.4. The architecture provides the
load-linked/store-conditional synchronization primitives for implementing locks.

Four aspects of implementing SLE are:

=

. Identifying speculation regiofisnd initiating speculation
2. Speculative execution and buffering speculative state
3. Committing speculative state

4. Detecting and handling misspeculation conditions

oo

. Ideally this corresponds to a critical section. However, because the processor core does not know whether
a region is indeed a critical section, we refer to the region as a speculation region.
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3.9.1 ldentifying speculation regions and initiating speculation

Once the start point of a speculation region is identified, speculative execution mode is
entered. The mode is exited when the region end is detected. In this section we discuss an imple-
mentation for identifying these regions, identifying the memory operations in these regions, and

actions performed when speculation is initiated.

3.9.1.1 Identifying start and end points

As discussed in Section 3.6, SLE looks for silent store-pairs for identifying regions for specu-
lation. Detailed discussions about various ways to identify such regions can be found in

Section 3.6.2 and here we discuss one implementation we use in our experiments.

Region start. The start of the speculation region is identified by looking for a candidate store
instruction predicted to be the first store of the silent store-pair to be elided. Once the candidate
store instruction is decoded, a confidence prediction table is consulted to determine whether the
store elision should be performed. The confidence table records among other information, a his-
tory of success in correctly identifying this store to belong to a silent store-pair, and a successful
elision. This confidence prediction is mainly to identify conditions where store-pair elision is not
successful and may hurt performance due to frequent conflicts or due to resource and other con-
straints. If the prediction is made to apply the store-pair elision, then the processor enters specula-
tion mode when this elided store is speculatively retired. Speculative retirement here means
instruction retirement in SLE mode. All uniprocessor program order retirement rules are main-
tained.

Since only the store of the lock acquire is elided, the instructions in the critical section exe-
cute normally. The processor core is unaware of a spin loop of the lock acquire algorithm. For
example, if the lock is already held by another thread, the lock acquire algorithm spins (by per-
forming load operations) and waits for the lock to be released. Under SLE, the spin would also
occur because SLE is only concerned with the store operations associated with the lock acquire
and release and treats load operations normally. Thus SLE will automatically not enter speculation
mode. Similarly, if the load operation of the test returns a held lock, the algorithm may do some-

thing else (such as yield or execute other code sequences) and under SLE the same sequence
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would also occur. Remember this will only happen if SLE could not be applied otherwise due to
lack of exploitable concurrency and some other thread then acquired the lock.

The older and newer value of the location to which the store has been elided, is recorded in a
hardware structure along with the address of the location. This is done to detect and handle silent
store-pairs. We discuss handling multiple silent store-pairs later in Section 3.10 where we discuss
nested critical sections.

While every store instruction can be considered while determining the starting point of a
speculation region, to keep the confidence table size small one implementation may use only the
store-conditional instruction as a candidate for the first store of the predicted silent store-pair. This
is because lock acquires are often implemented using the load-linked/store-conditional instruc-

tions or some similar atomic read-modify-write primitive.

Region end. The end of the speculation region is identified by the second store of the silent
store-pair. This is done by observing the retirement stream and identifying a store operation that
completes the silence prediction of the two stores of the silent-store pair to be elided. Every store
instruction is analyzed because a lock release operation may be implemented using a simple store
operation (i.e., not a store-conditional or any such special primitive).

The identified region may not actually correspond to a critical section since the hardware does
not have semantic information. However, a correct execution will nevertheless be guaranteed—the

instructions between the two elided stores will simply appear to be executed atomically.

3.9.1.2 Identifying speculation region memory operations

Memory operations that are part of the predicted speculation region (critical section) must be
identified. These operations correspond to all memory operations speculatively retired between the
start and end regions of atomic execution. By identifying these operations, data accesses within the
lock-free transaction are tracked and any data conflicts detected. Again, compiler support can be
used for identifying these operations but we focus on hardware-only techniques in this discussion.

Consider Figure 3-10. The processor reorder buffer is conceptually shown with the head of
the reorder buffer to the right. For ease of explanation, assume instructions in the reorder buffer are
also the instructions in the instruction window of the processor core. Assume the critical section is

identified by region_start and region_endand is somewhere in the instruction window. In



65

operations in instruction window reorder buffer head

:

Idg ... sg ...region_enql.. St ... lds ... 105 ... 10, .. region_start... Iz ... sb ... Idy ...

reorder buffer

memory operations in atomic region

Figure 3-10: Identifying memory operations within a critical sectiolm a modern
out-of-order processor, memory operations may issue from anywhere in the window. The pro-
cessor has no clear way of identifying the operations that indeed belong to the critical section.
For example, the processor cannot distinguish between operatipasddd;.

out-of-order processors, loads from anywhere in the window may issue in any order. Thus, the
core has no clear way of differentiating between sawpidl Ig;.

A simple and conservative way to identify the operations within the critical section (ise., Id
Ids, and Ig) is by assuming all memory operations issued while a critical section is predicted to be
in the instruction window. Thus, whergion_startis decoded, any subsequent memory load oper-
ations are assumed to be part of the critical section. For example, assume the current instruction
window is as shown anekgion_starthas not retired (i.e., SLE mode has not been entered), gnd Id
operation is issued to the memory system. The processor conservatively assyasgsed of the
critical section even though clearly it is not. Thus, the data set is dilated due to the out-of-order
issue characteristics of modern processors.

Alternatively, a bit can be associated with every load operation in the core. Since instructions
are decoded and dispatched in program order, the bit for the load operation is set only if a
region_starthas been decoded and dispatched. This helps in differentiating precisely between
operation I¢ and say operation {d Since the operation will only retire (speculatively) when SLE

mode has been entered, at that time the bit is checked. If the bit is not set and the instruction is



66
retiring in SLE mode, the instruction must be re-executed. This check is required to handle situa-
tions where arbitrary goto code sequences may be present jumping into critical sections without
the lock acquire sequence. A disadvantage of this approach is that the bit must be carried along the
processor core pipeline with the instruction. An advantage is that the load data set is precisely

identified. Store operations do not have the issue of dilation.

3.9.1.3 Actions in initiating speculation

Once a candidate store is ready for speculative elision, the processor enters SLE speculation
mode. Before entering this mode, the processor register state must be stored for recovering in the
event of a misspeculation. Only a single register checkpoint is typically sufficient. Store-pair eli-
sions simply eliminate write requests to the memory system and prevent the values of the stores
from being observed by the other threads whereas the checkpoint serves as a recovery point in the
event that the atomic execution of the speculation region (which may consist of multiple nestling
in the form of multiple silent store-pairs) could not be successful. At this point, we know the
regions for speculation, and the memory operations predicted to be part of the region. For ease of
discussion, we consider single nesting even though multiple store-pair elisions may be performed.
We discuss handling nested critical sections later in Section 3.10. In short, multiple silent

store-pairs may be elided automatically using little additional hardware.

3.9.2 Speculative execution and buffering of speculative state

During SLE, all instructions (included the first elided store discussed in the above section) are
speculatively retired—they are not committed to architectural state until after SLE successfully
completes. Uniprocessor retirement rules are maintained; i.e., an instruction is speculatively
retired only if it is determined to be correct according to the microarchitecture specification. Two
aspects to be handled during speculative execution are: buffering speculative register state and

speculative memory state. We discuss these two aspects in the following sections.

3.9.2.1 Buffering processor register state

Most modern microprocessors support speculative execution where processor register state is

speculatively modified. In the event of a misspeculation, the architecturally correct processor reg-
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ister state is restored and any speculative updates are discarded. Examples of such techniques are
branch-prediction-based speculative execution where control flow prediction is made and execu-
tion is based on the prediction. If a branch mispredict is detected, the architected register state
prior to the incorrect prediction is restored.

In the simplest SLE implementation, only a single restoration point is required. This point
corresponds to the architected state just prior to entering SLE mode independent of the nesting of
critical sections. A single checkpoint is sufficient and optimizations for finer checkpoints can be
considered if necessary. Multiple checkpoint optimizations are however not necessary for handling
and eliding nested critical section locks.

Smith and Pleszkun [153] discuss various schemes for buffering speculative updates to pro-
cessor register state such as history buffers, future files, reorder buffers, etc. Techniques discussed
in this section are well understood and well studied in literature and have been proposed by
researchers for optimizations other than SLE. Two techniques applicable to SLE we discuss are:

using the reorder buffer, and using a register checkpoint approach.

Using the reorder buffer (ROB). The ROB can be used to buffer all speculative updates to
registers in a manner similar to branch-prediction-based speculative execution techniques. The
same mechanisms for branch prediction are employed (except in this case, the speculative execu-
tion is based on a silent store-pair prediction rather than a branch prediction) and the recovery
mechanisms are identical. Instructions (including loads and stores) are speculatively retired but not
removed from the ROB until after SLE is validated.

The disadvantage of using the ROB is the limitation on the size of the critical section (the
dynamic instruction count of the critical section) that can be speculatively executed. Additionally,
the commit rate of the critical section at the end of SLE validation is limited by the commit band-
width of the core: for Ny, instdynamic instructions in the critical section speculatively executed
and N.ommit_bwPe€ing the number of instructions that the core can retire in a single cycle (assum-
ing all instructions are treated equal at retirement time), the core takes at legst{M

Ncommit bw Cycles to retire the speculative execution to architectural state.

Using a register checkpointThe checkpoint may either be of the register state itself or of the
register dependence maps. The latter case may place restrictions on how physical registers are

freed. Prior to entry into SLE mode, an appropriate checkpoint is created. On a misspeculation, the
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checkpoint is restored and the instructions are re-executed similar to a branch misprediction recov-
ery event. Instructions (including loads and stores) on being speculatively retired can be removed
from the ROB.

Using a checkpoint approach frees the limitation of the critical section size (dynamic instruc-
tion counts) on the reorder buffer size because in the event of a misspeculation, an architecturally

correct register state is available for recovery in the form of a single checkpoint.

3.9.2.2 Buffering processor memory state

Although most modern processors support speculative execution of load instructions, they do
not retire store instructions speculatively; store instructions are only removed from the reorder
buffer once their program order and memory consistency requirements have been maintained and
their values are written to the memory system (including the cache) once the stores are known to
be non-speculative. SLE, like other proposals for speculation [48, 61, 154, 156], uses speculative

store retirement.

Use the processor write buffer.In the proposed implementation, the processor write buffer,
lying between the processor and the level-one cache, is augmented to buffer speculative store val-
ues. While the write buffer is used to store speculative memory updates, the speculative values are
not committed to the cache and the lower memory hierarchy until after SLE is successfully vali-
dated. On a misspeculation, the speculative memory updates in the write buffer are discarded.

An advantage of the write buffer approach is that an architecturally correct value for an
address (to which a speculative store has been retired) is always available in the processor cache in
the event of a misspeculation and the cache does not require support for speculative store buffer-
ing.

As an additional benefit, under SLE, speculative writes can now be merged in the write buffer,

independenbf the memory consistency model. For example, while sequential consistency and

processor consistency prevent some write operations from being merged in the writ® bufier
SLE the merging is legal. This is possible because, for successful speculation, all memory accesses

are guaranteed to appear to complete atomically. The write buffer size limits the number of unique

9. This is true under conventional implementations. One can construct complex implementations where
such support may be possible.



69
cache blocks modified in the critical section and does not restrict the dynamic number of store

instructions executed in the critical section.

Use the processor cacheAlternatively, the speculative memory state can be exposed to the
processor caches. Other proposals have been made for allowing caches to buffer speculative state
[42, 52, 61, 155] and these proposals can be adapted for use in SLE. The requirement, as is the
case for any speculative technique that allows stores to retire speculatively, is that an architectur-
ally correct value of the speculatively modified cache block must be available in the event of a mis-
speculation. This can be achieved by using a special buffer below the level-one cache to store the

architecturally correct values or using the level-two cache for doing so [155].

3.9.3 Committing speculative state

The discussion in this section focuses on committing register state and committing specula-

tive memory state when speculation is successful.

3.9.3.1 Committing processor register state

If the reorder buffer approach is used to implement SLE, the processor core retires instruc-
tions at its peak commit bandwidth and the architected registers are written.

If the register checkpoint approach is used, the processor simply discards the register check-
point created at the start of speculation. Since under speculative retirement, the registers are
already being written to, the current register state is marked as being non-speculative (with respect
to SLE). Note, the processor may perform speculative execution (e.g., branch prediction and data

value prediction driven speculative execution) with and without SLE.

3.9.3.2 Committing processor memory state

Committing memory state requires ensuring that buffered speculative stores are committed
and made visiblénstantaneouslyo the memory system—they must appear to execute atomically.
We exploit cache coherence protocols for doing so. Processor caches have two aspects: 1) data,
and 2) state. The cache coherence protocol determines state transitions of cache block state.

Importantly, these state transitions can occur speculatively as long as the data is not changed spec-
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ulatively. This is how speculative loads and exclusive prefetches (operations that bring data in
exclusive state into caches) are issued in modern processors. We use these two aspects in perform-

ing atomic memory commit without making any change to the cache coherence protocol.

Using non-binding exclusive prefetcheswhen a speculative store is added to the write
buffer, a non-binding request for exclusive ownership of the cache block is sent to the memory sys-
tem. The request is non-binding because the block, once brought into the local cache, remains
exposed to the coherence protocol. The request initiates pre-existing state transitions in the coher-
ence protocol and brings the cache block into the local cache in the exclusive state. Natehine

block data is not speculativespeculative data is buffered in the write buffer. When the critical
section ends (i.e., the second elided store is encountered), all speculative entries in the write buffer
will have a corresponding block in exclusive state in the cache, otherwise a misspeculation would
have been triggered earlier. At this point, the write buffer is marked as having the latest architec-

tural state.

Draining the speculative write buffer. The instantaneous commit is possible because the
process of marking the write buffer as having the latest state involves setting one bit—exclusive
permissions have already been obtained for all speculatively updated and buffered blocks. One
approach is to add functionality to the write buffer of being able to source data for requests from
other threads. Alternatively, the write buffer can be lazily drained into the cache as needed or tem-
porarily stalling the processing of incoming requests from the lower memory hierarchy while the
write buffer is drained. Note, however, that a read to such a location from another processor must
be serviced perhaps with a small delay—with the recently modified value. During the draining of
the write buffer entries into the cache, no deadlock possibilities exist because all required exclu-
sive permissions have been obtained in the cache for the appropriate cache blocks. The draining
process must be atomic and during the process, any interrupts must be delayed until after the
draining is complete. All external requests to the cache must also be delayed. This delay is how-
ever bounded because all blocks are available in the cache in appropriate state (no miss will occur
during the draining process) and the delay is a function of the number of speculative entries in the

write buffer and the latency of writing a block into the level-one cache.
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If all appropriate blocks are not yet in the local cache in appropriate state (exclusive or
shared), then speculative execution can proceed until the blocks corresponding to the write buffer

are available in appropriate state.

3.9.4 Detecting and handling misspeculation conditions

We now discuss conditions under which SLE may trigger a misspeculation and mechanisms

to handle such situations.

3.9.4.1 Misspeculation conditions

A misspeculation is triggered only if misspeculation conditions occur while the processor is
in SLE mode. The misspeculation conditions under SLE are 1) atomicity violations, and 2) viola-
tions due to limited resources.

An atomicity violation potentially occurs when at least two threads perform competing
accesses to a common memory location and one thread is in its speculative lock-free critical sec-
tion execution mode. This may prevent an atomic commit of memory operations and thus prevent
serializability from being maintained.

Resource-limitation-induced violations occur when the processor in SLE mode cannot buffer
speculative state. This includes, buffering speculative memory updates, or an inability to maintain
book-keeping information (e.g., tracking data locations accessed by the speculative transaction) to

detect atomicity violations.

3.9.4.2 Atomicity-violation induced misspeculation

Atomicity violations are detected using the cache coherence protocol. As discussed earlier
(Section 2.1.2), cache coherence is a mechanism to propagate memory updates to other caches and
make memory operations visible to other processors. Invalidation-based coherence protocols guar-
antee an exclusive copy of the memory block in the local cache when a store is performed. Since
most modern processor systems already implement some form of invalidation-based coherence
control as part of the cache hierarchy, the mechanism for detecting conflicts (i.e., among simulta-
neous operations to a given memory location, at least one is a write operation) already exists on

most processors. Using the coherence protocol to detect data conflicts and using the coherence
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granularity as the granularity for sharing results in false positives due to false sharing. These situa-
tions are treated as true sharing by SLE and we discuss this later in Section 3.12.3.

A mechanism to track data locations accessed within the speculative lock-free critical section,
including the lock variable itself, is required. We discuss two such mechanisms: 1) using the pro-

cessor load/store queue, and 2) augmenting the local cache to record blocks accessed.

Using the load/store queueSome modern processors such as the MIPS R10K [170] and the
Intel Pentium 4 [70] allow aggressive implementations of memory models by allowing loads to
issue speculatively similar to the proposal by Gharachorloo et al. [45]. The speculatively issued
loads are tracked using the load/store queue (LSQ). If an invalidation is received from the coher-
ency mechanism and the invalidation reaches the core, the LSQ is snooped to determine whether a
memory consistency violation may have occurred. If SLE is implemented using the ROB approach
discussed above, then the LSQ itself could be used to track speculatively issued memory opera-
tions (both loads and stores). The additional functionality would be to snoop the LSQ if external
requests are received for data blocks that have speculatively been modified during SLE.

If the register checkpoint approach is adopted for implementing SLE, then the LSQ alone
cannot be used to track atomicity violations because memory operations may speculatively retire
and be speculatively removed from the ROB (and thus the LSQ). Note, this is a greater concern for
loads because store values are buffered in the write buffer and hence they are implicitly tracked
(the write buffer must be snooped in such cases if the LSQ is used for tracking data sets). For the
checkpoint approach, a table at the cache could be employed that records all addresses accessed
and is matched in parallel with a cache lookup to detect conflicts. Alternatively, the cache tags

themselves could be extended to track blocks accessed. We discuss the latter approach next.

Augmenting the local cacheEach cache block is augmented withspeculative access bit.

Every memory access issued by the processor core and predicted to belong to the critical section
sets the speculative access bit for the corresponding cache block. The identification of memory
accesses predicted to belong to the critical section was discussed in Section 3.9.1.2. When an
external request is received by the coherency controller, the local cache is already snooped (to
maintain cache coherence). The additional bit is also tested in parallel with the cache tag lookup. A

data conflict occurs if any of the following occurs:

1. An external invalidate request to a cache block with a set speculative access bit.
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Figure 3-11: Handling multiple critical sections in instruction windovDut-of-order proces-

sors allow memory operations to be simultaneously issued from multiple critical sections if these
critical sections are present in the instruction window at the same time. In such situations, the
speculative access bits may not be reset at the end of the first critical section because these
accesses may also correspond to the subsequent uncommitted critical sections in the instruction
window.

2. An external read request to a cache block to which the processor has speculatively retired a
store (i.e., a write has been performed to that location by the processor) and the block’s specu-
lative access bit is set.

In condition 2, the speculative value is buffered in the write buffer and the cache is only used
to track whether a write has been performed to the location. Alternatively, the write buffer may

also be snooped to determine such conflicts. In a MOESI cache coherence protocol

(Section 2.1.2), condition 2 corresponds to a cache block in the M (modified])ostate.

On misspeculation and processor commit events, the speculative access bit may be reset for
all cache blocks using a technique such as flash invalidation [106]. The speculative access bit may
be reset only if the processor determines it has not issued any subsequent memory operations
belonging to a later uncommitted critical section. Consider Figure 3-11. The first critical section

retiring is identified byregion_end at the head of the ROB. However, at this moment, another

10.This is not quite accurate. The discussion here also includes the case where the cache block might have
been in the M state before the processor entered speculative execution mode. To differentiate between
such cases, a second bit (speculative dirty bit) can be used to track whether the block has been written to
within the critical section.
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atomic region is in the processor core identifiedregion_begip andregion_end. If this is an
out-of-order core implementation, memory operations from the second atomic region may also
have issued and may have set the speculative access bit for the corresponding cache block. Thus,
the speculative access bits must not be reset if the first atomic region commits and another is pre-
dicted to be in the processor core. This is mainly because the processor core has no simple way to
differentiate between memory operations within a critical section from those issued outside critical
sections. Further optimizations are possible but we do not discuss them.

The above scheme is independent of the number of cache levels in the local hierarchy because
all caches maintain coherence and any requests that require coherence state transitions (these also
correspond to the requests that trigger conflicts) are propagated to all coherent caches automati-

cally by the existing cache coherence protocols.

3.9.4.3 Resource-constraint induced misspeculation

Limited resourcesnayforce a misspeculation. Since we use the cache coherence protocol to
track data accesses and detect conflicts, situations that make it impossible to track data accessed
and detect conflicts may result in a misspeculation. Note that while resource constraints are a fun-
damental limitation, they can be made small (arbitrarily unimportant) by providing additional
resources.

Common conditions for possible misspeculation are:

1. Finite cache size or associativitlf the cache is used to track the lock and data accesses within
a critical section, the finite size of the cache restricts the data set size that can be tracked specu-
latively. The associativity of the cache also places a limit because conflict misses force evic-
tions of cache blocks. Well known and well understood techniques for handling such situations
exist, such as victim caches [79]. Victim caches are small, fast, fully associative structures that
buffer cache blocks evicted from the main cache due to conflict and capacity misses. The victim
cache can be extended with a speculative access bit per entry to track the cache blocks. The
issue of sufficient buffering resources is an engineering decision involving a trade-off. While
more resources can be provided, caches today are sufficiently large to buffer most critical sec-

tions.
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2. Finite write buffer sizeSince the write buffer is used to buffer speculative memory updates, its
size restricts the number of static addresses that can be written to within a critical section. Note,
since stores are retired (speculatively) in program order the write buffer has the precise stores
within the critical section. This is because once in SLE mode (when the candidate silent
store-pair is elided), the processor sends all store updates to the write buffer. Since writes are
merged in the write buffer and memory locations can be rewritten within the write buffer
(because atomicity is guaranteed), the number of unique cache blocks written to within the crit-

ical section is limited by the size of the write buffer.

3. Finite reorder buffer sizeThe ROB size restriction exists only if the reorder buffer approach for
implementing SLE is adopted. This works well for small critical sections but may not work for
larger critical sections. The size of the critical section here is determined by the number

dynamic instructions executed and retired within the critical section.

4. Uncached accesses and other such evéritese are events that occur within a critical section
where the processor cannot use the cache coherence protocol for tracking accessed memory
locations. Examples of such events are uncached memory accesses or certain operating system

events, such as I/O, that may prevent tracking data accesses.

5. Instructions that cannot be undorlastruction set architectures may have certain instructions
where their effects cannot be undone. These instructions cannot be executed speculatively.
Such instructions may involve operations that force caches to be flushed. Included here are

memory mapped I/O operations that may require immediate external visibility.

6. Expiration of operating system scheduling quantilinthe time to execute a critical section is
longer than the operating system scheduling quantum assigned for that thread, the thread will
be descheduled by the operating system. An operating-system-induced descheduling event

results in a misspeculation being triggered.

Misspeculation conditions need not always trigger misspeculationie have listed
common misspeculation conditions above. If any situation arises that cannot be handled easily, the
lock can always be acquired and a correct execution guaranteed. A misspeculation need not be
triggered for all of the conditions listed. For example, for cache-size-limitation-induced and
write-buffer-size-limitation-induced misspeculation conditions, one approach is to stall the proces-

sor and allow the elided store (which was buffered at the start of SLE mode) to go to the memory



76
system. This essentially emulates the acquiring of the lock (without having to misspeculate, and
re-execute the lock acquire code sequence). If the write operation succeeds, the processor state can
be assumed committed. This is because writes to a given location are serialized by the cache
coherence protocol (Section 2.1.2) and only one such write succeeds while the invalidation request
generated by this write would trigger a misspeculation in all other processors forcing them to
restart. The current processor can then find itself within its critical section (by virtue of having suc-

cessfully acquired the lock) and all speculative work performed is committed.

3.9.4.4 Handling other misspeculation conditions

An advantage of SLE is that in the event of unexpected conditions, the lock can always be
acquired and a correct execution guaranteed along with forward progress. If silent store-pair pre-
dictors are employed, then no guarantee can be made regarding whether the second store of the
silent-store pair will be encountered. In such an event, execution may proceed for a while before
the processor runs out of buffer space. However, the problem may be more acute where one can
consider a malicious critical section. In such a critical section, the thread acquires the lock, and
goes into an infinite loop. In other words, the program is broken. However, SLE must reproduce
the error faithfully. To handle such situationgdime-outmechanism is employed. The time-out
mechanism tracks the number of dynamic instructions executed within a critical section (on the

order of 10s of thousands of instructions and will typically be less than the instructions that typi-

cally execute in a given operating systems scheduling quarth@jce a time-out threshold is
achieved, a misspeculation is triggered and the execution is restarted. After a preset number of
restarts (the restart threshold), the lock is acquired, thus guaranteeing a correct execution with for-

ward progress even under unexpected and unknown conditions.

11.The number chosen here is somewhat arbitrary but is one way to guarantee that the processor does not
speculate forever.
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Figure 3-12: A microarchitectural implementation of SLHhe additional hardware is
shown shaded. All changes are made within the processor core and additional bits for the
level-one cache.

3.9.4.5 Recovering from misspeculation

On a misspeculation, the execution restarts. The architected register state is restored and the

speculative write buffer entries are discarded. All speculative access bits in the cache are reset if

necessary?

SLE may be reapplied. However, the processor core may decide to acquire the lock once the
restart threshold is reached or certain conditions (as discussed earlier) make it necessary to acquire
the lock. If a thread acquires the lock on a restart, the lock variable (cached in shared state) is writ-
ten to. This automatically triggers the coherence protocol and invalidate messages are sent to all
sharers of the cache block containing the lock variable. This is already handled by the conventional
cache coherence protocol. Thus, all other speculating threads are automatically informed if the
lock is acquired, forcing them to misspeculate if in speculation mode.

Figure 3-12 shows a design point for SLE. The SLE additions are shown shaded. All modifi-

cations are within the processor complex.

12.See Section 3.9.2 and Figure 3-11 for the situations involving multiple critical sections simultaneously in
the reorder buffer where the speculative access bits must not be reset.
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3.10 SLE and nested critical sections

We now discuss how nested critical sections are handled under SLE. In Section 3.10.1, we
first discuss the simplest approach of handling nesting by essentially not eliding nested locks.
Then we show how modest hardware can be used to apply SLE to properly nested critical sections
in Section 3.10.2 and then discuss how SLE interacts with improperly nested critical sections in
Section 3.10.3.

3.10.1 Trivially handling nested critical sections

The simplest SLE implementation would apply elision to a single store-pair. Thus, it would
handle only one lock at a time for elision. If the processors enters SLE mode and subsequently
encounters nested locks (at least conceptually because the processor does not quite have a notion
of locks), these nested locks are treated as normal memory operations. In other words, the write
operations corresponding to the lock acquire and releases are performed to these nested locks. If
another thread reads the value of the nested lock, it will trigger a misspeculation because the
nested locks are treated as normal data operations. If the outermost nesting cannot be elided
because of resource limitations, SLE will acquire the outermost lock and then apply SLE to the

next inner level—applying SLE one-at-a-time.

3.10.2 Handling properly nested critical sections

We now discuss how SLE can be easily extended to handle nested critical sections. Consider
Figure 3-13. The solid black circles correspond to lock acquire, the crossed solid black circles cor-
respond to lock releases, and the white circles correspond to accesses to data protected by the
locks. Further assume the value 1 corresponds to a held lock and the value 0 corresponds to a free
lock. The program execution and commit stream as seen by the processor is shown in the top part
of the figure with time progressing to the right. Multiple locks are acquired and released in the
sequence. The same execution is expanded in detail in the lower part of the figure. For conve-
nience, assume the number of nesting levels,4. Four horizontal lines are shown corresponding

to the execution of each nesting level. The white circles on each line correspond to the data
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Figure 3-13: Handling properly nested critical sectioriBhe program execution is shown
above and the execution is expanded in the lower part of the figure. The various levels of nesting
are shown and the initial and final values of the nested locks are also shown. A simple hardware
stack mechanism is employed to apply store-pair elision to every level of nesting.

accesses protected by the appropriate lock. While the programmer may be able to determine which
data is protected by which nested lock, this is not possible to determine dynamically in the inter-
leaved execution stream as seen by the processor. To be conservative, the outermgsptoek L
tects all data accesses below itself; i.e., ley@ratects all data accessed by levehhd below.

Assume [, corresponds to the lock at each level. The initial and final values of the varigble L
are shown. The solid black circle and the crossed solid black circle on each line make a silent
store-pair. Multiple silent store-pair elisions can be performed if sufficient hardware is provided to
track the multiple silent store-pairs. A simple stack mechanism is used to track silence if the criti-
cal sections are properly nested. Even if multiple silent store-pairs are elided, only a single check-

point of register state is necessary.
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Figure 3-14: Handling improperly nested critical sectionalthough the inner locks are not

properly nested, the overall execution shows proper nesting because silence of lock variables is
maintained.

3.10.3 Handling improperly nested critical sections

Figure 3-14 shows an example of improperly nested inner critical sections. These can also be
handled as long as silence of all elided stores is maintained.

Note, store-pair elision only eliminates the write requests to the memory system and is
unaware of the notion of nesting levels. If a silent store-pair region cannot be identified, store eli-
sion cannot be performed. Further, if the data accessed by lgwelrinot be buffered in the local
cache hierarchy, its lock is acquired but the inner levels are still candidates for elision.

A complex critical section nesting is shown in Figure 3-15. Here, a new lock is acquired
before the earlier lock is released and thus improper nesting is present throughout the execution.
This is similar to a B-Tree walking algorithm [12, 43]. If only a single level of silent store-pair is

exploited, then every second lock is acquired. Thus the outermost is not acquired but the next level
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Figure 3-15: Handling complex improperly nested critical sectiofrs. this example, every
level is improperly nested.

lock is acquired and so on. As the number of levels to be exploited increases, so does the pressure
on local caching resources. In the case of B-Tree locking, the root is not locked in our example.
Note, additional hardware is required to track the nesting. However, if the nesting level for the
silent store-pairs crosses the hardware provided limit, elision is not performed and the stores (cor-
responding to the predicted lock operations) are executed if necessary, and thus a correct execution

is always guaranteed. Again, a correct execution results because semantically the critical section is
executed in an atomic manner.

3.10.4 SLE and recursive critical sections

In recursive critical sections, a thread may repeatedly acquire a lock but increments a counter
field associated with the lock. Here also there is silence but across a range rather than a pair. The

silent store-pair is separated by a series of increments in between. This may be handled if the
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silence of store-pairs is maintained but hardware resources are required to track the level of recur-

sion. We leave adapting SLE for recursive critical sections as future work.

3.11 SLE interactions with software

In this section, we discuss interactions between SLE and software. We first discuss the for-
ward progress guarantee that SLE maintains (Section 3.11.1). We also discuss how SLE does not
change program semantics (Section 3.11.2), SLE interactions with programs that make timing
assumptions (Section 3.11.3), and SLE interactions with various synchronization algorithms

(Section 3.11.4). Finally we discuss SLE interactions with thread scheduling (Section 3.11.5).

3.11.1 SLE and forward progress

SLE always guarantees forward progress (similar to the implementation of the locking algo-
rithm itself) because the lock can always be acquired if necessary. SLE does not change this guar-

antee (or lack thereof) or make it any worse.

3.11.2 Interactions with program semantics

In this section, we discuss how SLE does not rely on program semantics for a correct execu-

tion and how SLE does not change any program semantics.

SLE does not rely on program semanticsMe now discuss why SLE guarantees a correct
execution even in the absence of precise semantic information from the software and independent
of nesting levels and memory ordering. As mentioned earlier, SLE involves two predictions that

are resolved locally:

1. On a store, predict that another store will shortly follow and undo the changes by this store. The
prediction is resolved without stores being performed but it requires the memory location (of

the stores) to be monitored. If the prediction is validated, the two stores are elided.

2. Predict that all memory operations within the window bounded by the two elided stores can
occur atomically. This prediction is resolved by using preexisting cache coherence mecha-

nisms.
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Thread 1 Thread 2

assert (LOCK_IS_FREE(lock) );

LOCK_ACQUIRE(lock); LOCK_ACQUIRE(lock);
assert (LOCK_IS_HELD(lock) ); assert (LOCK_IS_HELD(lock) );
LOCK_RELEASE(lock); LOCK_RELEASE(lock);

Figure 3-16: SLE does not change program semantit&o non-conflicting thread executions

are shown. Both assertions in the threads evaluate true because program order is maintained
even though the lock has been elided. Thread 1 observes a held lock within its critical section
while thread 2 observes a held lock outside its critical section.

The above predictions do not rely on semantics of the program (a silent store-pair predictor is
used to identify loads/stores as candidates for prediction 1 but is not integral to the idea and soft-
ware could alternatively provide these hints).

If another thread explicitly acquires the lock by writing to it, a misspeculation is triggered
because the write will be automatically observed by all speculating threads (because the lock is
also tracked in a shared state by the speculating processors). This trivially guarantees correctness
even when one thread is speculating and another thread acquires the lock.

Since SLE does not rely on program semantics (and only relies on silent store-pair predic-
tions), SLE does not require software support for correctness. However, software support can

always help performance issues as discussed in a later discussion on false sharing (Section 3.12.3).

SLE does not change program semantic3wo thread executions are shown in Figure 3-16.
Assume SLE is successful and the lock is elided and the two critical sections did not observe any
data conflicts while executing. No timing assumptions are made among the two threads. In other
words, the executions of the two threads can be arbitrarily interleaved in physical time and SLE
guarantees they will be logically ordered in a serializable manner. Thread 1's assertion will evalu-
ate to true because the speculating thread observes a held lock. It is legal for the thread while in

speculative mode to read the value of the lock and it must find the value of the lock to be the value
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the thread “wrote” even though the processor has no permission to actually write the value to the
cache. This is because program order is maintained. The thread of course knows no other thread
wrote that location because the lock location is cached locally in a shared state. Thread 2’s asser-
tion for a free lock outside its critical section will also evaluate to true because the lock has been

elided and thus not actually been acquired by thread 1.

3.11.3 Interactions with programs written with timing assumptions

We now discuss the impact of using SLE on programs that make assumptions about timing
properties of the multiprocessor system. An example is a situation where a programmer uses a
loop (for example dor loop in a critical section looping for a fixed number) to introduce delay.

The example is shown in Figure 3-17. Here, the programmer is making an assumption about the
time to execute théor loops. Even though these two critical sections do not share any data struc-
ture, under conventional locking implementations, these executions would not occur concurrently
because both critical sections are protected by the same lock. Under SLE, both would execute con-
currently.

Note, this is valid behavior under the architectural specification. While the naive programmer
may assume such code sequences will stagger executions, such a guarantee is not provided by any
implementation because multiprocessor memory ordering issues are always based on logical
ordering and independent of any timing assumptions. This program segment will not provide the
assumed behavior under any implementation.

Thus, SLE does not change the semantics of the operations based on timing assumptions—
rather the program itself is making an incorrect assumption in such cases. Traditionally, newer
implementations of processors may speed up some operations while slowing others down and thus

writing code assuming certain timing properties of the system is error-prone, and hazardous.

3.11.4 Interactions with different locking algorithms

We have focused on test&set based locking algorithms (this includes both test&set,
test&test&set, and their variants). To elide locks from execution streams, they must first be identi-
fied. Since processors lack instructions to unambiguously identify lock instructions, prediction is

employed. Test&set-based locks are easy to identify in hardware because these locks demonstrate
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critical section 1 critical section 2
LOCK_ACQUIRE(lock); LOCK_ACQUIRE(lock);
for (i=0; i < 200; i++); for (j = 0; j < 600; j++);
LOCK_RELEASE(lock); LOCK_RELEASE(lock);

Figure 3-17: Critical sections written with timing assumptionSxecuting this program may
give different timing results on different systems and thus is a broken program if the program-
mer is trying to exploit timing assumptions in the program.

a simple silent store-pair pattern (Section 3.6.2). By doing so, SLE does not rely on the knowledge
of locks and can use silent store-pair predictors

The simplicity and portability of test&test&set locks make them quite popular. Hardware
architecture manuals recommend [28, 31, 54, 73] and database vendors are advised [83] to use
these simple locks as portable locking mechanisms. The POSIX threads standard recommends
synchronization be implemented in library calls suctptiwead _mutex_lock() and these
calls implement the test&set or test&test&set locks.

While test&set-based locks are quite popular and widely used, other locking algorithms have
also been proposed and sometimes are used when the occasion demands it. Common examples of
such algorithms are MCS locks and ticket locks. If a program using such algorithms are run on
hardware supporting SLE relying on silent store-pair detection, these algorithms may not necessar-
ily be easily identified but will nevertheless execute correctly. SLE aims at executing lock-free crit-
ical sections to expose and exploit concurrency. Thus, in situations where SLE is advantageous,
the use of simple algorithms is recommended because silent store-pairs is a simple property to
detect and exploit. Alternatively, for identifying more complex algorithms, either more hardware
would be required (which would make the hardware too specialized), or the program must be writ-

ten in a form exploitable by simple silent store-pair predictors.
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3.11.5 Interactions with operating systems

We briefly discuss SLE interactions with thread scheduling at the operating system and user

space when multiple threads are executed in the same hardware context (a uniprocessor).

Thread scheduling.If the operating system deschedules a process, certain book-keeping is per-
formed, for example, certain registers are set, processor contexts are saved, and the address space
mapping is changed. While the exact operations depend upon the underlying implementation, in
general when such a context switch occurs and is detectable, a misspeculation is triggered if the
processor was in SLE mode. Even if a misspeculation is not triggered, and the processor remains
in SLE mode, eventually it will run out of resources and trigger a misspeculation. The address
space is handled conventionally and no special support is required.

Regarding multiple user-level software threads on the same “hardware” context, if a
user-level thread switch occurs (and the operating system is not involved at all), the address space
does not change, and no misspeculation is otherwise triggered, then the newly scheduled thread
will see a held lock (remember, the speculative values do not leave the hardware context but are
visible only within the hardware context). If the new thread was outside a critical section then it
would not be able to enter the critical section. The new thread could not have been inside the criti-
cal section. If the new thread accesses data without a lock, then it would be a data race in the appli-
cation itself and the execution would be a legal execution. There won't be a starvation issue
because when the older thread runs again, it will complete. For two user-level threads running on
the same hardware context (without a misspeculation having been triggered), one would see a held
lock and thus experience blocking behavior.

If a user level thread from some other processor is scheduled on this processor, then the OS is
invoked and because speculative state is never allowed to leave a processor, a misspeculation is

triggered. Thus, correct execution is always guaranteed.

Yields. If a lock is held for some time, the thread spinning on the lock may invokeld com-

mand to deschedule itself and give the processor back to the operating system. This is done so as to
prevent idle spinning. The hardware itself is unaware of the yield and the operating system man-
ages the descheduling operation. While the issue of yields is orthogonal to SLE, and SLE does not

change the semantics or is affected by yields, we briefly discuss yields. If SLE encounters a held
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lock, the test of the test&test&set algorithm will automatically spin and if necessary a yield would
automatically occur. SLE only elides the store of the lock acquire and executes the other load
instructions normally—these instructions may correspond to the spin loop. If SLE is successful
and does not result in a lock acquisition, no yielding occurs as there is no spinning. Often yielding
is useful if a long latency operation such as 1/O is occurring within the critical section. We do not
expect this to be a major issue because yielding is useful if a thread is in a critical section for a long
period—something that often involves I/O within the critical section. In such a case, SLE cannot
provide any speculative execution behavior (I/O cannot be undone) and hence we would fall back
on the lock acquisition sequence. Recent work has suggested that yielding may not be a good idea
for performance reasons if only memory accesses are being performed within the critical section

because the overhead associated with yielding is quite high [91].

3.12 SLE interactions with hardware implementations

We now discuss SLE interactions with various implementation specific hardware features.

3.12.1 Implementation with different synchronization primitives

While SLE as discussed relies only on silent store-pair identification, lock acquire algorithms
employ synchronization instructions such as the load-linked/store-conditional [28, 31, 54], swap,
and compare&swap [166], among others. For load-linked/store-conditional instructions, the
store-conditional is treated as a store and thus is also considered as part of the store-pair identifica-
tion process. Instructions like the compare&swap are implemented as atomic read-modify-write
operations. Processor cores often split these instructions into a read and a write micro-operation
for efficient implementation. Thus, these instructions can also be considered as candidates for
store-pair identification. The precise implementation depends upon the underlying instruction

implementation.

3.12.2 Interactions with memory consistency

Informally, no memory ordering problems exist because speculative memory operations
under SLE have the appearance of atomicity. Regardless of the memory consistency model, it is

always correct for a thread to insert atomicset of memory operations into the global order of
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memory operations as shown in Figure 3-4 earlier. For weakly ordered systems, a fence usually

occurs at the beginning and end of the critical sections and these must still be observed. We discuss
this below.

The appropriate memory consistency model is maintained for ordering the atomic critical sec-
tion with operations prior to the critical section and operations after the critical section. The order-
ing constraints are dependent upon the underlying memory model implemented.

The store elision also works correctly because the two elided stores form a silent store-pair.
Thus, these two stores can be combined with the atomic region between the two stores to form one
giant atomic region. Note, all locations within the region are monitored for conflicting accesses
and thus in the absence of any conflicting access, a correct atomic execution is guaranteed.

We selectively impose the requirement of atomicity for a set of memory operations. If the
underlying model employs fences for ordering request, we obey these fences as defined by the
model. Commonly, fences are used to force visibility of certain memory operations to the coher-
ence protocol. Our technique maintains these conditions if necessary. While fences force operation
visibility, a processor may not provide any speculatively modified values associated with these

operations—the protocol transitions are independent of the cache block data.

3.12.3 Interactions with false sharing

Cache coherence protocols typically maintain coherence at the granularity of a cache block
also known as the coherence granularity. Cache block fetches and invalidations are performed at
the granularity of a cache block. While a larger granularity helps when good spatial locality in data
accesses is present, poor spatial locality may result in a performance degradation due to false shar-
ing. Goodman and Woest [43] coined the term false sharing to describe the situation when two
processors alternately read and at least one writes different parts of the same coherency block,
resulting in the block’s being moved repeatedly between the two processors as if the data were
shared when in fact no sharing is occurring.

Since we use the cache coherence protocol to detect data conflicts, a false-sharing-induced
conflict is treated as a data conflict and thus is treated identically to true sharing, (i.e., it is correctly
handled). This sometimes serializes critical sections that do not share data but the data maps to the
same common unit of coherency. False sharing has performance implications even without SLE

due to unnecessary memory traffic and latency. Programmers often address this performance deg-



89
radation by appropriately padding the data structures to ensure data objects accessed by different
processors do not lie on the same cache block. False sharing does not introduce any correctness

issues with SLE.

3.12.4 SLE and hardware multithreaded processors

For implementing SLE on hardware multithreaded processors, additional hardware support is
necessary because now multiple thread contexts are concurrently executing on the same core. SLE
tracks cache blocks accessed using an extra bit. This bit now needs to be unique for every hard-
ware thread executing. To support memory consistency models correctly in hardware multi-
threaded processors, a form of coherence activity must be locally invoked. For example, for two
hardware threads T1 and T2 on a processor, if T1 writes to a cache block X, then depending upon
the memory consistency model, an invalidation will need to be sent to T2 (and any other hardware
threads) to ensure the memory consistency model is enforced. This will be true in any aggressive
implementation of sequential consistency, processor consistency, or release consistency for a mul-
tithreaded processor. The solution is specific to the implementation but SLE can use support that

will already be present for supporting aggressive memory consistency implementations.

3.12.5 Implementation-specific issues

Numerous implementation-specific issues may exist, such as certain translation look-aside
buffer issues, operations that cannot be delayed or undone, certain interrupts, and special seman-
tics for certain memory operations that result in a misspeculation. All these conditions can, as

usual, be handled by simply not speculating and acquiring the lock.

3.13 Related work

Software only lock-free.Lamport introduced lock-free synchronization [95] and gave algo-
rithms to allow multiple threads to work on a data structure without a lock. Operations on lock-free
data structures support concurrent updates and do not require mutual exclusion. Lock-free data

structures have been extensively investigated [17, 65]. Experimental studies have shown software
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implementations of lock-free data structures do not perform as well as their lock-based counter-

parts primarily due to excessive data copying involved to enable rollback, if necessary [5, 66].

Hybrid lock-free. Transactional Memory [66] and the Oklahoma Update protocol [158] were
the initial proposals for hardware support for implementing lock-free data structures. Both pro-
vided programmers with special memory instructions for accessing these data structures. Although
conceptually powerful, the proposals required instruction set support and programmer involve-
ment. The programmer had to learn the correct use of new instructions and the proposal required
coherence protocol extensions. Additionally, existing program binaries could not benefit. The pro-
posals relied on software support for guaranteeing forward progress. These proposals were both
direct generalizations of the load-linked and store-conditional instructions originally proposed by
Jensen et al. [78]. The load-linked/store-conditional combination allows for optimistic atomic
read-modify-write sequences on a word.

In contrast to the above proposals, our proposal does not require instruction set changes,
coherence protocol extensions, or programmer support. As a result, we can run unmodified bina-
ries in a lock-free manner in most cases when competing critical section executions have no con-
flict. We do not have to provide special support for forward progress because, for conflicts, we
simply fall back to the original code sequence, acquiring and releasing the lock in the conventional

way.

Hardware-only lock-free. To the best of our knowledge, Speculative Lock Elision [139] is the
first hardware-only lock-free proposal that executes lock-based programs in a lock-free manner in

the absence of data conflicts.

Database optimistic concurrency controlExtensive research has been conducted in data-
bases on concurrency control and Thomasian [161] provides a good summary and further refer-
ences. Kung and Robinson [90] proposed Optimistic Concurrency Control (OCC) as a major
alternative to locking in database management systems. OCC involves a read phase where data-
base objects are accessed (with possible updates to a private copy of these objects) followed by a
serialized validation phase to check for data conflicts (to check for read/write conflicts with other
transactions). This is followed by the write phase if the validation is successful. In spite of the

extensive research, there are no database systems that use OCC as a concurrency control mecha-
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nism. Haerder [60] was the first to point out potential problems with OCC schemes. Mohan [124]
provides an excellent discussion regarding the issues involved with OCC approaches and their
shortcomings which make OCC unattractive for high performance database systems is provided by
The special requirements and guarantees required by database systems, specifically for storage
management, access path maintenance, recovery models, fine-granularity conflict checking,
fine-grain locking, and semantically-rich lock modes [125], make OCC very hard to use for high
performance. To provide these guarantees about database transactions, substantial state informa-
tion must be stored in software resulting in large overheads in executing transactions. In addition,
with OCC, the validation phase is serialized, thus limiting performance.

Our proposal is quite different from database OCC proposals. We are not providing an alter-
native to lock-based synchronization: we detect instances when these synchronization operations
are unnecessary, and eliminate them. The requirements imposed on critical sections are far less
strict than those mentioned above for database systems. Since we do not require re-execution or

explicit acquisition of a lock to determine success, we do not have a serialized validation phase.

Using cache coherence protocols for conflict detectioknight proposed using cache

coherence protocols in the context of speculatively parallelizing sequential code [86]. Subse-
quently the Herlihy and Moss [66] used the same mechanism for implementing transactional
memory. Gharachorloo et al. [45] used cache coherence protocols for detecting violations to mem-
ory ordering. Franklin proposed the use of the address resolution buffer for detecting data races in

shared-memory multiprocessors [40].

Speculative buffering and retirement.Prior work exists in microarchitectural support for
speculative retirement [48, 143] and buffering speculative data in caches [42, 52]. Our work can
leverage these techniques and coexist with them. However, none of these earlier techniques

dynamically remove conservative synchronization from the dynamic instruction stream.

Value prediction. Our scheme of silent store-pair elision is an extension ttleat storepro-

posal of Lepak and Lipasti [111]. While they squashed individual silent store operations, we elide
pairs of stores that individually are not silent but when executed as a pair are silent. The notion of
silent store-pairs employed by SLE is an example of the notion of Temporal Silence recently

investigated by Lepak and Lipasti [112].
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3.14 Chapter summary

In this chapter we proposed Speculative Lock Elision—a microarchitectural technique to
remove unnecessary serialization from a dynamic instruction stream. The key idea behind SLE
involves using the cache coherence protocol to obtain appropriate permissions on the necessary
cache blocks, accessing and modifying data speculatively if needed, and then providing the
appearance of instantly committing the critical section by making updates visible to other proces-
sors at a single commit point.

SLE has the following key features

1. Enables highly concurrent multithreaded executibtultiple threads can concurrently execute
critical sections guarded by the same lock. Additionally, correctness is determined without
acquiring (or modifying) the lock. No write permissions are required on the lock variable in the

event of a successful speculation.

2. Simplifies correct multithreaded code developm@&rbgrammers can use conservative syn-
chronization to write correct multithreaded programs without significant performance impact.
If the synchronization is not required for correctness, the execution will behave as if the syn-

chronization were not present.

3. Can be implemented easi§LE can be implemented entirely in the microarchitecture, without
instruction set support and without system-level modifications (e.g., no coherence protocol
changes are required) and is transparent to programmers. Existing synchronization instructions
are identified dynamically. Programmers do not have to learn a new programming methodology
and can continue to use well understood synchronization routines. The technique can be incor-
porated into modern processor designs, independent of the system and the cache coherence pro-
tocol.

With SLE, the control dependence implied by the lock operation is converted to a true data
dependence among the various concurrent critical sections. As a result, the potential parallelism
masked by dynamically unnecessary and conservative locking imposed by a programmer-based
static analysis is exposed by a hardware-based dynamic analysis.

The technique proposed does not require any coherence protocol changes. Additionally, no
programmer or compiler support and no instruction set changes are necessary. The key notion of

atomicity of memory operations enables the technique to be incorporated in processors without a
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dependence upon the memory consistency model as correctness is guaranteed because of atomic
commit of memory operations.

SLE is a step towards enabling high performance multithreaded programming. With multi-
processing becoming more common, it is necessary to provide programmers with support for
exploiting these multiprocessing features for functionality and performance. SLE permits pro-
grammers to use frequent and conservative synchronization to eatitect multithreaded code
easily; our technique automatically and dynamically removes unnecessary instances of synchroni-
zation. Synchronization is performed only when necessary for correctness; and performance is not
degraded by the presence of such synchronization. Since SLE is a purely microarchitectural tech-
nigue, it can be incorporated into any system without any changes to the underlying coherence

protocols or without dependence on any system design issues.
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Chapter 4

Transactional Lock Removal

SLE breaks a critical performance barrier by allowing non-conflicting critical sections to exe-
cute and commit concurrently. SLE showed how lock-based critical sections can be executed spec-
ulatively and committed atomically without acquiring locks if no data conflicts were observed
among the critical sections. While SLE provided concurrent completion for critical sections
accessing disjoint data sets, data conflicts result in threads restarting and acquiring the lock seri-
ally. Thus, when data conflicts occur, SLE suffers from the key problems of locks due to lock
acquisitions.

This chapter proposes Transactional Lock Removal—a technique that uses SLE as an
enabling mechanism but in addition provides a successful lock-free execution of lock-based criti-
cal sections in the presence of data conflicts if sufficient resources are available for buffering spec-
ulative state. TLR elides locks using SLE to construct an optimistic lock-free critical section
execution (and treats the lock-free critical section as a lock-free transaction) but in addition also
uses a timestamp-based conflict resolution scheme to provide lock-free execution even in the pres-
ence of data conflicts. A single, globally unique, timestamp is assigned to all memory requests
generated for data within the optimistic lock-free critical section. Existing cache coherence proto-
cols are used to detect data conflicts. On a conflict, some threads may restart (employing hardware
misspeculation recovery mechanisms) but the same timestamp determined at the beginning of the
optimistic lock-free critical section is used for subsequent re-executions until the optimistic
lock-free critical section is successfully executed. A timestamp update occurs only after a success-
ful execution. Doing so guarantees each thread will eventually win any conflict by virtue of having
the earliest timestamp in the system and thus will succeed in executing its optimistic lock-free crit-
ical section. If the speculative data can be locally buffered, all non-conflicting transactions proceed

and complete concurrently without serialization or dependence on the lock. Transactions experi-
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encing data conflicts are ordered without interfering with non-conflicting transactions and without

lock acquisitions.

4.1 Chapter roadmap

Section 4.2 provides the motivation for Transactional Lock Removal by discussing the perfor-
mance and stability limitations of SLE in the presence of data conflicts. Section 4.3 presents the
concepts of TLR. Details of conflict resolution policies and timestamp schemes are also discussed
and the TLR algorithm is presented. Section 4.4 discusses an implementation of TLR. The section
discusses mechanisms for retaining ownership of cache blocks using the coherence protocol, pre-
sents an implementation of TLR, qualitatively analyzes TLR performance potential, and studies
implementation specific constraints. Section 4.5 presents implementation independent invariants
and the programmability and stability issues of TLR are discussed in Section 4.6. We survey

related work in Section 4.7 and summarize the chapter in Section 4.8.

4.2 Motivation

The motivation for Transactional Lock Removal lies in the critical limitation of Speculative
Lock Elision—in the presence of data conflicts, the lock may have to be acquired. Data conflicts
are inherent in multithreaded programs and thus numerous situations requiring lock acquisition

exist. We now discuss the impact of lock acquisitions on performance and stability.

4.2.1 Performance limitations of lock acquisition under conflicts

When a data conflict triggers a misspeculation in SLE, rather than acquiring the lock, SLE
may be retried a finite number of times. While retrying SLE in these situations may successfully
elide locks, such a retry policy involves a careful trade-off. Applying SLE to situations where high
data conflict rates occur may result in performance degradation because of coherence protocol
interference among conflicting critical sections. Cache blocks may ping-pong among various
caches before any thread successfully completes its critical section execution. Further, multiple

threads may repeatedly restart. SLE automatically handles these situations by acquiring the lock
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after a certain number of retries. While this guarantees forward progress trivially, the correspond-
ing locking overhead still limits performante.

Additionally, lock acquisitions serialize execution of multiple threads thus limiting perfor-
mance. While there may be opportunity to overlap some computation within the critical section
with communication of the lock, the threads cannot commit until the lock acquisitions are serial-
ized by the coherence protocol. Under high conflict conditions, such as cases where fine-grain
locking is present and no concurrency can be extracted, the performance is limited to that of the
underlying synchronization algorithm. Further, if dynamic, hard-to-detect concurrency is present

in the application, identifying opportunity for concurrent execution is a non-trivial task [66].

4.2.2 Stability limitations of lock acquisition under conflicts

As discussed in Section 1.2, the semantic operation of writing a new value to a lock variable
and of waiting for the value to change (by spinning on it) inherently limits the stability of the sys-
tem. The inherent limitation stems from thit actionwhile some thread is in the critical sec-
tion—a lock marked held forces other threads to wait for the lock value to be free. If the value does
not change for an arbitrarily long time (the thread holding the lock may have been descheduled) or
does not ever change (the thread holding the lock may have aborted), system performance is
affected and the system may fail to perform as expected. Data conflicts occur in multithreaded pro-

grams and by acquiring locks in such situations, the limitations of locks are exposed.

4.3 Transactional lock-free execution of critical sections

TLR aims to achieve a serializable schedule of lock-free critical sections, even in the presence
of data conflicts, where all memory operations within a critical section appear to be atomically
inserted into some global order. This is illustrated in Figure 4-1.

Serializability requires the result of executions of concurrent transactions to be as if these

transactions executed in some serial order. In the absence of data conflicts, serializability can be

1. This overhead is essentially the overhead of lock acquisitions present in the base algorithm used in the
system and is fundamental to a lock-based approach. Further, when locks are contended, their release also
frequently results in a cache miss and excessive coherence traffic.
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Figure 4-1: TLR and global memory ordering¥hile critical section executions (without lock
acquires) overlap in physical time (with or without data conflicts), each critical section logically
appears to be inserted atomically and instantly in a logical ordering of memory operations with
respect to other atomically inserted critical sections and individual memory operations.

ensured using a technigue such as SLE but the presence of data conflicts among concurrently exe-
cuting threads requires additional mechanisms provided by TLR.

The basic idea behind TLR is as follows:
a) Treat locks as defining scope of a transaction
b) Speculatively execute the transaction without requesting or acquiring locks
c) Use a conflict resolution scheme to order conflicting transactions

d) Use a technique to give the appearance of an atomic commit of the transaction, such as is pro-
vided by SLE

TLR performs active concurrency control to ensure correct coordinated access to the data
experiencing conflicting access by using the data itself rather than locks. Unlike TLR, SLE only
identifies situations where lock-based concurrency control is not necessary—namely the absence
of data conflicts among threads—and relies on the default lock-based concurrency control mecha-
nisms if data conflicts occur.

Since TLR implements a concurrency control algorithm, it must provide the following two

properties (Section 2.3):
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1. Safety The algorithm must guarantee “nothing bad ever happens” [96]. We show how to pro-
vide serializability of transactions, thus achieving the behavior of critical sections without lock

acquisitions.

2. Liveness The algorithm must guarantee “something good will eventually happen” [96]. We
show how TLR is free from livelock and further, how TLR provides starvation freedom.
In the discussion in this section, we refer to a lock-free optimistic critical section as a transac-
tion. In Section 4.3.1 we discuss achieving serializability of transactions in the presence of data
conflicts. Section 4.3.2 presents the TLR algorithm and Section 4.3.3 illustrates the algorithm

using an example.

4.3.1 Achieving serializability in the presence of conflicts

An execution of an optimistic lock-free transaction can be made serializable if the data specu-
latively modified by any transaction are not exposed until after the transaction commits and no
other transaction writes to speculatively read data. A serializable execution can be achieved trivi-
ally by acquiring exclusive ownership of all required resources. If the thread executing the transac-
tion does so for all required resources, the thread can operate upon the resources and then commit
the updates atomically and instantly, thus achieving serializability.

In cache-coherent shared-memory multiprocessors, the above requires:

1. Acquiring all cache blocks that are accessed within the transaction in an appropriate ownership

state
2. Retaining such ownership until the end of the transaction
3. Executing the sequence of instructions forming the transaction
4. Speculatively operating upon the cache blocks if necessary

5. Making all updates visible atomically to other threads at the end of the transaction
However, as we shall see next, the presence of conflicts may prevent resources from being

retained thus preventing a successful execution of the lock-free transaction.
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4.3.1.1 Necessity for conflict resolution

Livelock can occur if processors executing critical sections speculatively and in a lock-free
manner repeatedly experience conflicts. As with SLE, the lock can always be acquired and forward
progress is guaranteed but we require a solution that does not rely on lock acquisitions for forward
progress.

Consider two processors, P1 and P2, each executing a lock-free critical section and both
accessing (and writing) shared memory locatiéremdB in the critical sections. The two proces-
sors write the two locations in reverse order of each other—P1 whifest and therB while P2
writes B first and therA. The code sequence within the critical section is shown in Figure 4-2. The
messages and the state transitions for the corresponding blocks are also shown in Figure 4-2.

Time instances are labeled gswherei denotes progressing instances. Physical time
progresses down and the changing cache block coherence state is shown over time. Assume both
P1 and P2 have elided the lock by employing SLE and are in an optimistic lock-free execution
mode. P1 has speculatively accessed blakd cached it in exclusive state (M). P2 has specula-
tively accessed blodR and cached it in the M state.

At tq, P1 issues a request for exclusive ownership X ) for block B corresponding to the
write operation td within P1’s critical section and a$,tP2 issues ard_X block A correspond-

ing to the write operation té within P2’s critical section. The corresponding requests are accom-

panied by a transition of the respective cache blocks into a transient (pending P) stafeR At t

receives P2'sd_X request for bloclA. P1 detects this as a data conflict (bloklspeculatively
written to by P1 is accessed by another thread before P1 has completed its optimistic transaction).
P1 triggers a misspeculation and restarts its optimistic lock-free execution. Similarly, P2 receives

P1'srd_X for B at t and P2 restarts execution. Both P1 and P2 respond with the valid non-specu-

lative data. This sequence may occur indefinitely with no processor making forward progress
because each processor repeatedly restarts the other processor.

Livelock occurs because neither processor obtains ownershiptbftache blocksimulta-
neouslyin order to execute the transaction in a serializable manner and commit it atomically with-
out locks. Cache coherence protocols can be used to allow processors to retain ownership of cache

blocks. To ensure livelock freedom, among conflicting processors one processor must win the con-
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Figure 4-2: Livelock in a lock-free optimistic transactiomn this example, both processors
repeatedly restart. A and B are memory locations. M corresponds to the modified state of the
cache block and P corresponds to a pending (transient) state of the cache block. | is the invalid
state. Time progresses downwards. The contents of the cache blocks are not shown.

flict and retain ownership. To do so, TLR assigns priorities to the lock-free transactions and

employs the following key idea:

“Transactions with higher priority never wait for transactions with lower priority. In
the event of a conflict, the lower priority transaction is restarted or forced to wait.”

Consider two transactions, Bind T, executing speculatively. Supposgi$sues a request that

causes a data conflict with a request previously made pyaiid T, receives §'s conflicting
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request. The conflict is resolved as follows: S priority is lesser than Ts priority, then T, waits
for T, to complete (T wins the conflict), else Tis restarted (3 wins the conflict). The “wait”
mechanism may either involve an explicit negative acknowledgement or a delayed processing of
the request.

The above uses concepts developed by Rosenkrantz et al. [144] (discussed earlier in
Section 2.3.1.2) and specifically we adapt some of the key ideas irvibaind-waitproposal for
distributed concurrency control.

In the above approach, there cannot be any deadlock because for any finite set of transactions,
the oldest cannot wait for any other transaction unless that transaction has first been wounded (i.e.,
restarted). The wounded transaction cannot be part of the deadlock because it is restarted and it
relinquishes ownership of the block in question. In the wound-wait system, an older transaction
never waits for a younger one except when the older transaction has wounded the younger transac-
tion and is waiting for the wound to take effect. The oldest transaction therefore runs through the
system wounding any younger transaction in its path. Thus the older transaction acquires all the
resources it needs.

Rosenkrantz et al. [144] also proposed wedt-die approach. Suppose, Tssues a request in
conflict with T,. Under wait-die, the conflict is resolved as follows. lf fias lower priority than

T,, then T, is permitted to wait; else it is aborted and forced to restart (“dies”).

Restart behavior of wait-die and wound-waitWe contrast the wait-die scheme and the
wound-wait scheme and discuss why we use the wound-wait scheme. See Section 2.3.1.2 and

[144] for detailed difference between wound-wait and wait-die schemes. Suppose transagtions T
and T, have a conflict and fis restarted. The new sequence of requests issued byay be the

same as the original one and the same sequence reach the site of the previous conflict. At this site,

a new conflict will result if § is still executing.

In the wait-die system, fwas the requestor that caused the original conflict (only the
requestor can die in the wait-die system). In the new conflictsTstill the requestor and dies
again. Thus there can be a long sequence of “dies” and while Qahd T, will eventually termi-

nate, repeated attempts to runwiill consume system resources.
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Figure 4-3: Constructing timestamp®its from a strictly monotonically increasing counter are
concatenated and combined with all bits from the local processor ID to construct a globally
unique timestamp.

By contrast, in the wound-wait system; Was not the requestor of the original conflict and
T, was younger than JI' In the new conflict, T is still younger than 7 but this time T, is the
requestor and hence waits. Transactigrpfesumably consumes far less system resources if it is

waiting than if it is continually being restarted.
For starvation freedom, the resolution mechanism must guarantee all contenders eventually

succeed and become winners. We use timestamps for conflict resolution and we discuss them next.

4.3.1.2 Conflict resolution using timestamps

We use timestamps for resolving conflicts to decide a conflict winner—earlier timestamp
implies higher priority. Thus, the contender with the earlier timestamp wins the conflict.

The timestamps we use have two components: a local logical clock and processor ID. The
logical clock is a way of assigning a number to an event and the number is thought of as the time at
which the event occurred. An event in our case is a successful execution of a TLR instance. The
local logical clock value is increased by 1 or higher on a successful TLR execution and captures
time in units of successful TLR executions on a given processor. Since these logical clocks are
local, the logical clocks on different processors may have the same value. Such ties are broken by
using the processor ID. Thus the timestamp comprising of the local logical clock and the processor
ID are globally unique. Timestamp construction is shown in Figure 4-3. A strictly monotonically

increasing sequence is defined as a sequapitea,,,; > a, for all n O N. To construct a globally
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unique timestampn(bits), bits from the local countet bits) and the local processor identifien (
bits) are concatenated together.

All requests generated from within a given transaction on a processor are assigned the same
timestamp—namely the value of the timestamp at the start of the transaction. On a successful TLR
execution, the processor increments its local logical clock to a value higher than the previous value
(typically by 1) or to a value higher than the highest of all incoming conflicting requests received
from other processors, whichever is larger. Doing so keeps the local logical clocks on the various
processors loosely synchronized whenever a conflict is detected.

Our use of timestamps is similar to that proposed by Lamport [97]. Lamport used timestamps
derived from logical clocks to implement distributed mutual exclusion with a starvation freedom
guarantee. However, we only require timestamps for conflict resolution while Lamport used time-
stamps forexplicitly ordering the execution of mutual exclusion regions among different proces-
sors. Thus with TLR, transactions that conflict in their data sets but do not actually observe any
detected conflicts during their execution can execuaniyorder independent of the timestamps of
the transactions. Since TLR does not require synchronized clocks, real-time system clocks can
also be used.

The static component need not be explicitly exchanged and can be deduced simply from
inspecting the sender identifier of the message. Thus the actual timestamp excharygjisd Vge

next discuss Lamport’s logical clock construction and its application to TLR.

Lamport’s logical clock construction. The simplest timestamp generation algorithm is due to
Lamport [97] and is reproduced here. For now, assume unbounded timestamps.

Lamport defined- as a “happened before” relation. Informally~ b means that is is possi-
ble for eventa to causally affect everlt. Two events are concurrent if neither can causally affect
the other. Define a clock;@or each process;Ro be a function which assigns a numberCito
any eventa in that process. The entire system of clocks is represented by the function C which

assigns to any eveitthe number @L] where @bL= GBLif b is an event in processof.AFEach
C; is implemented as counters with no actual timing mechanism.

A clock conditionis defined as: for any everash: if a — bthen Calk CbO

To satisfy the clock condition, two conditions must hold:

C1. Ifaandb are events in procesg Bnda comes beforé, then Giak G DL
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C2. Ifais the sending of a message by procgsafab is the receipt of that message by pro-
cess R then Glalk GbL
The process clock “ticks” through every number, with the ticks occurring between the pro-
cess’ events. Now assume the processes are algorithms, and the events represent certain actions
during their execution. Procesgsclock is represented by a registerso that Glalls the value
contained by €during the evena. The value of Cwill change between events, so changingsC
not itself an event.
Lamport defined two implementation rules for ensuring clock conditions C1 and C2.
IR1. Each process icrements Cbetween any two successive events.
IR2. (a) If eventais the sending of a messageby process Pthen the messaga contains
a timestamp [, = G[all (b) Upon receiving a messagg process Psets G greater than or
equal to its present value and greater than T
Lamport further used these clocks to provide a distributed mutual exclusion algorithm guar-
anteeing starvation freedom because a process would eventually have the earliest timestamp in the
system (all others, on a successful event execution, would increment their clocks as per the rule
IR2 above).

Lamport’s logical clocks applied to TLR. Lamport’s logical clocks can be utilized for TLR.

A successful lock-free execution of a critical section is considered to be an event. Thus, the time-
stamp update occurs at the completion of a successful lock elision. The new timestamp update
occurs according to the rule IR2 described above—this requires the local node to keep track of the
highest incoming timestamp from other processors. In TLR, all nodes are not guaranteed to see all
timestamps at any time, only the ones that conflict. Nevertheless, only one timestamp—the high-

est—need be tracked.

By using Lamport’s logical clocks, at any time, two clocks will not (?riﬁrbitrarily far
because they synchronize on every conflict in which they both participate. For example, consider
processor PO executes 1000 successful lock-free executions and has now set its local counter to

1000. Meanwhile P1 executes no critical sections. Subsequently, P1 executes a critical section,

2. When two clocks tick at different rates, it creates an ever-widening gap in perceived time. This is called
clock drift. Clock skew is the difference between two clocks at one point in time.
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conflicts with PO, and wins the conflict because P1's timestamp is 0 and is earlier than P1’s time-

stamp. PO restarts and issues its request again and the request for the conflicting data is forwarded
to P1. Thus, while P1’s current clock value is 0, on a successful execution, its new clock value will

be 1001 (> 1000). The drift between the two clocks is contained and they re-synchronize.

Achieving starvation freedom.Starvation freedom is achieved by retaining and reusing time-
stamps in the event of a misspeculation and restart. By reusing timestamps, processors retain their
position. By updating timestamps as above, a processor will eventually have the earliest timestamp
in the system and thus will eventually win all conflicts. TLR uses timestamps solely for the pur-
pose of comparing priorities of two conflicting threads to determine which has a higher priority.

The starvation freedom property follows from the use of Lamport’s logical clocks.

4.3.2 TLR algorithm

We assume a processor with support for SLE. A processor executing the TLR algorithm is
considered to be in TLR mode. All operations executed by a processor in TLR mode are part of the
optimistic lock-free transaction and are speculative. For brevity, we will refer to an optimistic
lock-free transaction as simply a transaction. Conventional cache coherence protocols are used to
allow processors to retain ownership of cache blocks. In an invalidation-based cache coherence
protocol, a processor with an exclusively-owned cache block receives and must respond to subse-
quent requests for the block. The processor controls the block and can appropriately respond.
Figure 4-4 shows the TLR algorithm. In the discussion below, we use the term deferred to imply
the processor retains ownership.

The first step is calculating the globally unique local timestamp.

The second step is identifying start of a transaction. We use SLE to identify the start and end
of transactions. SLE does so by exploitisitent store-pairsa pair of store operations where the
second store undoes the effects of the first store and the intervening operations appear to execute
atomically. The first store of the pair corresponds to the start of the transaction and the second
store of the pair corresponds to the transaction end. Once the start is identified, the lock is elided
thus leaving the lockree The processor register state is saved for recovery in the event of a mis-
speculation.

The third step comprises actions that may occur concurrently and are listed below.
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1. Calculate local timestamp

2. Identify transaction start
a) Initiate TLR mode (use SLE to elide locks).

b) Execute transaction speculatively.

3. During transactional speculative execution
« Locally buffer speculative updates.

* Append timestamp to all outgoing requests.
« If incoming request conflicts with retainable block and has later timestamp, retair
ownership and force requestor to wait.
« If incoming request conflicts with retainable block and has earlier timestamp, seryice
request and restart from step 2b if necessary. Give up any retained ownerships.
« If insufficient resources, acquire lock.
* No buffer space
» Operation cannot be undone (e.g., I/O)

4. Identify transaction end
a) If all blocks available in local cache in appropriate coherence state, atomically commit

memory updates from local buffer into cache (write to cache using SLE).
b) Commit transaction register (processor) state.
c) Service waiters if any.
d) Update local timestamp.

Figure 4-4: TLR algorithm. A mechanism for retaining ownership of cache blocks is
assumed to be present. A retainable cache block is defined as a block in an exclusively
owned coherence state. Requests are forwarded to the cache with the writable copy of the
block.

* A cache miss generated for data within the speculative execution carries with it the processors

timestamp.

* Requests from other processors that result in a data conflict for data accessed within the trans-
action are checked for priority. If the incoming request has a later timestamp than the local pro-
cessor, the incoming request’s response is deferred. If the incoming request has an earlier
timestamp, the local processor loses the conflict. It must service earlier deferred requests in the
order they were received, thus maintaining the coherence protocol ordering, and then service

the conflicting incoming request. By ensuring we always maintain coherence protocol ordering,
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we do not change the coherence protocol correctness conditions discussed earlier in

Section 2.1.2.3. The execution may restart but the local clock is not updated.

* |f any resource constraints, or operations that cannot be undone, are encountered, TLR cannot
be applied. The processor requests the lock by exposing the elided writes and exits TLR mode.
Since the lock is kept in shared state under TLR, any write to the lock triggers invalidations
thus automatically informing other participating processors of the violation of the silent
store-pair elision under TLR. During speculative execution, data modified is buffered in the
write buffer and exclusive requests for the cache block are issued to the memory system.

Finally, when a transaction end is identified, the transaction is committed. If all appropriate
blocks have been brought into the cache in appropriate state (exclusive or shared), then the buff-
ered data in the write buffer iatomically committed into the cache—all required blocks are
already in writable state in the cache. If not, then speculative execution can proceed until the
blocks corresponding to the write buffer are available in appropriate state. After the speculative
data has been committed into the cache, deferred requests from before are then serviced in order.
The local logical clock update is performed as discussed in Section 4.3.1.2.

Up to now, we have focused on interaction among timestamped requests—requests that are
part of critical sections. However, in some programs, the data protected by locks may be accessed
from outside a critical section and hence without locks, and may conflict with timestamped
requests. While this is a data race, it may be acceptable for the program. Such situations may be
correctly handled in various ways. One approach is to trigger a misspeculation when an un-time-
stamped request is received. Thus, if any thread performs a conflicting access from outside a criti-
cal section, then TLR cannot be applied because a data race exists. Another approach is to treat
un-timestamped requests as deferrable and thus achieve successful lock-free execution even in the
presence of data races. Such a request is assumed to have the latest timestamp in the system (and
thus the lowest priority) and the un-timestamped request is atomically ordered after the current
critical section. Since a data response is not sent until after the critical section, the requestor cannot
consume the data and hence is ordered with the correct value. TLR, in effect, is masking the data
race and forces the data race to be ordered after the critical section completes. We discuss the sta-
bility implications of this in Section 4.6 where subtle unwanted data races may be prevented from

being exposed in the system for a given execution thus resulting in stable software.
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4.3.3 TLR algorithm example

We revisit the example of Figure 4-2 and apply the algorithm outlined in Figure 4-4 to it.
Consider Figure 4-5. Two processors, P1 and P2, execute a lock-free critical section and both write
shared memory locations andB in the critical section. Both the processors have a unique time-
stamp—TS1 for P1 and TS2 for P2 where TS1 < TS2 (processor P1 has higher priority than pro-
cessor P2 and wins all conflicts). Assume both processors have the additional ability to buffer and
delay responding to incoming requests. As in the earlier example, the two processors write the two
locations A andB, in reverse order of each other. Assume both P1 and P2 have elided the lock by
employing SLE and are in the optimistic lock-free execution mode. P1 has speculatively accessed
block A and cached it in exclusive state (M). P2 has speculatively accessedib@uk cached it
in the M state.

Attq, Plissues ad_X for block B corresponding to the write operationBawithin P1’s crit-
ical section and atyt P2 issues ad_X for block A corresponding to the write operation £o

within P2’s critical section. The respective cache blocks transition into a transient (pending P)
state. All memory operations within the transaction are assigned the same timestamp. Therefore
P1'srd_x for B has TS1 appended and P2& X for A has TS2 appended. A4,tP2 receives

P1's request and compares the incoming request’s timestamp TS1 with its local timestamp TS2.
Since the incoming request has an earlier timestamp than P2, P2 services the request and responds
with the data for blockB (non-speculative value). On applying the incoming request, a data con-

flict is triggered at P2 and P2 restarts execution of its transactiory, &tlt receives P2'sd_X

request for bloclA. Since TS1 < TS2, P1 wins the conflict and defers the request by buffering it.

The cache block fof stays in state M. AtgP1 receives data for blodkfrom P2. P1 has acquired

and retained permissions dth cache block#A andB and can successfully execute and atomi-

cally commit the transaction. A§tP1 completes its transaction, architecturally commits its specu-
lative state and services P2’s deferred request. P1 responds with the latest architecturally correct
data. Meanwhile, P2 has restarted and is re-executing its transaction. The key difference between

Figure 4-2 and Figure 4-5 is P1’s ability to retain exclusive permissions in the latter example.



109

Processor 1 Processor 2
LOCK(Q) LOCK(Q)
Store A Store B
Store B Store A
UNLOCK(Q) UNLOCK(Q)
Processor 1, TS1 Processor 2, TS2
ANV B U @ xATAt [ ] AP
B: P B: M
request is deferred—>la t3 P2 restarts
A:M N ‘ ] AP
2 t
B:P e > B:
t6 t7
. L .
A:M *@5 ] AP
B: M O B: |
P1 completes
critical section tg
deferred request is servicet—>" data:A
Al [ ] “ AWM
B: M B: P

Figure 4-5: Serializable execution in the presence of confli¢tsconflict resolution scheme is
employed allowing processor 1 to retain exclusive ownership of both cache blocks A and B. By
deferring a response, conflicts are masked and a successful atomic execution is achieved. A and
B are memory locations. M corresponds to the modified state of the cache block and P corre-
sponds to a pending (transient) state of the cache block. | is the invalid state. Time progresses
downwards. The contents of the cache blocks are not shown.
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4.4 A TLR implementation

In this section, we discuss how TLR can be implemented. The algorithm outlined earlier in
Figure 4-4 relies on the ability of a processor to retain ownership of a cache block. In Section 4.4.1
we discuss various mechanisms for retaining ownerships of cache blocks and in Section 4.4.2 we
discuss one such mechanism in detail. Until now we have not discussed the interactions of TLR
with the shared coherence state and in Section 4.4.3 we discuss handling the shared coherence
state under TLR. We qualitatively discuss the performance implications of the interactions
between timestamp-enforced order and the coherence-protocol-enforced order in Section 4.4.4.
TLR enforces fair and deadlock-free concurrency control using timestamps. However, if mecha-
nisms exist otherwise for achieving such concurrency control, the use of timestamps may be
relaxed and the coherence protocol order may itself be used. In Section 4.4.5 we discuss this in
detail and show when timestamp order may be relaxed for better performance. In Section 4.4.6 we
discuss an optimization for controlling misses. Finally in Section 4.4.7 we discuss implementa-

tion-specific constraints for TLR.

4.4.1 Mechanisms for retaining ownerships

Two policies to retain exclusive ownership of cache blocks are NACK-based and defer-
ral-based. With NACK-based techniques, a processor refuses to process an incoming conflicting
request (and thus retains ownership) by sendirmgegative acknowledgeme(MACK) to the
requestor. Doing so forces the requestor to retry at a future time. With deferral-based techniques, a
processor defers processing an incoming request by buffering the request and masking any con-
flict. The requestor assumes the request is being processed and has been ordered by the coherence
protocol but the requestor does not get a response right away. We discuss retaining ownership

using NACKs in Section 4.4.1.1 and retaining ownership using request deferral in Section 4.4.1.2.

4.4.1.1 Retaining ownership via negative acknowledgements

In the scheme for retaining ownership using NACKSs, the conflict-winning processor with an
exclusively owned cache block responds to the incoming conflicting request to the cache block by
sending a NACK message to the requestor. This message informs the requestor to retry the request

again after a bounded time.
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The advantages of a NACK-based approach are:

+ The approach is conceptually simple and all interactions among various processors are
explicitly handled. No deadlock dangers due to ownership retention exist (as discussed in
Section 2.3.1) because of explicit handshaking among conflicting processors.

+ Many protocols already support NACKs. Thus, adapting the TLR to such protocols would
be straightforward.

The disadvantages of a NACK-based approach are:

- A NACK-based approach requires the ability of the processor to prevent a cache block
coherence state transition, that results in ownership loss, from occurring. Doing so allows
a processor to retain exclusive ownership even if another processor requests the block. Pre-
venting state transitions from occurring may be difficult to achieve in some systems such
as modern broadcast-snooping systems built using high-performance indirect networks.
Such systems do not often have the ability to NACK requests and state transitions are con-
sidered to have implicitly occurred depending upon the serialization point (often a logical
bus) of the coherence protocol. Since the transitions occur implicitly, preventing such tran-

sitions from occurring may be difficult. In the absence of explicit messages (as in the case

of directories), implementing NACKs may be a non-trivial task in such sy§tems.

- Apart from the implementation difficulty on some systems, the protocol may need to be
changed in systems that do not support NACKSs for other reasons. Such a change may not
be desirable since the NACKs may have been avoided for a specific reason.

- Since NACK-based approaches rely on retrying the request, the timing of the retry is a crit-
ical factor for performance. A retry that is too early will result in unnecessary network
traffic and coherence protocol interference resulting in additional latency, while retrying
too late will result in unnecessary delay. Often, this is similar to the exponential backoff
problem—the time interval between two attempts may be sensitive to the workload itself

and may be difficult to tune.

3. Logical bus designs do exist that allow a request to be NACKed even in high performance broadcast sys-
tems. The Gigaplane has support for the ignore signal that prevents coherence input queues in the system
to avoid observing a request on the bus for optimal global request ordering [152]. Such support can be
used for implementing NACK-based ownership retention schemes on modern broadcast systems.
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4.4.1.2 Retaining ownership via request deferrals

With deferrals, the conflict-winning processor with an exclusively owned cache block delays
processing the incoming request for a bounded time (preferably until the processor has completed
its transaction) and thus defers the request. The coherence transitions (and state transitions as seen

by the “outside world”) are assumed to have occurred but the processor does not locally apply the

incoming request. Request deferral and delayed responses works in split-coherence-tr&nsaction

systems where the address request processing is split into two sub-coherence-transactions—
request and response. The response (often the data) may appear an arbitrary time later and any
number of other requests and responses may occur between the two sub-coherence-transactions.

The advantages of a deferral-based approach are:

+ Since coherence protocol processing is delayed, the coherence protocol itself is essentially
unchanged. The existing state transition tables do not require changes nor do any philo-
sophical design decisions of the coherence protocol. Doing so allows the policy to be
implemented in just about any protocol without changing the protocol itself.

+ By deferring requests until the end of the transaction, traffic is reduced to the minimum
because the external request is serviced atigfie: time. Retries are not necessary for that
request and therefore the requestor does not have to worry about the accurateness of the
timing of the retry. This provides performance benefits and we discuss them later.

+ Ordering can be easily maintained, providing benefits such as fairness, starvation freedom,
etc.

The main disadvantages of a deferral-based approach are:

- Additional hardware is required to buffer the incoming request.

- Request deferral introduces deadlock possibilities in the protocol because we now have
waiting processors and thus a danger of a cyclic waits-for graph exists (see

Section 2.3.1.2). Special mechanisms are required to handle such situations.

4. We use the term coherence-transactions and sub-coherence-transactions to differentiate them from our
use of the term transactions in this dissertation. While coherence-transactions are also commonly referred
to as transactions, they are a low level representation consisting of individual requests and responses in
the coherence protocol. Our use of the term transactions refers to a high level concept.
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Figure 4-6: TLR implementation detailsThe additional hardware structures are shown
shaded.

4.4.2 A deferral-based implementation

In this thesis, we use a deferral-based scheme because it does not require coherence protocol
support (such as NACKs). We now discuss a deferral-based implementation of the algorithm.
Figure 4-6 shows a shared-memory multiprocessor where every processor has a local cache hierar-
chy and they are connected together via an interconnection network. We make no assumptions
regarding the memory consistency model, coherence protocol, or interconnection network. The
protocol may be snoop-based or directory-based and the interconnect may be ordered or unor-
dered. The processor is assumed to have SLE capability: support for predicting regions as transac-
tion, support for buffering local speculative updates, mechanism to track data accessed within
transactions (an access bit per cache block tracks data accessed during the transaction), and ability

to detect data conflicts.
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TLR support is required at the coherence controller where decisions for deferrals are made.

We do not require changes to the coherence protocol state transitions. The TLR concurrency con-
trol algorithm runs in parallel and along with the coherence protocol and only performs dead-
lock-free concurrency control.

Misses generated within a transaction carry a timestamp. An additional deferred coherence
input queue is present to buffer incoming requests that have been deferred by the local processor.
Two messages sent only within the local cache hierarstayt( deferandend_deferfrom the pro-
cessor to the cache controller are needed. §the_deferis sent when the processor transitions
into speculative lock-free transaction mode adl_deferis sent on exiting such a mode. The
end_defemessage may clear the access bits in the local cache hierarchy if necessary. These mes-
sages are ordered with respect to each other and multiple pairs of messages may be present in the
local hierarchy.

In section Section 4.4.2.1 we discuss implementation-specific coherence protocol interactions
with TLR. We base our discussion around a modern broadcast snooping protocol, the Sun Giga-
plane [151]. This choice does not take away from the generality of our discussion. Interactions
because of the presence of transient states in coherence protocols may result in priority informa-
tion not being completely propagated. In Section 4.4.2.2 we discuss a way to address this issue. In
Section 4.4.2.3 we give an example to better understand how TLR works with coherence-proto-

col-specific aspects.

4.4.2.1 Deadlock danger

In this section we discuss how deadlécmay occur because of the interaction of TLR with
transient states in cache coherence protocols. Transient states in cache coherence protocols do not
have valid data available yet and may not have a readable/writable copy of the cache block even
though the cache block state is valid and the request that initiated this transition state has been
ordered by the coherence protocol. On a cache miss, the cache block performs a transition from
invalid to a pending state and it stays in a pending state between the request initiation and comple-
tion. At some time between the two phases, the request gets ordered by the coherence protocol and

the cache may become the owner of the cache block according to the coherence protocol, even

5. This deadlock is not related to software deadlocks that may arise due to incorrect locking methodologies.
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Figure 4-7: Deadlock with three processotdnlike the earlier example with 2 processors, the
presence of an additional processor complicates issues because now all requests are distrib-
uted in the system and all processors are not guaranteed to observe all other requests.

though data is unavailable. This request-response decoupling introduces a complication because
even though a processor may lose a conflict under TLR, it does not have data to provide to the con-
flict-winning requestor.

In mechanisms where processors delay servicing incoming requests, if only two processors
are involved (as shown in Figure 4-5) deadlock is not a problem. This is because both processors
are aware of each others requests and can make a determination based completely on the incoming
identifier and the local identifier. The situation is however complicated by the addition of another
processor.

Consider Figure 4-7 where three processors PO, P1, and P2 are shown executing transactions.
The arcs correspond to requests generated within the transaction. The arc labelling “1:rd_X:A”
means a read for exclusive ownershig_(X ) request for blockA was issued at time t Assume
the priority ordering among the processors is as follows: PO > P1 > P2 where PO has the highest
priority. PO has cache blodkin exclusive owned (M) state and P1 has cache BdokM state.

Attime t;, P1lissues ad_X request for cache blook As per the cache coherence protocol,

PO owns the cache block and thus P1's request is forwarded to PO. PO compares its local identifier
with P1’s incoming message and wins the conflict. PO buffers lILX request forA and delays
responding to the request. According to the cache coherence protocol P1 exclusively owns the
cache blockA but the data (and hence the actual write permissions to the block) are still with PO.
P1 is waiting for PO for cache block A.

At time t,, P2 issues ad_X request foiB. According to the cache coherence protocol, P1

owns the cache block and thus P2's request is forwarded to P1. P1 compares its local identifier
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with P2’s incoming message and P1 wins the conflict. P1 buffersrié2X for B request and

delays a response. Now, according to the cache coherence protocol, P2 exclusively owns the cache
block B but the write permissions to the block are still with PR is waiting for P1 for cache
block B.

At time t3, PO issues ad_X request foiB. According to the cache coherence protocol, P2

owns the cache block (even though the data is still with P1) and thus PQ’s request is forwarded to
P2. P2 compares its local identifier with PO’s incoming message and loses the conflict. P2 must
service PO’s request by responding with data. However, P2 cannot do so because P2 is waiting for
P1 to release cache blo&k P1 will not release the cache block because P1 won the conflict (for
cache blockB) but P1 is itself waiting for PO for cache blosk

P2 is waiting for P1 (for cache blodX) which is waiting for PO (for cache blodB) which is
waiting for P2 (for cache block B). If this wait is uncontrolled, deadlock is present. The waiting
processors are unaware of other waiting processors and inadvertently éyalicavaits-for graph
[71].

Deadlock danger exists only if more than two processors are involved and only if more than
one cache block is involved. If only a single cache block is under conflict, then a cyclic waits-for

graph cannot exist because a processor cannot have more than one request outstanding for a given

block at any tim& One processor will have the cache block in exclusive owned state (and thus will
not “wait for” any other processor) and will complete its optimistic lock-free transaction. On com-
pleting the transaction, any deferred requests will be serviced.

The deadlock problem discussed above has strong parallels to the database concurrency con-
trol problem. Each cache block in our example can be conceptually treated as a lock in a database.
The process of retaining ownership of a cache block by deferring incoming requests is analogous
to that of acquiring a lock in a database. Hence, multiple cache blocks conceptually correspond to
multiple locks. Deadlock occurs because the concurrency control mechanism in our example
above did not coordinate the acquisition of exclusive ownership of the caches blocks in a manner
guaranteeing forward progress (the same way a database system deadlocks if the locks are not

managed and acquired properly).

6. In processors with blocking caches, a second request cannot be issued until the first outstanding request is
serviced. In processors with non-blocking caches subsequent requests (secondary misses) to a block that
already has a request outstanding (the primary miss) for it, are merged with the primary miss [88].
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Figure 4-8: Understanding deadlock with request deferralsis is similar to the earlier fig-

ure except here the chains are shown separately. To prevent a deadlock, P1 must be aware of
PO’s request for block B. In the example shown, P2 receives PQ’s request and thus prevents P1
from observing the conflicting request.

We first reproduce the example shown above again in Figure 4-8. The coherence protocol
chains for two cache block#, andB, are shown. The protocol chain for any coherence block is
always rooted at a stable block; in the figure the stable state is the modified (M) state of the
MOESI classification (Section 2.1.2). Further assume the conflict resolution priority for the pro-
cessors is as follows PO > P1 > P2. Therefore PO can defer P1’s requests and P1 can defer P2's
requests. We do not show data responses since we assume a split-transaction system and the coher-
ence protocol transitions (or the appearance of such transitions) occur at the time the coherence
request is ordered at the point of serialization either at the directory or the broadcast network. No
assumptions are made about the implementation of the coherence protocol, namely whether it is
snoop-based or directory-based.

At t4, processors PO and P1 have blogkandB respectively in the M state. P1 subsequently
requests ownership of the blogkas shown by the solid arc between P1 and PO. Since PO defers
P1, the waits-for arc, shown dotted, goes from P1 to P0O. P2 requests ownership of the block B and
similarly the arcs are constructed. At PO now requests blodg and the request is forwarded to
P2. P2 cannot respond to PO because P2 does not have data. P2 cannot defer PO because P2 has

lower priority than PO. No waits-for arc exists between PO and P2. An important point to note is
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that P1 does not know that PO is waiting for bld@kecause the request from PO was forwarded to
P2.

4.4.2.2 Propagating priority information

The key idea for implementing a deferral-based concurrency control mechanism is to propa-
gate information about processor priorities along the coherence protocol chains to prevent cyclic
waits. On a miss, a processor allocates a pending buffer, a miss status handling register (MSHR),
and tracks the request. If the processor receives a request (an intervention) from another processor
for the outstanding block, an intervention buffer or the MSHR tracks the incoming request. When
the processor receives data for the block, the processor operates upon the data and sends it to the
requestor based on the information stored in the local MSHR. In Figure 4-8, for the chain for block
A, PO is aware of P1 but P1 is not aware of PO. Similarly, for biBck1 is aware of P2 but not
vice versa and P2 is aware of PO but not vice versa. PO can send information to P1 (regarding dead-
lock-free concurrency control) but P1 cannot send information to PO because P1 is unaware of PO.

PO must inform P1 that PO has higher priority and must not be forced to wait for BloGke
presence of P2 in the chain prevents P1 from observing P0O’s request. Mechanisms can be added to
propagate such information along the chain. The conflicting requests must propagate along the
coherence chain towards the root (i.e., the stable block) to “restart” lower priority requests. We use
special messages, we aalarker messagefor doing so.

Marker messages are directed messages sent in response to a request for a block under con-
flict for which data is not provided immediately. The delay may be because either the processor is
forcing the requestor to wait or the processor does not have the data for the block in question but is
considered to be the owner of the block. The idea behind marker messages is to make processors
aware of their immediate neighbors in a chain. These messages have no coherence interactions.
The marker messages amaly required when the processor is doing TLR and receives a conflicting
request for an exclusively-owned block. If a marker message is sent, the subsequent data response
(which is sent at some unspecified but finite time later) must carry the information that a marker
message was sent. This is used to match up a marker message with its data response in the memory

system.
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Figure 4-9: Role of marker messagdglarker messages are primarily used to construct back-
ward pointers: the requestor is informed about the node that is participating in the waits-for
graph.

Consider Figure 4-9. PO sends a marker message to P2 informing P2 of the waits-for graph.
Similarly, P2 sends a marker message to P1 informing P1 of the waits-for graph. Consider the
chain for blockA. PO sends a marker message to P2 because PO is deferring P2. P2 sends a marker
message to P1 because P2 cannot provide data (P2 is waiting for PO). Now consider the chain for
block B. P1 sends a marker message to P2 (because P1 is deferring P2) and P2 sends a marker
message to PO because P2 cannot provide data yet.

We have a mechanism to propagate timestamps requests upspredeg(to the cache that
has the block with valid data. Probes are only used to propagate a conflict request upstream in a
cache coherence protocol chain. Thus, when P2 receives PO’s requgsPibforwards the probe
(with PQ’s timestamp) to P1 since P2 received a marker message from P1. P1 receives PO’s for-
warded probe (via P2) and loses the conflict because PO has higher priority than P1. P1 releases

ownership of blocklB and the cyclic wait is broken.

4.4.2.3 An example

We step through an example to show how TLR works with a coherence protocol with tran-

sient states. The algorithm is based on the algorithm discussed in Section 4.3.2 and uses the termi-
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nology of the wound-wait algorithm discussed in that section. The example is split over two

figures: Figure 4-10 and Figure 4-11. The system state is shown at various times. Four processors
PO, P1, P2 and P3 are part of the system. In priority ordering, PO > P1 > P2 > P3; PO has the high-
est priority and P3 has the lowest. The solid lines are the coherence messages and the dotted lines
are the new TLR messages. The system state is numbered from (i) through (vii) over the two fig-
ures.

Initially, in (i), the system state consists of two processors PO and P1 both executing a
lock-free optimistic transaction. Processor PO has accesseddkmd has it locally cached in the
exclusive modified state (M). Similarly P1 has accessed bakd has it locally cached in the M
state. In the discussion below, a processor that has been restarted because of an incoming higher
priority conflicting request is said to be wounded.

Consider (ii). Two additional processors, P2 and P3, issue requests.?8 tssues ad_X

(read-for-exclusive-ownership request) for blo&land this request is forwarded to PO. PO has
higher priority and can defer incoming requests to a block exclusively owned by it and accessed

within the transaction. Thus, PO buffers P3’s request anglserids a marker message to P3. The

purpose of this message is to inform P3 that PO will respond to P3’s request but after a delay. This
message succeeds in creating a backward arc (PO knows P3 requested the block and now P3 knows
PO will respond). Similarly, atst P2 sends ard_X for block B to P1. The sequence is similar as
earlier. P1 buffers the request and responds with a marker message to P2. Both, PO and P1, have
retained ownership of block¥sandB respectively. P3 and P2 navait for PO and P1.

Now consider (iii). Att, P1issues &d_X for block A. Since P3'sd_X request for bloclA
was the last request for the block ordered by the coherence protocol, P3 owns the block and will
respond to P1. P1’s request is therefore forwarded to P3. P3 compares priorities, and notes it has a
lower priority than P1. P1 thusoundsP3. Since P3 does not yet have valid data for the block (the

writable copy of the block is still with another processor upstream), P3 forwards the incoming

message asprobeupstream to P0. P3 is aware of PO because of the earlier marker mésxage.

7. P3 need not forward the probe to PO if P3 is aware of PO’s priority and PQ’s priority is higher than P1's. In
that case, P3 only sends the marker back because P1 cannot wound PO and must wait for PO.
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Figure 4-10: Example of a TLR implementatiof.he figure shows an application of the TLR
algorithm to a cache coherence protocol. Various stages of the algorithm are shown and within
each stage a sequence of events is shown. The sequence is continued in the next figure.
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Figure 4-11: Example of a TLR implementation continued@his figure is a continuation from

the earlier figure. As can be seen, the TLR algorithm implementation results in the chain for
block B being reordered. Thus, eventually, PO, the processor with the highest priority, gets own-
ership of the block after “wounding” processors P1 and P2. The stage (vii) shows P1 and P2
re-issuing requests and rejoining the coherence protocol chain. However, in this specific case
where P2 re-issued the request after P1, P2 is chained behind P1 and P1 is not wounded. Thus,
when PO completes its transaction, the blocks A and B will be forwarded on to the next request-
ors as per the coherence protocol chain.
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is shown with a cross mark because P3 has now been woSréte probe is forwarded to PO,
PO ignores the probe because PO has higher priority than the incoming forwarded probe from P1
and P1 is forced to wait for PO. P1 is also waiting foriRBP3 has been wounded and the wound-

ing takes time to be effective—namely when PO responds with the data to P3, P3 forwards the data

along to P1 without using the dafaThis wait of P1 for P3 is acceptable according to the

wound-wait definition because P3 has been wounded. Similarly, BOtissues ard_X request

for block B. P2 receives PQ’s request. P2, being a lower priority than PO, is wounded. However, P2
forwards PQ’s request as a probe upstream to P1. Unlike P3's probe message, PO’s request must be
forwarded because PQ’s priority is higher than P1's. P2 also responds with a marker message back
to PO.

In (iv), P1 has received PO’s forwarded probe. P1 has lower priority than PO and thus PO
wounds P1. P1 is now shown crossed. P1 relinquishes ownership ofa# services the buff-
ered request for the block (this was the request by P2 made in (ii)). Note the probe messages are
only used for wound-wait algorithm coordination and do not interact with or change the coherence
ordering in the system. As per the base coherence protocol, P1 sends the data to P2. Since P2 was
also wounded, P2 simply forwards the data downstream, in this case to PO. Again, as discussed in
the footnote, P2 may decide to use the data and complete its transaction if possible.

Figure 4-11 (v) shows the system state after the wound has taken effect foBolNok, pro-
cessor PO has blodR in exclusive owned state (M) and is not waiting for any other processor.
Meanwhile, P1 and P2 restart because they were wounded. P1's request fok Idaukrged with
its earlier outstanding, and not yet serviced, request if necessary (this occurs as per the normal

functioning of the MSHR). P1 re-issues the request for blBckt time 3. The request is for-

warded to the owner of the block PO. Now, PO has higher priority and thus P1 waits for PO. A cor-

responding marker message is sen At t

8. Optimizations are possible and we discuss them later. Specifically, Rosenkrantz et al. [144] discuss a
modified wound-wait algorithm and that can be applied here.

9. In a modified wound-wait algorithm P3 even though wounded can continue executing and complete
because it happens to have all required blocks in its local cache and is not waiting and will not wait for
another processor. This breaks down the priority ordering temporarily but may provide better perfor-
mance. We do not study this optimization in the thesis and leave it as future work.
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In (vii), at t;5, P2 re-issues the request for bldBland since P1 was the last requestor to be
ordered by the coherence protocol, P2's request is forwarded to P1. P1 has higher priority than P2

and thus P1 forces P2 to wait. No probe is sent upstream because P2 cannot wound P1.

Interaction of probe and marker messagesSince the probe and marker messages can get

out of order, additional book-keeping is required to track these messages. If a processor receives a
probe for a block not cached locally, the processor ignores the probe because this implies a data
response has crossed the probe in the network and the processor sending the probe up will receive
a data response—the coherence protocol queue is being serviced. Multiple probes may be sent
upstream on the same coherence protocol chain depending upon the order in which processors
enter the protocol queue. Of course, these probes upstream can proceed in any order and they can
bypass each other because they only determine whether a block can be retained by a processor
upstream. Again, if a probe is encountered by a node which does not have the block locally
cached, the probe can simply be ignorAdprobe does not expect any response from the proces-
sors upstreami-urther, probes are only sent upstream—thus they will eventually terminate when
they either reach the root of the chain or they reach a processor that cannot be wounded (depend-
ing upon the priority of the receiving and probing processors).

A corner case is when a processor immediately re-issues a request to the same block which it
serviced and then a probe is received from below. For a processor to receive a probe, it must have
already sent a marker message. Thus, if a marker message has not yet been sent then this probe can
be ignored. If a marker message has been sent, and if the incoming probe’s source is different from
the target of the marker message, even then the probe can be ignored. This is because of the way
coherence protocol chains are constructed in a non-nack-based protocol. When a processor ser-
vices a request, and then re-issues the request, the processor goes to the tail of the existing chain—
thus it cannot insert itself before the recipient in the chain. A discussion of this was conducted in

detail earlier in Section 2.1.2.

4.4.3 Handling the coherence protocol shared state

Often, within a critical section, a processor may read a shared location, operate upon the
value and write a new value to the same location. The read operation brings the corresponding

cache block locally in a shared state and the subsequent write results in an upgrade operation
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where the processor requests exclusive ownership of the cache block so that the processor can

update the block. External invalidation requests to shared blocks typically cannot be deferred
because no processor exclusively owns the block (upgrades in some protocols may not expect an
acknowledgement). These requests must be serviced without delay and may trigger a misspecula-
tion (violation in atomicity of the transaction). To reduce the probability of such upgrade-induced
misspeculation, we employ instruction-based prediction to reduce the necessity of requiring
upgrades following misspeculation.

The basic idea behind the predictor is as follows. Load operations within a critical section (for
SLE and TLR, this corresponds to the period they are executing in an optimistic lock-free mode)
are recorded and any store operations within the critical section to the same address results in the
predictor update occurring corresponding to the appropriate load operation. For out-of-order pro-
cessors, the predictor update must occur at instruction commit because only then does the proces-
sor know for certain if the memory operation occurred within the transaction (out-of-order
processors issue memory operations without regard to program order but instruction retirement is
in program order). The predictor is indexed by instruction address. Instruction-based predictors for
optimizing read-modify-write patterns as above have been proposed earlier [84]. Address-based
techniques for optimizing read-modify-write patterns have also been proposed [32, 157].

Cache blocks that are only read within critical sections are brought into the cache in a shared
state. If repeated upgrade-induced violations occur, the processor can issue exclusive requests for
all blocks accessed within the critical section, obtain the blocks in owned state and defer external
requests to such blocks. Doing so guarantees a successful TLR execution even without the above
optimization.

We show in the evaluation chapter that the use of the simple read-modify-write predictor as
described above substantially improves performance of the base system without TLR as well as
with TLR.

4.4.4 Performance interactions of timestamp order and coherence order

The order in which processors execuatnflicting critical sections is determined by time-
stamps—calledimestamp-orderThe order in which coherence permission and data for cache
blocks move around in the system is determined by the coherence protocol order—the order in

which requests were received by the coherence protocol—cetibdrence-orderThe defer-
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TS0 TS1 TS2 TS3
cache block: | A: modified| | A: pending| | A: pending| | A: pending|

Figure 4-12: Timestamp-order is identical to coherence-ordene figure shows how a queue
is maintained and data transfer occurs. TS0 < TS1 < TS2 < TS3 and thus the coherence order-
ing is identical to the timestamp ordering. This represents an ideal condition.

ral-based TLR algorithm maintains a separation between timestamp-order and coherence-order
thus leaving the protocol unchanged and maintains the protocol correctness conditions outlined
earlier in Section 2.1.2.3. However, if timestamp-order and coherence-order do not match, perfor-
mance issues may arise. We discuss three cases below. The three cases are: a) timestamp-order is
identical to coherence-order, b) timestamp-order is exactly reverse of coherence-order, and c)

timestamp-order approximates coherence-order.

Timestamp-order is identical to coherence-ordelThis situation occurs when the time-
stamps faithfully represent the order in which various processors issue requests and are ordered by
the coherence protocol. In addition to the absence of any locking overhead, the data transfer itself
is optimized and occurs with minimum latency. No queue breakdowns occur and all processors
issue a single request for the cache block, operate upon the block, and then forward the updates to
the next requestor in line without any explicit handshaking.

Figure 4-12 shows four processors PO, P1, P2, and P3 with timestamps TS0, TS1, TS2, and
TS3 respectively. All processors request the same cache Blabkis exhibiting data conflict
where PO is ordered before P1 in the coherence protocol ordering, then P2, and then P3. Assume
the timestamp ordering is as follows: TSO < TS1 < TS2 < TS3; TS0 has the highest priority and
TS3 has the lowest priority. PO is currently executing its optimistic lock-free transaction and has
accessed cache blogk PO defers (and buffers) P1's request #orP2's request is buffered by P1
and P3's request is buffered by P2. PO operatesppnompletes its critical section and then

responds to P1's request with the latest datadfaBubsequently, P1 operates upon the data, exe-
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cutes its own transaction, and on completion, respond to P2’s request with the latest Aatnfbr
SO on.

Thus, while processors attempt to execute the same transaction, they are automatically
ordered on the data request itself and no explicit lock requests are generated. This direct transfer of
data, coupled with the absence of lock requests and overhead, provides the intuition for high per-
formance in the presence of data conflicts. Further, while PO is operatiAg @ther processors
wait for the latest copy rather than introduce contention in the system by repeatedly requesting
lock and data.

The behavior is similar to hardware queue locks [50, 141] but now the queueing is occurring

on the data itself and no lock requests are generd&tmoving explicit lock requests and lock-
ing overhead under contention reduces network contention and latency. The properties of the
wound-wait proposal hold here and retries are eliminated because lower priority processors simply
wait rather than consume system resources.

Later we discuss an optimization where we can relax timestamp order selectively and achieve
the ideal behavior as discussed above even when the coherence-order and timestamp-order do not

match.

Timestamp-order is reverse of coherence-ordeThis situation occurs when various pro-
cessors issue requests and are ordered by the protocol in a reverse order than their timestamps.
While no locking overhead occurs, the data transfer itself is not optimized because a queue break-
down occurs because processors in the queue end up getting wounded repeatedly. Hot spotting still
does not exist and quite possibly performance may still be better than the base case. However, the
performance is not optimal.

Similar to the earlier example, Figure 4-13 shows four processors PO, P1, P2, and P3 request-
ing the same cache blodk thus exhibiting data conflict where PO is ordered before P1 in the
coherence protocol ordering, then P2, and then P3. Assume the timestamp ordering is as follows:
TS3 < TS2 < TS1 < TSO; TS3 has the highest priority and TS0 has the lowest priority. PO is cur-
rently executing its optimistic lock-free transaction and has accessed cachefblBOkreceives

P1’s request foA. PO is wounded and restarted because P1 has higher priority than PO. Similarly

10.Because no lock overhead is experienced, performance is expected to be better than QOLB and poten-
tially the same as QOLB with collocation.
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TSO TS1 TS2 TS3
cache block: | A: modified| | A: pending| | A: pending| | A: pending|

PO, P1, and P2 are wounded and thus result in unnecessary delays

Figure 4-13: Timestamp-order is reverse of coherence-ordére figure shows how a queue is
maintained and data transfer occurs. TS3 < TS2 < TS1 < TS0 and the coherence ordering is
exactly reverse of timestamp ordering. Probes from processor later in the coherence chain will
propagate upstream wounding processors upstream. The chain repeatedly breaks down although
the processor with the earliest timestamp still successfully complete its transaction.

P1 is wounded by P2 and P2 is wounded by P3. Depending upon the timing in the system, in the
worst case P3's request will be forwarded as a probe all the way up to PO. A queue breakdown
occurs and P3 obtains the block for writing after a latency of the data transfer from PO to P1 to P2
and then to P3.

However, the actual probability of such a long chain being created is very low because PO will
be wounded right when P1’s request is received by P0. PO will thus send the block to P1. The
probe from P3 to PO is not serialized but parallelized by the presence of other probes from P1 and
P2 that are also flowing upstream. Even though a successful lock-free execution occurs, a delay is

experienced before the processors can get through their critical sections.

Timestamp-order is approximate to that of coherence-orderThis occurs when the
coherence-order and timestamp-order are mostly similar except for one or two processors. An
example of this is shown in Figure 4-14 where four processors PO, P1, P2, and P3 are shown. The
timestamps are ordered as: TS0 < TS2 < TS3 < TS1. Thus, P1 has the lowest priority. PO defers
P1's request. P2 wounds P1 but since PO has higher priority than P2, P2 ends up waiting. P3’s
request is also deferred by P2 because P2 has higher priority than P3. When PO completes its criti-
cal section, the cache block is forwarded to P1 as per the coherence protocol order. However, P1
has been wounded and the data block is forwarded to P2 without P1 operating upon it. An addi-

tional latency has thus been experienced by P2 because of the presence of a wounded processor P1
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TSO TS1 TS2 TS3
cache block: | A: modified| | A: pending| | A: pending| | A: pending|

P1 is wounded and thus result in a temporary delay in the data transfer

Figure 4-14: Timestamp-order approximates coherence-ordére figure shows how a queue
is maintained and data transfer occurs. TS0 < TS2 < TS3 < TS1 and thus the coherence order-
ing is approximate to the timestamp ordering.

in the chain. As discussed earlier in Section 4.4.2.3, P1 might attempt to nevertheless execute its
critical section by using the data block it receives even though P1 has been wounded. We do not
discuss this optimization. We however discuss another optimization in the next section where the

timestamp order may itself be selectively relaxed and prevent a wound from occurring.

4.4.5 Selectively relaxing timestamp order

Deadlock is not possible if only one cache block is under conflict within the transaction
because a cyclic wait is impossible (the head node of the coherence chain is always a stable state
and does not wait for anyone else). Timestamps serve two functions: providing starvation freedom
and deadlock freedom. In protocols such as the Sun Gigaplane (which are non-nacking protocols),
a queue of requests is automatically formed for a given block if multiple processors issue owner-
ship requests while the block states are pending and the deferred queue is serviced in a serial order.
In such situations, strict timestamp order can be relaxed. Thus, a timestamp-induced restart can be
temporarily avoided if only a single cache block is contended for. However, if an additional cache
block is accessed that may deadlock (i.e., generates a cache miss), then the timestamp order must

be enforced.
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4.4.6 Controlling misses

While wound-wait minimizes protocol interference and prevents unnecessary restarts, if a
processor has been wounded, it might be useful to not issue an additional request until any previ-
ous requests (that were pending and thus resulted in a wound) have been serviced. While the
wound-wait approach reduces coherence protocol interference, an optimization such as controlling

misses may be useful in NACK-based approaches.

4.4.7 Implementation-specific resource constraints

In this section, we discuss the impact of implementation-specific constraints—cache size and
associativity, write buffer size, deferred queue size, operating systems scheduling quantum, and

finite size timestamps—on TLR.

4.4.7.1 Cache size and associativity

TLR has resource limitations similar to SLE. If the cache is used to track the lock and data
accesses for a critical section, the finite size of the cache restricts the data set size that can be
tracked speculatively. The associativity of the cache also places a limit because conflict misses
force evictions of cache blocks. Well known and well understood techniques, such as victim
caches [79], for handling such situations exist. Victim caches are small, fast, fully associative
structures that buffer cache blocks evicted from the main cache due to conflict and capacity misses.
The victim cache can be extended with a speculative access bit per entry to achieve the same func-
tionality as a regular cache. For example, if the system has a 16 entry victim cache and a 4-way
data cache, the programmer can assume any transaction accessing 20 cache blocks or less is

ensured a lock-free execution under TLR.

4.4.7.2 Write buffer size

Since the write buffer buffers speculative memory updates, its size restricts the number of
static block addresses that can be written to within a critical section. Since writes are merged in the

write buffer and memory locations can be rewritten within the write buffer (because atomicity is
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guaranteed), the number of unique cache blocks written to within the critical section determines

the required size of the write buffer.

4.4.7.3 Deferred queue size

For the implementation we provide, TLR requires sufficient buffering for deferred requests.
The size of buffering can be calculated a priori and is a function of the system size and victim
cache size. In any case, TLR like SLE can guarantee correctness under all circumstances and in the
presence of unexpected conditions can always acquire the lock, but at a loss of transactional prop-

erties.

4.4.7.4 Scheduling quantum

Another resource constraint is the operating systems scheduling quantum—it must be possi-
ble to execute the critical section within a single quantum. The time determination can be per-
formed a priori using worst case analysis. The quantum length is typically much larger than the

time it takes to execute most critical sections and this is not expected to be an issue.

4.4.7.5 Finite size of timestamps

TLR uses timestamps only for conflict resolution. The size of the timestamp eventually only
affects the fairness aspects of TLR and not its safety aspects (serializability and deadlock free-
dom). In this section we discuss issues related to the finite size of timestamps (bounded time-
stamps).

Bounded timestamps have received considerable attention in the past [1, 37, 38, 74, 77]. The
problems introduced by bounded timestamps were critical for the problem domains these research-
ers were focusing on because they relied on the absolute ordering introduced by the timestamps.
Bounded timestamps introduce a problem because of wrap-around that occurs once the timestamp
size is exceeded, thus breaking the strict monotonically-increasing property provided by
unbounded timestamps. For example, Jacobsen et al. [77] needed to ensure packets did not get lost
if received out-of-order. Israeli and Ming [74], Dolev and Shavit [37] and Dwork and Waarts [38]
were concerned with problems where timestamps were used to construct a total order of events.

TLR however only uses timestamps for determining which thread has a higher priority and thus
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PO P1 PO P1
11000 11001 11000 11101
11000 11001 100 00 11101

110 00 11001 101 00 111 01

110 00 11101
111 00 11101
100 00 11101

Figure 4-15: Impact of finite size of timestamps on fairne¥aio examples are shown where
one processor may experience starvation.

will win a conflict. The correctness condition of serializability is not affected by the limited size of
the timestamp though a strict notion of fairness may be momentarily compromised.

The timestamp size contributes to the probability of timestamp wrap-around. If the timestamp
size is large, wrap-around probability is small and any overhead associated with dealing with
wrap-around is amortized. Thus, selecting the size of the timestamp involves a trade-off between
wrap-around effects and the overhead of dealing with wrap-around. However, the dynamic compo-
nent must have a minimum size—a size of 0 results in the timestamp being completely made of the
static component and thus being static in nature.

While bounded timestamps do not affect the safety property of TLR, they may introduce fair-
ness issues for TLR. Consider Figure 4-15. Two examples are shown. The timestamps of two pro-
cessors PO and P1 are also shown. Consider the example on the left. PO initially has timestamp
11000 and every successful TLR execution results in the new timestamp also being 11000 because
of wrap-around and of an update granularity greater than 1. Thus PO wins all conflicts, and unfairly
executes its critical section repeatedly while P1 keeps failing and restarting. Now consider the
example on the right. In this case, PO véllvayswin all conflicts. This happens because PO and
P1 both have reached the maximum count for the left side bits and employ the processor identifier
tie breaker to decide a conflict winner. Since the tie-breaker is static, PO will increment its time-
stamp beyond 11100, wrap-around, and start at 000000. Meanwhile, P1’'s timestamp stays at
11101. P1 lost the initial conflict with processor 0 (when its timestamp was 11100) and now will

lose all conflicts with PO. Once PQ’s timestamp reaches 11100, the cycle repeats and P1 starves.
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For TLR, the wrap-around time must allow all conflicting processors to succeed at least once

in their lock-free execution in order to maintain fairness. Timestamps in TLR need only guarantee
that all processors eventually successfully win all conflicts—they do not have to enforce a strict
first-come first-served discipline. To ensure freedom from starvation, no pathological condition
must occur where a given processor continuously loses conflicts and never becomes the earliest
timestamp in the system. The two figures above show examples where such behavior may occur.

The wrap-around time can be quite large depending upon the size of the dynamic component of

the timestamp. Assume a timestamp update occurs every successful TLR ex&tEtoa. 24-bit
dynamic component, a wrap-around would occur after 16,777,215 successful TLR executions on a
given processor. Assuming 100 cycles per critical section, a timestamp wrap-around would occur
approximately every 1.7 billion cycles if the processor executes the critical sections repeatedly in a
tight loop.

One approach to handling bounded timestamps is the usdibtinsigned integers in a mod-

ular k-bit space as is commonly used in TCP/IP sequence numikérs TCP/IP is typically 32)

[77,92]. If sandt are timestamp values<tif 0 < (t-s) < k1 computed in unsignektbit arith-
metic. For fairness, the size bihould be sufficient to allow each processor to execute at least one
lock-free critical section successfully. The update of the local clocks are again performed using
Lamport’s rules outlined earlier.

Other techniques may be employed. On a wrap-around of a local counter, a global reset of all
other local clocks may be performed. This requires a message from the processor whose counter is
going to wrap-around to all other processors. For the wrap-around time calculated above, the time

for the message to reach all other processors must be less than 1.6 billion cycles—a very reason-

able assumption. On receiving a wrap-around message, a processor resets its Io&&l[@bing.
so eliminates the problem illustrated in Figure 4-15 where a processor stays at the saturated

counter value and keeps restarting because another processor wraps around and repeatedly beats

11.Since timestamps affect fairness, starvation freedom can still be guaranteed if this update condition is
relaxed. Further, locally succeeding non-conflicting critical sections do not have to increment the clock.

12.This will involve a misspeculation if the processor is in TLR mode because a processor in TLR mode
must not update its local clock while it is speculating. A misspeculation is not necessary if no conflicts
have been detected as yet.
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out this processor. The overhead of sending a broadcast message every 1.6 billion cycles is quite
small. This message is a point-to-point message and does not require a coherent bus.

The key as to why a global reset can be arbitrarily performed lies in the way TLR employs
timestamps. TLR does not use timestamps to explicitly order events and does not use them for cau-
sality. TLR only uses timestamps for conflict resolution and providing a degree of fairness (prima-
rily starvation freedom). Thus, a global reset may result in a temporary jitter where fairness is lost
because the priorities get reordered temporarily but correctness is always guaranteed by the SLE
commit mechanism.

Another way to handle wrap-around is for each node to remember the last timestamp received
from a given node. Then a comparison with that number for every subsequent timestamp helps the
current node detect a wrap-around. At such a time, the node may decide to reset its own counter.

As we have seen, numerous mechanisms exist to handle the issue of fairness that may result

due to the limited size of timestamps in TLR.

4.5 Algorithm invariants

In the TLR algorithm described in Section 4.3.2, three key invariants must hold:
a) The timestamp is retained and reused following a conflict-induced misspeculation

b) Timestamps are updated in a strictly monotonically increasing order following a successful

TLR execution

¢) The earlier timestamp request never loses a resource conflict and thus succeeds in obtaining
ownership of the resource

If TLR is applied, these invariants collectively provide two guarantees:
1. A processor eventually has the earliest timestamp in the system

2. A processor with the earliest timestamp eventually has a successful lock-free transactional exe-
cution
The two properties above result in the following observation:
“In a finite number of steps, a node will eventually have the earliest timestamp for all

blocks it accesses and operates upon within its optimistic transaction and is thus guar-
anteed to have a successful starvation-free lock-free execution.”
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In the next section we discuss the implications of the above observation on the programmabil-

ity and stability of multithreaded programs.

4.6 Programmability and stability impact of TLR

We will now discuss the implications of TLR on programmability and stability of multi-
threaded programs. The guarantees discussed in the earlier section hold only if TLR can be
applied. In the presence of constraints, such as resource limitations and uncacheable requests, the
guarantee of stability properties become conditional. These limitations make the guarantee of sta-
bility properties conditional. Such a guarantee can be constructed using the size of the victim
cache and the scheduling quantum. Some of these parameters can be architecturally specified. For
example, if the system has a 16 entry victim cache and a 4-way data cache, the programmer can be
assured any transaction accessing 20 cache blocks or less is ensured a lock-free execution. A pro-
grammer expecting guaranteed behavior will need to be aware of precise specifications. For a crit-
ical section to be executed in a wait-free manner, the lock must be positively identified. TLR uses
SLE, which must be implemented to identify all locks that satisfy a certain idiom. The spin-wait
loop of the lock acquire will only be reached if TLR has failed, thus giving the programmer a reli-
able method of detecting when wait freedom has not been achieved. This is an area of future work.

Until now we have assumed the lock and the protected data are in different cache blocks.
While this is the most common implementation for performance reasons, situations may occur
where the lock and data are collocated. In these situations, write operations to data collocated in
the same cache block as the lock may result in a misspeculation being triggered because the hard-
ware assumes the lock is being acquired (the granularity of conflict detection is the coherence
granularity). TLR properties can still be guaranteed. In the event that the processor needs to
acquire a lock because it has received an invalidation to the cache block containing the lock vari-
able, the processor can simply request exclusive permissions for the lock variable but still apply
partial lock elision. In other words, the processor acquires the cache block holding the lock in
exclusive state but does not write the lock variable. The processor defers incoming requests to the
cache block containing the lock the same way it defers requests to the data by employing TLR.
While concurrent execution will not occur because the lock is temporarily unavailable to other

processors, the properties of TLR are maintained because the lock is never written to. By not writ-
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ing the lock, in the event of a failure or operating systems descheduling event, the lock is left in a

free state and all speculative updates discarded.

The behavior of this mechanism becomes quite similar to that of IQOLB [141] because now
the processors are queueing up on the lock. The difference now is, unlike IQOLB, the lock is not
written to and explicitly acquired.

Multiple nested locks can also be elided if hardware for tracking these elisions is sufficient.
This was discussed in Section 3.10. If some inner lock cannot be elided due to an inability to track
multiple elisions, the inner lock is simply treated as data. This does not change TLR’s properties:
the execution is still lock-free and lower priority threads will be deferred by higher priority threads
temporarily. It is the outermost lock that controls whether TLR’s properties are met because the
outermost lock demarcates the lock-free transaction. Eliding the outermost lock is sufficient to

maintain TLR properties.

4.6.1 Restartable critical sections

SLE provides light-weight support for restartable critical sections. This is a direct result of the
failure atomicity guarantee provided by SLE (in the absence of conflicts) and TLR (even in the
presence of conflicts). Sometimes it is desirable for the operating system to restart certain threads
from some point of execution without affecting correctness—for example if the thread executions
are deadlocked. The presence of locks makes this difficult because the thread might be in a critical
section and may have modified shared memory.

SLE provides hardware support for buffering speculative updates within critical sections and
exposes these values only at the time the critical section execution is committed. Thus, if a thread
in SLE mode is terminated, the speculative updates can be discarded and the execution can be
thought to restart from just before a lock acquisition. The concept of a lightweight restartable crit-
ical section is quite powerful and a useful functionality for the operating system to exploit.

Restartable critical sections allow the underlying blocking synchronization primitive to be

made non-blocking and we discuss this next.
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4.6.2 Non-blocking behavior

As discussed in Section 2.2.3, a synchronization technique is non-blocking if some thread
will complete an operation in a finite number of steps, regardless of the relative execution speeds
of the processes [64]. The non-blocking condition guarantees the system as a whole makes
progress despite individual halting failures or delays. If TLR can be applied successfully to the
execution, a non-blocking execution of the critical sections can be obtained because TLR guaran-
tees a lock-free execution even in the presence of conflicts if sufficient buffering is available. This
behavior is a direct result of the software wait on the lock variable being eliminated. If a process is
descheduled, a misspeculation is triggered and the lock is left in a free state with all speculative
updates within the critical section discarded. Other threads scheduled may continue to operate on
the protected data structure.

Non-blocking behavior is guaranteed only if the critical section can be executed completely
within a single operating system scheduling quantum. If the execution is longer than a quantum,
then the lock-based execution must be relied upon since the lock-free execution may never com-
plete. This issue is an example of a resource limitation that can be addressed at the operating sys-
tems level and is an area of future work. Another situation where non-blocking behavior is useful
is when a page fault happens within a critical section. Without operating systems support, this will
result in TLR falling back upon the explicit lock acquisition sequence. With some operating sys-
tems support, a page fault could be triggered within the lock-free critical section and the execution
would need to appear as if the page fault occurred just prior to the start of the critical section. We

do not discuss this in detail and leave it as future work.

4.6.3 Wait-free behavior

The wait-free behavior follows from the non-blocking behavior discussed above but subject
to a stronger guarantee of starvation freedom. The threat of resource limitations makes this a con-
ditional behavior—conditional on the ability of the processor to buffer critical section data
accesses and buffer deferred incoming requests. As discussed earlier, a guarantee can be con-

structed based on the size of the victim cache.
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Thread 1 Thread 2
Locl.< (A) Locl.< (B)
Loci.< (B) Loci.< (A)
Unlo..ck (B) Unlo.lck (A)
Unlock (A) Unlock (B)

Figure 4-16: Deadlock possibility in programs using incorrect locking hierarchiyo threads
acquiring locks in reverse order will deadlock in most systems. With TLR, since locks are not
acquired, lock A and lock B will always be free and thus no cyclic wait will be present. This pro-
gram will be executed correctly using TLR and no deadlock will occur.

4.6.4 Handling deadlocks in locking hierarchies

An interesting side effect of TLR is its ability to prevent certain types of deadlocks from
being exposed. Specifically, deadlocks that occur due to an incorrect locking methodology. Con-
sider Figure 4-16. Two threads, thread 1 and thread 2, acquire locks A and B in opposite order.
Note, this program will deadlock in most systems if these threads are executed concurrently
because thread 1 first acquires A and then will wait for B while thread 2 first acquires B and then
will wait for A. A cyclic wait will occur. With TLR, since locks are not acquired, A and B will
always be free and thus no cyclic wait will be present. This is an example where a deadlocked pro-
gram will be executed correctly using TLR transparently. TLR can hence improve the robustness
of a program and prevent such deadlocks from occurring. Again, this behavior is conditional on
sufficient resources being present to buffer the entire atomic region and the nesting being tracked.
TLR provides an opportunity to improve the reliability of multithreaded programs by preventing
the negative effects of locks from being exposed because TLR can elide locks even in the presence
of conflicts. During debugging and testing, the ability to turn of TLR is necessary else finding and

correcting such programming errors will be difficult.
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4.6.5 Masking data races

By treating un-timestamped requests as deferrable, a successful lock-free execution is
achieved even in the presence of data races. Such a request is assumed to have the latest timestamp
in the system (and thus the lowest priority) and the un-timestamped request is atomically ordered
after the current critical section. Since a data response is not sent until after the critical section, the
requestor cannot consume the data and hence is ordered with the correct value. TLR, in effect, is
masking the data race and forces the data race to be ordered after the critical section completes.
Thus subtle undesirable data races may be prevented from being exposed in the system for a given
execution. The limitation of this is when the data race may have been explicitly added by the pro-

grammer for performance reasons—TLR will prevent such a data race from occurring.

4.7 Related work

Since TLR builds upon SLE, TLR borrows the related work discussion for SLE from

Section 3.13. In this section, we discuss TLR related work beyond SLE.

Lock-free and wait-free synchronization.Software only lock-free schemes have been
shown to perform poorly as compared to lock-based schemes because of excessive data copying to
allow roll-back [5, 17].

Three lock-free mechanisms using hybrid software and hardware support are the load-locked/
store-conditional instructions, transactional memory, and the oklahoma update.

Transactional Memory [66] used NACKs for performance reasons. To increase the probabil-
ity of a successful lock-free execution, a processor could refuse to service an incoming conflicting
request. However, transactional memory did not use NACKs for livelock avoidance; it used an
exponential backoff mechanism implemented in software.

The Oklahoma Update [158] did not provide starvation freedom although it did provide live-
ness by relying on a two-phase commit process and sorting memory addresses in hardware to
order their request and deferring requests appropriately. However the paper does not provide any
performance evaluation.

Software lock-free mechanisms such as Software transactional memory [149] uses software

primitives to implement transactions but performs poorly with respect to its lock-based counter-
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parts. Software-only proposals suffer from difficulty of use and a lack of generality and often poor
performance. Wait-free proposals have suffered from performance limitations in the absence of

failures.

Database concurrency control and deadlock issueBansactions are well understood and

well studied in database literature [56]. The use of timestamps for resolving conflicts and ordering
transactions in database systems has been well studied [14, 144]. Holt [71] provides a good frame-
work for reasoning about deadlocks in computer systems. Extensive work has been done in opti-
mistic concurrency control (OCC) for database systems [90]. OCC was proposed as an alternative
to locking in database management systems. OCC involves a read phase where objects are
accessed (with possible updates to a private copy of these objects) followed by a serialized valida-
tion phase to check for data conflicts (read/write conflicts with other transactions). This is followed
by the write phase if the validation is successful. TLR does not have a serialized validation phase
and exploits hardware techniques to provide transactional behavior. In spite of extensive research,

OCC techniques have not been popular because of key limitations [124].

Lock-based synchronization. Lock-based synchronization has been extensively studied in lit-
erature. These techniques attempt to optimize the lock and data transfer operations [10, 50, 81,
120, 141]. The techniques are not lock-free. These techniques suffer from locking overhead and
serialization due to lock acquisitions.

Martinez and Torrellas introduc&beculative Lockallowing speculative threads to bypass a
held lock and enter a critical section [117]. At any time the lock is always acquired by one thread
which is non-speculative—also called the safe thread. Speculative threads could then become
non-speculative after a lock was released by the non-speculative thread if no data conflicts were
detected by the speculative threads and the speculative threads had completed their critical sec-
tions. In the presence of data conflicts, speculative threads always restart and retry the above
sequence, competing for the lock and try to become safe threads by attempting to acquire the lock.
A free lock is always written to and acquired explicitly by a thread.

In Speculative Synchronizatidi18], Speculative Locks is extended to include the SLE
mechanism to be used in the absence of data conflicts. In the presence of data conflicts, rather than
falling back on the underlying scheme as SLE does, it adapts by employing Speculative Locks as

described above. In the presence of conflicts, threads attempt to become safe; in other words they
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compete for the lock. Similar to Speculative Locks, in the presence of resource limitations, the
speculative threads in Speculative Synchronization stall and wait to acquire the lock.

The above two schemes provide the same forward progress guarantees as SLE. These
schemes are not lock-free, experience the limitations of locks, and do not provide the guarantees
provided by TLR.

Delaying responses to requests for lock variables for a short time and thus emulating hard-
ware queued locks was proposed earlier [141]. TLR generalizes that notion by applying deferrals

to data and to multiple cache blocks simultaneously.

Speculative execution and parallelizationSpeculative execution for aggressive implemen-
tation of memory consistency models was proposed by Gharachorloo et al. [45] and later extended
[48, 143]. Similarly, work has been done in speculative parallelization of programs [86, 154].
While the buffering and speculative execution mechanisms they use are similar to ours, these pro-
posals do not provide lock-free execution of lock-based code and do not address critical section

serialization and thus are orthogonal to our scheme.

4.8 Chapter summary

We have proposed Transactional Lock Removal (TLR), a hardware mechanism to convert
lock-based critical sections transparently and optimistically into lock-free optimistic transactions
and a timestamp-based fair conflict resolution scheme to provide transactional semantics and star-
vation freedom, if the data accessed by the transaction can be locally cached and subject to some
implementation specific constraints. TLR provides both serializability and failure atomicity. We
have presented one deferral-based implementation of TLR that does not require changes to the
coherence protocol state transitions.

We summarize the contributions of our mechanism under three categories:

1. Programmability TLR simplifies correct multithreaded code development. Reasoning about
granularity of locks is not required because serialization decisions are made at run-time based
on actual data conflicts and independent of locking granularity. Thus, a critical problem in rea-
soning about writing multithreaded programs is solved. Cache blocks are the coherence unit
and represent a fine granularity for sharing. TLR provide this granularity without programmer

involvement.



142
2. Stability Since locks are not written to and the “wait” on the lock variable is no longer required,
properties of lock-free and wait-free execution are achieved transparently. This translates to
improved system wide performance, no convoying or priority-inversion dangers, and robust
execution in the presence of failing threads. TLR addresses the inherent limitations of the lock-
ing construct while maintaining the well-understood critical section abstraction for the pro-

grammer.

3. Performance TLR enables high-performance multithreaded execution. Independent of lock
granularity, because serialization decisions are made only in the presence of data conflicts and
is not based on lock contention, performance of fine-granularity locking is achieved. Further,
since a queue of requestors is constructed in the hardware by using the coherence protocol, the
data transfers are efficient and low overhead. Programmers can focus on writing correct code
while hardware automatically extracts performance.

TLR is the first proposal to address the trade-off among all the above three aspects and pro-
vide a robust solution to the synchronization problem. While TLR does tradeoff hardware for these
properties, we believe the hardware cost is modest. Additionally, we address the inherent limita-
tions of the locking construct automatically while maintaining the well understood critical section
abstraction for the programmer. Subject to resource constraints, our scheme is the first to transpar-
ently provide a wait-free execution of a lock-based critical sections.

Software developers can use TLR in several ways. The size of transactions can be architectur-
ally specified thus guaranteeing programmers a lock-free atomic execution of a sequence of mem-
ory operations. Such functionality can help programmers write simpler high-performance
wait-free algorithms. Some of the hardware support, required for example in identifying critical
sections, can be reduced by using appropriate compiler support. Operating systems can exploit the
notion of transactional execution to provide strong guarantees and appropriate operating systems
involvement can prevent software failures (that affect one thread) to interact negatively with other

concurrent threads and allow other threads to continue execution.
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Chapter 5

Performance Evaluation Methodology

In this chapter we describe our performance evaluation methodology. We use simulation tech-
niques for evaluating performance. Two components of the simulation environment are the simula-
tor and the benchmark binaries the simulator executes. We describe the simulator in Section 5.1
and the compiling infrastructure for generating the binaries in Section 5.2. In Section 5.3 we
describe our target system for simulations and the configuration parameters. Section 5.4 describes

the benchmarks we use for our performance evaluation.

5.1 SimpleMP simulation environment

We use SimpleMP, an execution-driven simulator for executing multithreaded binaries. The
simulator is partly derived from the Simplescalar 3.0 toolset [22] but is completely rewritten. Sim-
pleMP models accurately an out-of-order processor and a detailed memory hierarchy in a multi-
processor configuration. Values are copied and passed in the processor cores, physical registers,
and architectural registers. Data values are also stored throughout the memory hierarchy (e.g., in
caches, write buffers, and network packets).

To model coherency and memory consistency events accurately in a multiprocessor simula-
tion, the processors must operate (read and write) on data in caches and write buffers (unlike
sim-outorderin Simplescalar where the caches only store tags and the actual data is accessed
directly from memory). The processor model in SimpleMP accesses data from these buffers
directly instead of from a flat memory space, thus allowing accurate modeling of coherence and
memory consistency. Contention is modeled at all levels in the memory system. A page table is
implemented to translate virtual addresses to physical addresses. Coherency is maintained using

physical addresses.
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Figure 5-1: Simulation methodologyThe timing and functional simulators have their own reg-

ister and memory space. They only communicate via a memory consistency checker to check for
memory consistency violations. The detailed timing simulator informs the functional simulator
when to execute based on the memory consistency model implemented by the timing simulator.
Hence, this is a validation sequence and not a verification sequence since the timing and func-
tional simulators cannot be totally decoupled in a multiprocessor environment.

To ensure correct simulation, a functional checker simulator executes in parallel with the
detailed simulatoonly for checking correctnes$he functional simulator works in its own private
memory and register space, and is robust enough to validate aggressive TSO implementations. The
functional simulator has functional write buffers. When a memory consistency event is considered
completed by the timing simulator, the functional simulator is asked to drain its functional write
buffer entry. No values are exchanged between the functional and timing simulators. The interac-
tion of the two simulators is shown in Figure 5-1.

Random perturbations are introduced in various segments of the simulator to ensure the simu-
lation does not have an artifact of the way the simulator is written. For example, the main simula-
tor loop goes through all processors in sequence in a cycle and executes the processor cores and
event queues. The order in which the processors are sequenced through is selected at random.
Undesirable artifacts may arise if this is not done. For example, if the simulation order is first pro-
cessor 1, then processor 2, and so on every cycle, the first processor will generate a miss first and
have access to system resources first and will provide biased behavior resulting in load imbalance
issues since one processor unfairly gets priority in memory operations and may, for example, suc-
ceed in acquiring locks first. As a result, one processor starves the other processors. Such behavior

may actually be true in real systems if clock skew forces one processor to always be faster in
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reaching the memory system and thus obtain resources before others. Since this is a system spe-
cific issue, we reduce the probability of such biases from occurring and introduce randomness in
the order in which processor obtain resources. Similarly, small perturbations (on the order of a few
cycles) are introduced throughout the memory system including the data network, network con-
trollers, and coherence input queues. The ordering requirements, if any, of each network are main-

tained.

5.2 Compiling infrastructure

We use the PISA instruction set architecture [22] andgbe compiler developed for that
architecture. We wrote linker scripts to generate thread-safe binaries using the simplescalar com-
piler. Simplescalatibc libraries are not thread safe and we annotate segments in the binary at
link-time to distinguish between system code and application code. Application code is
thread-safe. In addition, the simulator supports bBbRKand SPROCmodels for parallel
computation. The PARMACS macros are used for compiling the parallel versions of the applica-
tions. All benchmarks are compiled with the -O3 option and all synchronization code is inlined.
The compile infrastructure is shown in Figure 5-2. Only user-level instructions are modeled. A sin-

gle process is assigned to each processor.

5.3 Target system and configuration

The processor configuration is common for all simulations and we discuss it first. We then
discuss the chip multiprocessor (CMP), symmetric multiprocessor (SMP), and distributed

shared-memory (DSM) configurations.

Processor configuration Each processor is an aggressive out-of-order processor implementing
total store ordering as its memory consistency model. The implementation of the memory consis-
tency model is similar to that proposed by Gharachorloo et al. [45] where loads are aggressively
issued and the load/store queue is snooped to check for any memory consistency violations. The

processor configuration is shown in Table 5-1.
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Figure 5-2: Compile infrastructure SimpleMP can simulate Alpha and PISA instructions.

Chip multiprocessor (CMP) configuration. This system configuration has a single level
cache (consisting of L1 caches) hierarchy with each L1 cache kept coherent using a broadcast net-
work implementing a coherence protocol similar to the Sun Gigaplane. The data network is a
point-to-point high-bandwidth direct network modeled after the Sun Gigaplane-XB. The level two
cache and memory are off-chip. Figure 5-3 shows the CMP target system and Table 5-2 lists the

CMP system parameters. SLE and TLR are evaluated for this configuration.

Symmetric multiprocessor (SMP) configurationWe add an additional level of caches
(consisting of L2 caches) to the CMP configuration. Coherence is maintained across the L2

caches. Similar to the chip multiprocessor configuration, the broadcast network is high-bandwidth
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Table 5-1: Processor configuration

Processor | Clock 1 GHz (1 ns cycle time).

Fetch 16 entry instruction fetch queue.

Branch prediction 8K entry combining predictor, 8K entry 4-way BTB, |64
entry return address stack, 3-cycle branch mispredig
redirect penalty.

—

Issue/execute/commit out-of-order issue/execute 8 instructions per cycle
in-order commit of 8 instructions per cycle.

Reorder buffer 128 entries.
Load/store queue 64 entries.

Functional units pipelined, 8 alus, 2 multipliers, 4 floating point units|, 3
memory ports.

Write-buffer 64 entry, non-merging, each entry 64-byte wide.

Load issue policy issue loads to memory system as soon as address|known.

Memory consistency | total store ordering (TSO).

Silent store-pair pre- | 64 entry silent store-pair predictor table, indexed by the
dictor? store-conditional PC. support for up to 8 store-pair e
sions at any time.

Read-modify-write | 128 entry PC indexed predictor for collapsing read-mod-
sequence predictor | ify-write sequences within critical sections into a single
request.

a. Used for SLE and TLR configurations in all experiments.
b. Used for all experiments in Section 6.3.2 only.

and low-latency and the data network is a point-to-point direct network modeled after the Sun
Gigaplane-XB. Figure 5-4 shows the SMP target system and Table 5-3 lists the system parameters.

We evaluate SLE for this configuration.

Distributed shared-memory (DSM) configuration.The DSM configuration consists of two
levels of caches and an SGI Origin 2000-type MESI protocol implemented among the L2 caches.
The directory is full-mapped and stored with memory in DRAM. Silent evictions of clean cache
blocks is supported. The SGI Origin 2000 uses two virtual channels for routing and relies on a
complex high-level deadlock detector to resolve deadlock that may arise because of three-hop

coherence transactions over two virtual channels, and resolves deadlocks by falling back on a slow
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Figure 5-3: Chip multiprocessor (CMP)The L1 caches on the chip are kept coherent using a
broadcast network as shown. Data transfer occurs through a high-bandwidth point-to-point net-
work. The L2 cache and memory are off-chip as shown.

Table 5-2: Memory system configuration: Chip multiprocessor

L1 caches Data cache 128KByte, 4-way associative, write-back, 1-cycle
parameters access, 16 pending misses. Block size: 64 bytes.
Instruction cacheg 64KByte, 2-way associative, 1-cycle access, 16 penhd-
parameters ing misses. Block size: 64 bytes.
Protocol Sun Gigaplane-type MOESI protocol between all L 1s.

Queue occupangy 1-cycle minimum in all queues in the system.

Network configuration Snoop network|  Split transaction. Address bus: broadcast network,
snhoop latency: 20 cycles, 120 outstanding transactipns.

Data network Point-to-point, pipelined, transfer latency: 20 cyclas.

L2 cache 4MByte, 6-way, 10-cycle access.

Page 4Kbyte size.
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Figure 5-4: Symmetric multiprocessor (SMP)he L2 caches are kept coherent using a broad-
cast network as shown. Data transfer occurs through a high-bandwidth point-to-point network.
The queues between the L1 and L2 are also shown. Inclusion is maintained in the local hierar-

chy.
Table 5-3: Memory system configuration: Symmetric multiprocessor

L1 caches Data cache 128KByte, 4-way associative, write-back, 1-cycle
parameters access, 16 pending misses. Block size: 64 bytes.
Instruction cacheg 64KByte, 2-way associative, 1-cycle access, 16 pend-
parameters ing misses. Block size: 64 bytes.
Protocol MSI protocol.
Queue occupangy 1 cycle minimum in all queues in the system.

L2 unified caches Parameters 4MByte, 4-way, 12 cycle access, 16 pending misses.

Protocol

Sun Gigaplane-type MOESI protocol between all L

2s.

Network configuration Snoop network

Split transaction. Address bus: broadcast netwof

shoop latency: 30 cycles, 120 outstanding transact

ons.

Data network

Point-to-point, pipelined, 70 cycles transfer latenc
Memory access: 70 cycles for 64 bytes.

Page

4KByte size.
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Figure 5-5: Distributed shared-memory system (DSNihe directory and memory controller
are integrated as shown. The interconnection network consists of three virtual channels for
request, response, and interventions. The network is modeled as a point-to-point network.

strict request-response sequence. To avoid the inefficiencies introduced by the use of only two vir-
tual channels, our implementation employes three virtual channels. Figure 5-5 shows the distrib-
uted shared-memory multiprocessor target system and Table 5-4 lists the system parameters. We

evaluate SLE for this configuration.

5.4 Benchmarks

Many microbenchmarks and benchmarks exist for evaluating synchronization performance.
We select three microbenchmarks and seven benchmarks. The benchmarks are taken from the
SPLASH/SPLASH2suites [150, 169].



151

Table 5-4: Memory system configuration: DSM multiprocessor

L1 caches Data cache param&28KByte, 4-way associative, write-back, 1-cycle
ters access, 16 pending misses. Block size of 64 bytes

Instruction cache |64KByte, 2-way associative, 1-cycle access, 16 penpd-
parameters ing misses. Block size: 64 bytes.

Protocol MSI protocol

Queue occupancy| 1 cycle minimum in all queues in the system

L2 unified caches Parameters 4MByte, 4-way, 12 cycle access, 16 pending misses.

Coherence protocagl SGI Origin 2000 type MESI protocol, full mapped
directory, 70 cycle access (overlapped with memory

access).
Network configuration Parameters point-to-point network with three virtual channels
Latencies processor to local directory (70 ns), directory and

remote route (50 ns).

Some uncontended latencies: read miss to local mgm-
ory: ~130 ns, read miss to remote memory: ~230 ns,
read miss to remote dirty cache: ~360 ns

Page 4KByte size, round-robin allocation across nodes.

5.4.1 Microbenchmarks

We use three microbenchmarksaultiple -counter , single-counter , and dou-
bly-linked list —specifically selected to evaluate three different behaviors of critical section
data access representing points in the spectrum of data and lock contention. While these are not
comprehensive, they are selected to provide insight into the behavior of SLE and TLRwil-he
tiple-counter microbenchmark represents high, easily exploitable concurrencysithe
gle-counter microbenchmark represents a case where no concurrency is exploitable and rate
of data conflicts (and lock contention) is high. Tdeubly-linked list is a complex
microbenchmark with difficult-to-exploit dynamic concurrency and high lock contention. The

details of these microbenchmarks are described below.

1. multiple-counter . This microbenchmark represents an example of a coarse granularity
lock and no data conflicts among critical sections. Tdtiple-counter microbench-

mark consists oh counters protected by a single lock. Each processor uniquely updates only
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one ofn counters 2%n times. While a single lock protects the counters, there is no dependence

across the various critical sections for the data itself and hence no conflicts.

2. single-counter . This microbenchmark represents an example of a fine granularity lock
and high data conflicts. Thengle-counter microbenchmark corresponds to critical sec-

tions operating on a single cache block. One counter is protected by a loak @edessors

increment the countert&n times. No inherent exploitable concurrency exists as all processors

operate upon the same data (and cache block).

3. doubly-linked list . This microbenchmark represents an example of a fine granularity
lock and a dynamically varying data conflict rate. Tdaubly-linked list microbench-
mark consists of a doubly-linked list witHead and Tail pointers protected by one lock.
Each processor dequeues an item by removing the item pointedHedry, and then enqueues
it by adding it toTail . A processor that removes the last item sets btghd andTail to

NULL, and a processor that inserts an item into an empty list setdHszttl andTail to point

to the new item. The benchmark finishes whéfii2 enqueue and dequeue operations have
completed. A non-empty queue can support concurrent enqueue and dequeue operations. When
the queue is non-empty, each process modiiiead or Tail , but not both, so enqueuers can
execute without interference from dequeuers, and vice versa. Processors must modify both
pointers for an empty queue. This concurrency is difficult to exploit in any simple way using
locks, since an enqueuer does not know if it must lock the tail pointer until after it has locked
the head pointer, and vice-versa for dequeuers [66, 149]. The critical sections are non-trivial
involving pointer manipulations and multiple cache block accesses. Figure 5-6 shows the C
code for theenqueue () anddequeue () functions.

In the microbenchmarks, processors execute critical sections in a loop for a fixed number of
iterations. Special care was taken in designing these microbenchmarks. We use a methodology
similar to that used by Kumar et al. [89]. To ensure fairness, we introduce delay after a lock release
operations. After releasing the lock, the processor waits a minimum random interval before pro-
ceeding to ensure another processor has an opportunity to acquire the lock before a successive
local lock reacquire, thus reducing unfairness. The wait outside the critical section has to be larger
than the inter-processor lock transfer time to ensure that the local processor will not succeed in

reacquiring the lock.
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void enqueue(entry *new) entry *dequeue()

{ {

entry *tail; entry *head;
new->prev = NULL,;
new->next = NULL;

LOCK (lock) LOCK (lock)
tail = Tail; head = Head;
new->next = tail; if (head != NULL)
if (tail == NULL) {
Head = new; prev = head->prev;
else if (prev != NULL)
tail->prev = new; prev->next = NULL;
Tail = new; else
UNLOCK (lock) Tail = NULL;
} Head = prev;
}

UNLOCK (lock)
return head;

}

Figure 5-6: Doubly-linked list microbenchmark cod&he left side shows the enqueue func-
tion and the right side shows the dequeue function.

5.4.2 Benchmarks

The benchmarks we use aoeean-cont , cholesky , mp3d, barnes , radiosity
water-nsq , andraytrace . Barnes , cholesky , andmp3d are drawn from theSPLASH
[150] and ocean-cont , radiosity , water-nsq and raytrace  are drawn from the
SPLASH2suites [169]. All benchmark data structures are padded appropriately to eliminate false
sharing. The benchmarks were run to completion. We use modified versidmsrrodés and
mp3d from Alain Ké&gi's experiments [80]. The modifications are described below. Table 5-5 lists
the various benchmarks used, and their input sets. These specific benchmarks have been chosen
because they represent noticeable synchronization delays and employ lock-based synchronization.
These benchmarks have been optimized for sharing and thus have little communication in most
cases. We are interested in determining the robustness and potential of our proposal even for these
well tuned benchmarks. We briefly describe these benchmarks below. Detailed description of the

benchmarks can be found elsewhere [150, 169].
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Table 5-5: Benchmarks

Application Suite Type of simulation Input data set Nesting
Barneé& SPLASH N-Body 4K bodies yes
Cholesky SPLASH | Matrix factorization tk14.0/tk15.0 no
Mp3d° SPLASH | Rarefied field flow 24,000 mols, 25 itern no
Radiosity SPLASH2 3-D rendering room yes
Water-nsq SPLASH2 | Water molecules 512 mols, 3 iter. no
Ocean-corft SPLASH2 Hydrodynamics 128x128, 2 days no
Raytracé SPLASH2 | Image rendering car no

a. In this version obarnes , locks are stored directly in the cells instead of in a separate
array as in the original version. The benefit of this new layout is primarily to remove
unnecessary contention introduced by the fixed size lock array [80].

b. tk14.0 input set used for experiments in Section 6.3.1 and tk15.0 input set used for exper-
iments in Section 6.3.2.

c. Locking version ofnp3d used [80].

d. Array storage is increased from 128 elements to 131 elements in each dimension to create
arrays of prime size, thus reducing cache conflicts among elements in the arrays [93].

e. Used only for experiments in Section 6.3.2.

Barnes. Barnes simulates the evolution of a system of bodies under the influence of gravita-
tional forces. Every body is modeled as a point mass and exerts forces on all other bodies in the

system. For each discrete time step (an iteratiba)jpes computes new positions of the bodies

in the system. To avoid computing all O%]\Iinteractions among the bodidsarnes approxi-

mates the force exerted by a sufficiently distant cluster of bodies by the force resulting from the
cluster’s center of mass thus reducing the number of computed interactions kag®jr O(N)
depending on the distribution of bodies in the syst&arnes is based on a hierarchical octree
representation of space in three dimensions. The root of this tree represents a space cell containing
all bodies in the system. The tree is built by adding particles to the initially empty root cell and
subdividing a cell into its eight children as soon as it contains more than a single body. Leaf nodes
in the tree represent the actual bodies while the other nodes, the cells, represent a portion of the

three-dimensional space holding the cells’ children. A cell bisects the parent cell in all three
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dimensions. When computing the forces exerted by other bdoeses walks down the tree in

breadth-first-search fashion and stops whenever it reaches a leaf or the considered node’s center of
mass is sufficiently far away, whichever comes first.

Nearly all ofbarnes ’ execution time is spent in two phases. The first phase loads bodies in
the tree and the second phase computes the interactions. Each process is responsible for a fraction
of the bodies in the system. In the tree-building phase, each process loads its bodies in the octree
using locks to ensure atomic updates of the cell nodes. In the interaction computation phase, each
process computes the forces exerted by other bodies for each body that they own. This phase does
not require mutual exclusion because a process updates only the bodies it owns.

The original version obarnes stores the locks associated with the cells in a separate array.
We instead store the locks in the cells directly. The benefits of this new layout is primarily to
remove some unnecessary contention introduced by the fixed size lock array used in the original
version. In the original version, since the number of elements in the array is less than the number
of bodies in a typical simulation input, multiple bodies will map to the same lock in the array cre-

ating artificial contention. The new version does not suffer from artificial contention.

Cholesky. Cholesky performs Cholesky factorization of a sparse positive definite matrix.
This program focuses on the most time-consuming components of factorization. The three steps in
Cholesky factorization are: ordering, symbolic factorization, and numerical factorization. The pro-
gram assumes an ordered input matrix. The second step accounts for a small fraction of the overall
factorization runtime and thus is performed on a single process. The third step, numerical factor-
ization, determines the actual numerical values of the non-zero entries in L (corresponding to the
LU matrix). This is typically the most time-consuming phase and is parallelized in the program.

Locks are used to protect task queues and matrix columns.

Mp3d. Mp3dis a Monte Carlo simulation of rarefied fluid flow simulating the hypersonic flow
of particles at extremely low densitielp3d simulates the trajectories of particles through an
active space and adjusts the velocities of the particles based on collisions with the boundaries
(such as the wind tunnel walls) and other particles. After the system reaches steady state, statistical

analysis of the trajectory data produces an estimated flow field for the studied configuration. The

algorithm implemented imp3d reduces the Rlproblem of finding collision partners to order N

by representing the active space as an array of three-dimensional unit-sized cells. Only particles
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present in the same cell at the same time are eligible for collision consideration. If the application
finds an eligible pair, it uses a probabilistic test to decide whether a collision actually occurs.

Work is allocated to each process through a static assignment of the simulated particles. Each
simulated step consists of a move phase and a collision phase for each particle that the process
owns. The move phase computes the particle’s new position based both on its current position and
velocity, and its interaction with boundaries. The collision phase determines if the particle just
moved collides with another particle, and if so, adjusts the velocities of both particles. Data shar-
ing occurs during collisions and through accesses to the unit-sized space cells. During a collision,
a process may have to update the position and velocity of a particle owned by another process.
Also, each space cell maintains a count of the particle population currently present in that cell.
Therefore, each time a process moves a particle, it may have to update the population count of
some space cells if that particle passes from one cell to another. These data accesses to particles
and space cells may lead to race conditions that optional locks will eliminate at some performance
cost. Locks associated with each space cell may be used to eliminate race conditions while access-
ing particles and space cells. Since processes update particle information owned by other pro-
cesses only during a collision and a collision can only occur if two particles are present in the same
cell, the space cell locks ensure mutual exclusion for both particle and space cell accesses. We

studymp3d compiled with these locks.

Radiosity. Radiosity computes the equilibrium distribution of light in a scene using the
iterative hierarchical diffuse radiosity method. A scene is initially modeled as a number of large
input polygons. Light transport interactions are computed among these polygons, and polygons are
hierarchically subdivided into patches as necessary to improve accuracy. The main data structures
represent patches, interactions, interaction lists, the quadtree structures, and a BSP tree which
facilitates efficient visibility computation between pairs of polygons. The structure of computation
and the access patterns to the data structures are highly irregular. Parallelism is managed by dis-
tributed task queues, one per process, with task stealing for load balancing. Locks are used to pro-

tect access to task queues, interaction lists, and other shared structures.

Water-nsq. Water-nsq is an N-body molecular dynamics application for evaluating

forces and potentials that occur over time in a system of water molecules. The forces and poten-

tials are computing using an O%Nalgorithm, and a predictor-corrector method is used to integrate
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the motion of water molecules over time. For a user-specified number of time-steps, this program

estimates the forces each molecule exerts on all others according to the Newtonian equations of

motion. Water-nsq avoids computing all Kl interactions by eliminating from consideration
molecules outside of a sphere centered at the examined molecule and of a radius corresponding to
half of the box length.

After initialization and one-time computations, each time-step consists of five phases: calcu-
lating the predicted values of atomic variables; computing intra-molecular forces for all atoms;
computing the inter-molecular forces; calculating the corrected values of variables from the pre-
dicted values and computed forces; and computing the total kinetic energy of the system. The third

task (computing the inter-molecular forces) accounts for the most of the execution time: its time

complexity is O(l‘@) while all the other tasks have a time complexity of O(N).

Water-nsq exploits mostly the parallelism available within a phase; it exploits the
inter-phase parallelism to a limited extent to avoid some synchronization between phases. To
exploit locality,water-nsq  both assigns statically to each process an even fraction of the mole-
cules and stores the molecules assigned to the same process next to each other. Communication
among processes occurs during the second (intra-molecular computation) and third (inter-molecu-
lar computation) phases. Communication in the second phase consists only of adding scalars into a
global sum; locks ensure that the processes correctly update that sum. Communication also occurs
in the inter-molecular computation, where processes read positions of the interacting molecules,
compute the forces, and update the forces of both molecules. A lock per molecule ensures the ato-

micity of the force updates.

Ocean-cont. Ocean-cont simulates eddy and boundary currents in an ocean basin. The
simulation is performed over multiple time-steps until the eddies and mean ocean flow attain a
mutual balance. The work done every time-step involves setting up and solving a set of spatial par-
tial differential equations. The continuous functions are transformed into discrete counterparts by
second order finite-differencing and the resulting difference equations set up and solved on
two-dimensional fixed-size grids representing horizontal cross-sections of the ocean basin. The
grids are represented conceptually as 4-D arrays with all subgrids allocated contiguously and
locally in the nodes that own them. A red-black Gauss-Seidel multigrid equation solver is used.

The memory access behavior @fean-cont is regular and input independent. Grid tasks are



158
permanently assigned to processes and each task performs the computational steps on the section

of the grids that it owns, regularly communicating with other processes. Communication among
processes involves barrier synchronization to preserve dependences between certain computations,
near-neighbor communication while computing the Jacobians and Laplacians, and updates of a
counter by all processes for every SOR iteration to determine convergence.

The program uses two locks. The first lock ensures that each process updates a global sum
correctly in order to compute a matrix integral. The second lock helps determine when the SOR
iterations have converged. In both cases the algorithm uses a simple lock rather than a tree of locks
to perform the reduction.

In our experiments, the array storage is increased slightly (from 128 elements to 131 elements
in each dimension) to create arrays of prime size, thus reducing cache conflicts among elements in

the arrays [93].

Raytrace. Raytrace renders a three-dimensional scene using ray tracing. A hierarchical
uniform grid is used to represent the scene. A ray is traced through each pixel in the image plane
and reflects in unpredictable ways off the objects it strikes. Each contact generates multiple rays,
and the recursion results in a ray tree per pixel. The image plane is partitioned among processes in
contiguous blocks of pixel groups, and distributed tasks queues are used with task stealing. The
memory access patterns of the application are highly unpredictable. The program provides effi-
cient access to the scene description through a hierarchical uniform grid to traverse the read-only
scene data quickly, round-robin distribution of the scene data across the nodes in the system to bal-
ance load on the network and the memory modules, and replication of data in the caches.

The program uses locks to protect access to a counter and to ensure correct operation on dis-
tributed task queues. The counter is used to assign a unique identifier to each newly spawned ray
and the critical section to access it consists only of fetching the counter, adding one to it, and stor-
ing it back to memory. Contention to that lock is very high. A set of locks protect the task queues
(one queue per process and one lock per queue). Contention to these locks is typically fairly low,

unless the number of participating processes approaches the number of rays created.
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5.4.3 Synchronization primitives

In this section, we discuss the two synchronization primitives we use in our experiments. The
test&test&set locks, discussed below in Section 5.4.3.1 form our base synchronization primitive
and is also used for SLE and TLR. We compare TLR to MCS software queued locks and we dis-

cuss MCS locks below in Section 5.4.3.2.

5.4.3.1 Test&test&set locks

Test&test&set [145] is an extension of test&set [7]. Test&test&set performs a read of the lock
before attempting a test&set operation. Waiting requesters spin on shared, read-only copies of the
lock and wait for the holder to release the lock. When the lock holder issues the release, the
read-only copies are invalidated. The holder, having obtained a writable copy of the lock, releases
it. Subsequently, all waiting requesters issue a request to load a read-only copy of the lock, and
finding it released, all attempt a test&set. Only one of the requestors succeeds in the test&set.

The contention when the lock is freed can be substantial because all requesters attempt to

acquire the lock at that point and then all attempt to upgrade the lock to a writable state.

5.4.3.2 MCS locks

The MCS scheme [120, 121] inserts requesters for a held lock into a software queue at the
time of the request. Atomic operations such as swap and compare&swap are used to update the list
correctly. With queue-based locking, arbitration for the eventual recipient of the lock is therefore
performed in advance, first-come, first-served.

Maintaining the requester queue in software results in large overhead, especially under con-
tentionless conditions. When a lock is released, however, communication occurs only between the
releaser and the requester at the head of the queue. Network traffic is thus reduced to a constant
number of network traversals per synchronization access. In addition, each processor waiting for
the lock spins locally on distinct memory addresses (instead of a single address as with
test&test&set), which further reduces the load on the network. Each processor in the queue main-
tains a pointer to the address on which the next processor in the queue spins. When the current

lock holder leaves the critical section, it clears the value pointed to by the address that it maintains.
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Chapter 6

Performance Evaluation

Speculative Lock Elision (SLE) and Transactional Lock Removal (TLR) provide improved
programmability and stability of multithreaded programs. In this chapter, we study the impact of
both SLE and TLR on the execution time of programs.

We begin the chapter by qualitatively understanding the sources of performance in
Section 6.1. We consider different critical section behaviors, namely varying data conflict and lock
contention, and provide intuition behind why one would expect improved performance. We also
discuss conditions under which performance may be degraded. In Section 6.2 we use microbench-
marks to quantitatively study SLE and TLR and in Section 6.3 we evaluate SLE and TLR using
benchmarks chosen from tis#?LASHand SPLASHZ2suite. The experimental methodology, sys-
tem configuration, microbenchmarks, and benchmarks were discussed in Chapter 5. In the discus-
sion below, we refer to the base system without SLE or TLR as BASE. The base system and SLE
together form BASE+SLE, or SLE for short; and the base system and SLE and TLR together form
BASE+SLE+TLR, or TLR for short. We also compare TLR to MCS locks in Section 6.3.2.

6.1 Qualitatively understanding performance

Lock contention occurs when a thread attempts to acquire a lock owned by some other thread.
Data conflicts occur when multiple threads access protected data when executing in a lock-free
mode and at least one thread is writing the protected data. Lock contention prevents data conflicts
from being exposed. Lock contention determines performance of the base system without SLE or
TLR. Data conflicts, on the other hand, determine performance in a system with SLE or TLR.

Four cases for lock contention and data conflicts are:

1. No lock contention and no data conflicts
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2. No lock contention and data conflicts

3. Lock contention and no data conflicts

4. Lock contention and data conflicts

Since lock contention masks data conflicts, we do not consider case 2 above. This case occurs
when a protected data structure is either accessed from outside a critical section, or the data struc-
ture is protected by different locks. These cases are examples of data races in a program. Since the
intent of locks is to prevent data races, we do not consider programs that have data races for dis-
cussion in this section. Both SLE and TLR however maintain the semantics of the program inde-
pendent of whether a data race exists and always provide a correct execution in the presence of

data races. Handling data races under TLR correctly was discussed in Chapter 4.

6.1.1 No lock contention

In this case, multiple threads, though executing concurrently, do not request the same lock.
Thus, if the lock is not held by another thread, the data protected by the lock is not being accessed
by another thread. SLE and TLR behave identically because of the absence of any data conflicts.

Performance benefits may accrue because of the following reasons:

1. Reduced observed remote memory latencisce the lock variable is kept in shared state
locally, all accesses to the lock variable result in a cache hit and do not experience a long
latency miss. The benefit arises if the reorder buffer of the processor is unable to completely
tolerate a remote miss to another processors cache. The benefit is reduced for local lock

acquires where the lock being acquired is already cached locally in an exclusive state.

2. Reduced memory traffit.ock acquire and release operations often result in memory system
traffic, even in the absence of contention. By eliding lock operations when possible, lock
induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-owner-
ship requests in the memory system is eliminated. The benefit is not present for local lock
acquires where the lock being acquired is already cached locally in an exclusive state.

Since the lock is not contended, SLE and TLR do not achieve any concurrent execution bene-
fits over BASE.
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6.1.2 Lock contention and no data conflicts

In this case, lock contention is present but the various threads access non-conflicting data sets.
This commonly occurs when coarse-grain locks are used or due to conditional control flows within
the critical section. In the absence of data conflicts, SLE and TLR both behave identically because
TLR is never invoked in the absence of data conflicts. This case provides maximum benefits for
SLE and TLR over BASE because the locks are truly unnecessary for correctness of the dynamic
execution of the program. In addition to reduced memory latencies, and reduced memory traffic,
this case also benefits from concurrent critical section execution and completion—BASE unneces-
sarily serializes execution of concurrent threads. Reasons for performance benefits due to SLE
(and TLR) include:

1. Concurrent critical sectionsThis occurs as a result of coarse-grain locking but sometimes may
also occur due to varying control-flow within a critical section resulting in non-conflicting data

sets being accessed by the multiple threads.

2. Reduced observed remote memory latencsisce the lock variable is kept in shared state
locally, all accesses to the lock variable result in a cache hit and do not experience a long
latency miss. The benefit arises if the reorder buffer of the processor is unable to completely
tolerate a remote miss to another processors cache. The benefit is reduced for local lock

acquires where the lock being acquired is already cached locally in an exclusive state.

3. Reduced memory traffit.ock acquire and release operations often result in memory system
traffic, even in the absence of contention. By eliding lock operations when possible, lock
induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-owner-
ship requests in the memory system is eliminated. The benefit is not present for local lock

acquires where the lock being acquired is already cached locally in an exclusive state.

6.1.3 Lock contention and data conflicts

The final case we consider is when lock contention occurs and the threads access common
data sets in a conflicting manner and occurs mostly with fine-grain lock use. With data conflicts,
TLR behaves differently from SLE because while SLE may need to fall back on the BASE mecha-

nisms, TLR provides explicit support for achieving a successful lock-free execution even in the



163

presence of data conflicts. BASE behavior is still limited by lock contehtonl behaves similar
to the earlier case in Section 6.1.2 of lock contention and no data conflicts. Since SLE and TLR

behave differently, we discuss the two separately.

6.1.3.1 SLE

In the presence of conflicts, SLE forces a restart due to misspeculation. The restart process
itself is not expected to result in a performance loss because the thread would otherwise have
merely spun waiting on a location (often the lock location for test&test&set-based locks). How-
ever, the restart results in memory requests being reissued to the memory system and may result in
increased coherence protocol interference thus degrading performance. This observation is not
new and even holds true for BASE where if, under lock contention, multiple threads issue requests
into the critical section speculatively, the interference in the memory system increases and unnec-
essary latencies are added to the critical path of access to the data block by the thread owning the
lock. This is also referred to as wasted parallelism where while the multiple threads appear to be
doing work, they are interfering with the thread holding the lock because the data block is repeat-
edly stolen away from the lock owner by competing threads.

Under SLE, if all threads restart, the additional requests and memory traffic may result in per-
formance loss for SLE over the BASE. However, if not all threads restart, then performance may

be gained.

1. Performance loss if all threads restath the presence of data conflicts, while traffic due to the
lock variable may be reduced, additional latencies introduced due to coherence protocol inter-
ference may degrade performance if all threads restart. This is because when multiple proces-
sors compete for a cache block simultaneously, the coherence permissions for the block transfer
and the block moves around the system from processor to processor. If the processor restarts,
the additional latency due to the movement of the cache block and the traffic introduced may

degrade performance.

2. Performance gains possible if at least one thread succeeds in el@ften, threads may be

separated sufficiently apart in time such that one thread succeeds even in the presence of data

1. In the presence of lock contention, the conflicting threads rather than interfere with the thread owning the
lock, wait for the lock to be released by spinning locally on a location.
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conflicts. This may happen because even though for two threads conflicting on data, only one
thread observes the conflict and restarts and the other thread proceeds and completes its critical
section without restarting. The benefits also occur because on a restart, a smaller number of

threads compete for the data, and the traffic due to lock operations is reduced.

6.1.3.2 TLR

In the presence of data conflicts, TLR presents benefits over SLE. TLR uses an explicit con-
currency control mechanism using timestamps for fairness, and request deferrals to provide a seri-
alizable lock-free execution in the presence of data conflicts and for reducing the negative impact
of coherence protocol interference. The coherence protocol is used to construct a chain of conflict-
ing processors and thus enabling coordinated and efficient data transfer. TLR, as described in this
thesis, does not change the coherence protocol state transitions but coordinates data transfers using
the coherence protocol and timestamps. The order in which processors ecadlitgingcritical
sections is determined by timestamps—caliegestamp-orderThe order in which data blocks
move around the system is determined by the coherence protocol order—the order in which
requests were received by the coherence protocol—ceatédrence-orderThis was studied in
detail in Chapter 4. TLR allows non-conflicting threads to complete in parallel and without any
serialization while conflicting threads are ordered based on timestamps.

Performance gains occur when either the timestamp order is similar to the coherence order or
when the cost of misspeculation (due to a mismatch between timestamp-order and coher-
ence-order) is lesser than the cost of actually acquiring and releasing locks.

Reasons for performance benefit/loss include:

1. Reduced observed remote memory latencs@sce the lock variable is kept in shared state
locally, all accesses to the lock variable result in a cache hit and do not experience a long
latency miss. The benefit arises if the reorder buffer of the processor is unable to completely
tolerate a remote miss to another processors cache. The benefit is reduced for local lock

acquires where the lock being acquired is already cached locally in an exclusive state.

2. Reduced memory traffitock acquire and release operations often result in memory system
traffic, even in the absence of contention. By eliding lock operations when possible, lock

induced memory traffic in the form of upgrades, data transfers, and read-for-exclusive-owner-



165
ship requests in the memory system is eliminated. The benefit is not present for local lock

acquires where the lock being acquired is already cached locally in an exclusive state.

3. No locking overhead in presence of data conflig#éh TLR, no locks are requested even in the
presence of data conflicts (SLE by itself would not provide much benefit in the presence of data

conflicts). Thus, memory traffic and observed memory latencies are reduced.

4. Coordinated data transfefSince data is requested directly and the coherence protocol is used
to construct chains for fast data transfer, the latency is optimized. Additionally, hardware is

used to coordinate the transfer thus minimizing latency.

5. Coherence-order/timestamp-order mismat8mce the coherence protocol is unchanged, the
order of the processor requests in the chain may be different from the order of timestamps (and
thus priority) of the processors in the chains. A performance degradation may occur if the two
chains are out of order often enough that the delays in transferring data hurt performance. This
is the primary determiner for performance under TLR. As we will see, a sub-optimal ordering
(due to a mismatch between coherence-order and timestamp-order) results in sub-optimal per-

formance while an optimal ordering gives optimal performance.

Resource constraints and performance degradatiowhen a resource constraint is
encountered and speculation can not continue, the elided store is allowed to be exposed to the
memory system, thus essentially performing a lock acquire operation without actually requiring a

restart. The speculative work is not wasted and is committed if the write successfully completes.

Cost of maintaining fairness.TLR enforces fairness by providing starvation freedom. If the
benchmark would benefit from unfairness, then TLR would perform worse than BASE. An exam-
ple is if a processor executes a critical section multiple times in succession before allowing any
other processor to execute the critical section and this results in better performance than if all pro-
cessors took turns in a fair manner (for example, in a first-come first-served manner). In this case,

TLR would pay the price for enforcing fairness. We discuss this more later in the chapter.
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Figure 6-1: Multiple-counter microbenchmark result§ he left graph has a linear x-axis and
the right graph has a log scale x-axis. The y-axis represents parallel cycle time in millions. The

benchmark performszﬂ /n increments of a unique local counter for an n-processor system. As
expected, SLE and TLR suffer from no locking overhead and as shown by the right graph, repre-
sent perfect scalability with increasing processor counts The SLE and TLR plots cannot be dis-
tinguished because they perform identically.

6.2 Microbenchmark evaluation

Figure 6-1 shows results fonultiple-counters . The BASE scheme degrades perfor-
mance as more threads are run concurrently because of severe contention for the lock while using
test&test&set locks. MCS, as expected is scalable under high contention and experiences a fixed
software overhead independent of the number of threads competing for the lock. SLE
(BASE+SLE) and TLR (BASE+SLE+TLR) behave identically because there are no data conflicts.
Both schemes outperform BASE and MCS because in the absence of any data conflicts, both SLE
and TLR experience no locking overhead or serialization, and true concurrency in the application
is exploited. As is seen by the log-scale graph on the right side in Figure 6-1, perfect scalability is
achieved using SLE and TLR.

Figure 6-2 shows results fosingle-counter . As is the case with theamulti-

ple-counter , BASE performance degrades with increasing threads because of severe conten-
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Figure 6-2: Single-counter microbenchmark resultShe left graph has a linear x-axis whereas
the right graph has a log scale x-axis. The y-axis represents parallel cycle time in millions. The

benchmark performslﬁln increments of a shared counter for an n-processor system. BASE and
SLE perform similar because SLE experiences frequent data conflicts and falls back on the BASE
scheme. Two schemes for TLR are shown. TLR-strict-ts corresponds to the case where timestamp
order is enforced even if deadlock dangers did not exist and fairness was not compromised (see
Section 4.4.5). Performance gap between TLR and TLR-strict-ts exists because the mismatch
between timestamp order and coherence order results in a sub-optimal performance. MCS
achieves scalable performance but experiences a fixed software overhead.

tion for the lock. SLE behaves similar to BASE because SLE detects frequent data conflicts, turns
off speculation, and falls back to the BASE scheme. MCS again is scalable but experiences a fixed
software overhead. We show two cases for TLR: TLR and Bifitt-ts Under TLR, as discussed

in Section 4.4.5, timestamp order can be selectively relaxed if there is no danger of deadlock—a
case that occurs when only one cache block is contended for. TLR-strict-ts corresponds to the
implementation where timestamp order is always enforced, independent of whether deadlock
could occur or not. As can be seen, both TLR and TLR-strict-ts outperform BASE, SLE, and
MCS. MCS performs a constant factor worse than TLR because MCS has the additional software
overhead of lock acquisitions and queue maintenance while TLR uses the existing coherence pro-
tocol to construct an ordered queue in hardware. The performance gap between TLR and
TLR-strict-ts exists because sometimes the order in which requests reach the coherence point

(coherence-order) is different from the order of the respective timestamps (timestamp order)
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resulting in misspeculation if the timestamp order is strictly enforced. This mismatch of protocol

order and timestamp order results in a sub-opffn@idering and additional latencies (see
Section 4.4.4 for a detailed discussion).

When timestamps can be selectively relaxed, as is the case for TLR in Figure 6-2, ideal TLR
behavior can be achieved. The average number of cycles between any two releases in the system is
on the order of 30 cycles (broadcast latencies 20 cycles and data transfer latency is 20 cycles). This
essentially is as close as one can get to the ideal behavior for a single cache block benchmark
because in this case, the timestamp order can be considered identical to coherence order. The TLR
execution suffers no misspeculation and no processor ever restarts in that execution.

The considerable performance gap between TLR and TLR-strict-ts suggests future work to
minimize the effects of coherence-order and timestamp-order mismatch.

Figure 6-3 shows results faloubly-linked list . Performance of BASE degrades sim-
ilar to the other microbenchmarks because of severe lock contention. SLE does not perform well
either (and performs similar to BASE) because determining when to apply speculation is difficult
due to the dynamic concurrency of the benchmark. More often than not, SLE falls back to the base
case of lock acquisitions using BASE because of detected data conflicts. Any concurrency SLE
exploits is offset by locking overhead when SLE needs to acquire the lock. MCS is scalable but
experiences a fixed software overhead. TLR performs well and can exploit enqueue/dequeue con-
currency. Thedoubly-linked list microbenchmark consists of two critical sections pro-
tected by the same lock and the data accesses within these critical sections is in reverse order.
Thus, in a sense, this microbenchmark represents an extreme case for TLR. In this microbench-
mark, multiple cache blocks are contended for {tbad pointer,tail pointer, and the data ele-
ment) and multiple chains are formed for these blocks. Two main effects occur for TLR: on one
hand, performance gains occur due to exploited concurrency, and on the other hand, sub-optimal
performance is achieved due to a mismatch of timestamp-order and coherence-order. Since these
two effects do not occur evenly, the plot is not flat as for the other microbenchmarks. Nevertheless,
TLR still outperforms the BASE, SLE, and MCS schemes.

2. We use the term sub-optimal to imply the performance is not as good as it could be. The performance
may still be better than BASE or MCS and thus using a term sugedermance degradatiowould be
inaccurate and misleading.
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Figure 6-3: Doubly-linked list microbenchmark resultsThe left graph has a linear x-axis
whereas the right graph has a log scale x-axis. The y-axis represents parallel cycle time in mil-

lions. The benchmark performé% enqueue/dequeue pairs in an n processor system. SLE expe-
riences frequent conflicts and turns off speculation thus behaving similar to the BASE scheme.
MCS performs with a fixed software overhead and TLR outperforms both BASE and MCS.

In summary, TLR outperforms both BASE and MCS for the microbenchmarks we use. TLR
exploits dynamic concurrency while both BASE and MCS are limited by synchronization perfor-
mance. MCS performs a constant factor worse than TLR while BASE performance degrades quite
substantially with increasing contention. Poor behavior of BASE under lock contention occurs
because of repeated access to the lock variable by multiple processors racing for the lock and data
thus introducing a large amount of traffic into the network. MCS is scalable because processors
form an orderly queue of lock requestors in software rather than repeatedly compete for the lock
variable and data.

We now briefly look at the effect of unfairness of the primitive on performance. As discussed
in Chapter 5, we have designed our microbenchmarks to ensure fairness. A random and minimum
delay is added after a lock release so that a remote processor can succeed in acquiring the lock
before the previous lock holder reacquires the lock. In an experiment, we set this delay to 0—in
other words, the processor releasing the lock does not wait before reattempting to acquire the lock.

TLR is fair but does not strictly enforce first-come first-served order. In other words, the use of
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Figure 6-4: Impact of unfairness on microbenchmark performandde use the sin-
gle-counter microbenchmark. MCS enforces strict first-come first-served ordering and thus pays
a fixed overhead. TLR and TLR-strict-ts provide a sense of fairness—while it is not first-come
first-served, it is based on timestamp resolution for conflicting requests. Thus, all processors
keep up with each other over time even though the ordering is not strictly first-come first-served.
BASE greatly benefits from the unfairness in the benchmark because a processor can acquire
the lock multiple times (in 10s) before another processor is able to intervene and acquire the
lock.
timestamps ensures all processors get to execute their critical sections within a bound and keep up
with each other. The results are shown for the single counter example in Figure 6-4. BASE per-
forms better than TLR because in BASE, a processor performs a series of successive local lock
acquires and releases before another processor can acquire the lock. This is not the intent of the
microbenchmark since the microbenchmark is intended to study the performance of synchronizing
multiple processors when multiple processors compete for the lock; not the synchronization per-

formance for a single processor.

6.3 Benchmark performance

We now study the performance of SLE and TLR using some benchmarks chosen from the
SPLASHand SPLASH2suites. The system configuration was discussed in Section 5.3 and the
benchmarks and their input sets were discussed in Section 5.4. We first evaluate SLE performance

and then separately evaluate TLR.
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6.3.1 SLE performance

For SLE, we chose a restart threshold of 1. This means, on a conflict-induced misspeculation,
execution was restarted and SLE retried once more. If a subsequent conflict occurred, the lock was
acquired. Support for up to 8 silent store-pair elisions is assumed (Section 3.10) implying that up
to 8 properly nested locks can be elided. The experiments in this section did not suffer from any
resource induced misspeculation. In other words, the critical section data fit in the local cache hier-
archy.

SLE is evaluated for three different system configurations: CMP (chip multiprocessor), SMP
(symmetric multiprocessor), and DSM (distributed shared-memory multiprocessor). We present
results for two thread configurations for each: 8 threads and 16 threads. The SMP configuration
has larger latencies than the CMP configuration and the DSM configuration uses a different coher-
ence protocaol.

In all figures in this section, the y-axis is normalized parallel execution time—cycles taken to
execute the parallel portion of the benchmark. The first bar of each pair corresponds to the BASE
case and the second bar of each pair corresponds to SLE (BASE+SLE). Each bar is divided into
two parts: contributions due to lock variable accesses (loads and stores of the test, test&set, and
release) and the remaining contributions. The lock portion only includes memory references to
lock variables and does not necessarily include the total time spent in the synchronization algo-
rithm itself (e.g., the branch instructions in the test&test&set algorithm are not counted in the lock
portion).

The stall accounting for the bars is performed at instruction commit—the instruction that
stalls commit is charged the stall. The breakup is approximate since accounting for stall cycles due
to individual operations is difficult and often inaccurate in out-of-order processors. In addition, a
lock acquire operation involves an atomic read-modify-write instruction. This instruction cannot

retire from the reorder buffer until it has been ordered by the memory system. In other words, such

an operation acts like a memory fedaand remains at the head of the reorder buffer until any
writes in the write buffer prior to the lock acquire are also drained and exposed to the memory sys-

tem. Thus, the lock portion also accounts for the time it takes to flush the write buffer while a lock

3. This behavior will occur independent of the memory consistency model implemented (including in
release consistent systems). Any load operations past the lock acquire can still freely be issued because
we support an aggressive implementation of total store ordering [45].
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Figure 6-5: SLE performance for an 8-way CMRhe y-axis is normalized parallel execution
time.The first bar of each pair corresponds to the base case. The second bar of each pair corre-
sponds to the SLE case. The fractions on top of the bar-pairs are normalized execution times
for the SLE case. All normalizations are with respect to the base case.

acquire is pending stalled at the head of the reorder buffer. For some benchmarks, the non-lock
portion for the optimized case is larger than the non-lock portion for the base case. This is because
sometimes removing locks puts other memory operations on the critical path. Speculative loads
issued for data within critical sections that were earlier overlapped with the lock acquire operation

are now exposed and stall the processor. A normalized execution time implies a lower bar is better.

Figure 6-5 and Figure 6-6 show performance of SLE for a 8- and 16-way chip multiprocessor
configuration. As expected, the locking overhead is higher for a 16-way configuration than for a
8-way configuration.

While ocean-cont  has contention, the contribution of synchronization operations to per-
formance loss is small and thus the performance improvement is slight.

Water-nsq has low contention. The bars fovater-nsq indicate performance can be
improved by eliding lock operations (about 3% for 8 threads and 10% for 16 threads). However,
once SLE is applied, the net performance gains remain small. This is a result of the inaccuracy of
our stall accounting methodology. We use the retire stage to determine stalls. The memory opera-

tions within the critical section, that were earlier overlapped with the lock latencies, get exposed
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Figure 6-6: SLE performance for a 16-way CMPhe y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair cor-
responds to the SLE case. The fractions on top of the bar-pairs are normalized execution times
for the SLE case. All normalizations are with respect to the base case.

and account for the stalls. These operations result in cache misses and stall the processor core. The
lock latencies earlier were merely hiding other latencies that were also on the critical path.
Radiosity , barnes , andcholesky (tk14.0 input was used for the experiments in this
section) have lock contention and even with SLE, a substantial lock contribution remains. This is
because these benchmarks also have true sharing within critical sections resulting in data conflicts.
Data conflicts under SLE result in a misspeculation and after a certain number of restarts, the exe-
cution falls back on the lock-based mechanism. With SBR&rnes experiences a slight perfor-
mance loss (< 1%) for a 16 thread configuration.
Mp3dhas largely uncontended locks. While SLE heigs3d quite noticeably, a large portion
of the lock contribution still remaingvip3d performs frequent lock operations by locking a cell
and operating on it. More than a million lock acquires are performed for the run and the locks are
largely migratory in nature. Thus, often a lock when requested is present in a remote cache. By
eliminating lock acquire and release operations, substantial memory traffic is removed (in the form
of upgrades and read requests to remote caches). Every cell has a lock and thus the cache footprint
is large. Two reasons for the remaining lock contributions are: 1) the 128Kbyte data cache cannot

hold all locks in shared state and these locks are frequently evicted. Thus, the processor core expe-
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riences long latency misses to memory for locks that, with a larger cache, otherwise would have
been only a local cache hierarchy hit.r@p3d performs frequent writes and thus the lock acquire
stalls the head of the reorder buffer while the write buffer gets flushed. While loads still issue past
the pending lock acquire, the reorder buffer cannot completely hide the latency and load-data

dependent instructions may follow.

6.3.1.1 Varying system configurations

We now evaluate SLE performance with two different system configurations—an SMP con-
figuration and a DSM configuration.

Figure 6-7 and Figure 6-8 present performance for an SMP configuration. The SMP configu-
ration uses the same processor model as the CMP configuration and the same coherence protocol.
However, the SMP configuration has a large level-two cache and longer coherence and data laten-
cies. The performance trends are similar to the CMP configuration. The gains are slightly higher
for the SMP version because the increased latencies in the system result in lock operations contrib-
uting to a larger portion of execution time. The performance to be gained in the event of a success-
ful SLE execution is higher.

The benchmark where the trend with the SMP configuration is markedly different from the
CMP configuration isnp3d. This is because now a large 4MB level two cache backs the level one
caches and thus most locks that are elided remain locally cached in a shared state over the execu-
tion of the program and the out-of-order processor core does not experience long latency misses to

memory or remote caches.
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Figure 6-7: SLE performance for an 8-way SMPhe y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair cor-
responds to the SLE case.The fractions on top of the bar-pairs are normalized execution times
for the SLE case. All normalizations are with respect to the base case.
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Figure 6-8: SLE performance for an 16-way SMPhe y-axis is normalized parallel execu-

tion time. The first bar of each pair corresponds to the base case. The second bar of each pair
corresponds to the SLE case. The fractions on top of the bar-pairs are normalized execution
times for the SLE case. All normalizations are with respect to the base case.
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Figure 6-9: SLE performance for a 8-way DSMhe y-axis is normalized parallel execution
time. The first bar of each pair corresponds to the base case. The second bar of each pair cor-
responds to the SLE case. The fractions on top of the bar-pairs are normalized execution times
for the SLE case. All normalizations are with respect to the base case.

The distribute shared memory configuration (DSM) we use implements a very different
coherence protocol from the CMP and SMP configurations. The DSM protocol is based on the
SGI Origin 2000 protocol and is a NACK-based protocol whereas the CMP and SMP protocols are
based on the Sun Gigaplane protocol and are non-NACK protocols.

Since the DSM configuration uses a NACK-based protocol, the performance impact of lock
operations in a distributed shared-memory multiprocessor can be severe especially under conten-
tion. Thus, while the performance potential for SLE is high, the danger of performance degrada-
tion exists because the cost of misspeculation is also now higher—longer latencies result because
of coherence protocol interference.

Figure 6-9 and Figure 6-10 show performance for the 8 and 16 thread configurations for
DSM. Ocean-cont greatly benefits from SLE for a 16 thread DSM configuration because lock
contention now contributed substantially to performance loss for this configuration. k&tile
osity andcholesky benefit from SLE, substantial lock contribution still remains because of
data conflictsBarnes experiences a performance loss for a 16 thread configuration because the
cost of misspeculations are highktp3d behaves similar to the SMP configuration because, simi-

lar to the SMP configuration, the level-two cache can accommodate the working set of the locks.
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Figure 6-10: SLE performance for a 16-way DSMhe y-axis is normalized parallel execu-

tion time. The first bar of each pair corresponds to the base case. The second bar of each pair
corresponds to the SLE case. The fractions on top of the bar-pairs are normalized execution
times for the SLE case. All normalizations are with respect to the base case.

6.3.1.2 Restart thresholds

We look at SLE sensitivity to the restart threshold. The only benchmarks that were sensitive
to the restart threshold aradiosity , barnes , andcholesky . These are the benchmarks
that also suffer from lock contention and data conflicts.

For the CMP configuration, when we increases the restart threshold badtgs , radi-
osity , andcholesky suffer from performance degradation (~5 to 10% performance loss)—
processors repeatedly execute, misspeculate and restart thus consuming system resources, intro-
ducing coherence protocol interference. The SMP configuration is also sensitive to the restart
threshold and follow similar trends. The DSM configuration is more sensitive to the restart thresh-
old than the CMP or SMP configurations. A performance loss of up to 15% is observed across
barnes , radiosity , andcholesky , when the restart threshold is kept at 10.

In summary, SLE performance is quite sensitive to the restart threshold and we conservatively
use a threshold of 1 to mitigate performance loss due to coherence protocol interference. Exponen-
tial backoff in reissuing requests and Transactional Memory-type techniques may be employed to

reduce the effects of protocol interference.
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6.3.2 TLR performance

Substantial lock overhead remains fadiosity , barnes , andcholesky for SLE. In
this section, we discuss the effectiveness of TLR in removing the remaining lock overhead. We
addraytrace  as an additional benchmark for evaluating TlRRaytrace has a highly con-
tended lock (and high data conflicts) amagtrace  would not benefit from SLE. Since TLR tar-
gets conflicts, we also compare TLR performance to that of software queue-based MCS locks. We
did not compare SLE performance in the earlier section to MCS because SLE, in the presence of
data conflicts, would fall back on the base locking mechanism implemented using test&test&set.
Thus, the performance comparison would end up being between MCS locks and test&test&set
locks and prior work has shown MCS locks outperform test&test&set locks under contention [81].

We evaluate four configurations—1) BASE: base system, 2) BASE+SLE: base system with
SLE optimization, 3) BASE+SLE+TLR: base system with SLE and TLR optimizations, and 4)
MCS: system with MCS locks [120]. For convenience we will refer to these four schemes in text
as BASE, SLE, TLR, and MCS respectively. BASE, SLE, and TLR use the same benchmark exe-
cutable employing the test&test&set lock.

We focus discussion in this section on a 16 thread configuration for TLR and its performance
is shown in Figure 6-11. The y-axis is normalized execution time. All bars are normalized to
BASE. Each benchmark has three bars: the first bar is BASE. The second bar is SLE and the third
bar is TLR. Each bar is divided into two parts: contributions due to lock variable accesses (loads
and stores) and the remaining contributions. The lock portion only includes memory references to
lock variables and does not necessarily include the total time spent in the synchronization algo-
rithm itself (e.g., the branch instructions in the test&test&set algorithm are not counted here).

The stall accounting for the bars is similar to that used for SLE earlier and is performed at
instruction commit—the instruction that stalls commit is charged the stall. The breakup is approx-
imate since accounting for stall cycles due to individual operations is difficult and often inaccurate
in out-of-order processors. In addition, a lock acquire operation involves an atomic read-mod-

ify-write instruction. This instruction cannot retire from the reorder buffer until it has been ordered

by the memory system. In other words, such an operation acts like a memor§ éenemains at

4. This behavior will occur independent of the memory consistency model implemented (including in
release consistent systems). Any load operations past the lock acquire can still freely be issued because
we support an aggressive implementation of total store ordering [45].
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the head of the reorder buffer until any writes in the write buffer prior to the lock acquire are also

drained and exposed to the memory system. Thus, the lock portion also accounts for the time it
takes to flush the write buffer while a lock acquire is pending stalled at the head of the reorder
buffer. For some benchmarks, the non-lock portion for the optimized case is larger than the
non-lock portion for the base case. This is because sometimes removing locks puts other memory
operations on the critical path. Speculative loads issued for data within critical sections that were
earlier overlapped with the lock acquire operation are now exposed and stall the processor. A nor-
malized execution time implies a lower bar is better.

All experiments employ the instruction-based predictor for collapsing read-modify-write
sequences in critical sections into a single write operation thus reducing latencies within critical
sections (Section 4.4.3). This results in a highly optimized base system execution and the perfor-
mance numbers for TLR are thus conservative. Later, we discuss the effect this predictor has on
the base system and present performance numbers to give an idea of how much better TLR would
do against a more conventional base case. The speedup for techhayee techniquey is the
ratio of the benchmark parallel cycle count with technigUt that of the benchmark parallel
cycle count with technique. A speedup value greater than 1 is better.

Ocean-cont  and water-nsq do not show much performance benefits. While
ocean-cont  has lock contention and opportunities for concurrent critical section execution, the
performance impact on our target system is not much because lock accesses do not contribute
much to performance losgVater-nsq has frequent uncontended lock acquires. While the bars
for BASE show potential for performance, removing locks does not result in a corresponding per-
formance gain because the data cache misses within the critical section, that were earlier over-
lapped with lock access misses, are now exposed and account for the stalls. For, TLR speedup over
BASE forwater-nsq is 1.01 and folocean-cont is 1.02. MCS performs the same as BASE
for ocean-cont , and has a speedup of 0.96 (i.e., actually a performance loss) over BASE for
water-nsq . The performance loss for MCS farater-nsq  is due to the software overhead for
uncontended locks.

Forradiosity , speedup of TLR over BASE is 1.47 and nearly all locking overhead disap-
pears. Speedup of MCS over BASE is 1.35. The task queue critical section was most contended for

in radiosity and accounted for most conflict-induced restarts under TLR.
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Figure 6-11: TLR performance for a 16-way CMPhe y-axis is normalized execution time.

All bars are normalized to the performance of BASE. Benchmarks are on the x-axis. Each
benchmark has three bars: first bar is BASE, second bar is BASE+SLE and third bar is
BASE+SLE+TLR. Each bar is divided into two parts: contributions due to lock variables (load
and store instructions) and the remaining contributions. The number in parentheses below the
benchmark name is the parallel execution cycle count, in millions, for the BASE shown as the
first of three bars for each benchmark.

For raytrace , the speedup of TLR over BASE is 1.17. MCS performance is similar to
TLR. Forraytrace (car input) on our system, lock contribution to execution time is 16%—
much less than those reported earlier on systems with larger latencies, slower memory systems and
different cache coherence protocols [81, 89].

Forbarnes TLR speedup over BASE is 1.16. However, MCS speedup over BASE is 1.21.
MCS performs 4% better than TLR—the only application where MCS performs better than TLR.
Barnes is based on a hierarchical octree representation of space in three dimensions and each
node in the tree has its own lock. The root of this tree represents a space cell containing all bodies
in the system. The tree is built by adding particles to the initially empty root cell and subdividing a
cell into its eight children as soon as it contains more than single body. Most locking occurs in the
tree building phase. Each process loads its bodies in the octree using locks to ensure atomic

updates of the cell nodes. These locks tend to be contended and have data conflicts resulting in
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Table 6-1: TLR-execution data conflict characteristics for 16 threads

ocean-cont water-nsqq raytra¢e radiosity barpes cholgesky mp3d
no-conflict 62.4% 42.49% 91.9% 70.7% 79.2% 74.8% 91.6%
conflict 37.6% 57.6% 8.19 29.3% 20.8% 21.9% 8.4%
resource 0% 0% 09 0% 0% 3.7% (017

TLR restarting frequently. TLR’s restarts are due to sub-optimal ordering discussed earlier in
Section 4.5. MCS constructs an ordered software queue and thus performs better than TLR.

Cholesky , with thetk15.0 input set, is the only benchmark that cannot fit one critical
section’s data within the local cache. About 3.7% of dynamic critical section executions resulted in
resource limitations for local buffering (write buffer limitations). This occurs at three functions
(ScatterUpdate , CompleteSuperNode , and ModifyColumn)  where a column in the
matrix is locked and the algorithm then writes to the column entries resulting in buffer limitations
(80% due to write buffer and 20% due to cache). TLR nevertheless achieves a speedup of 1.05 over
BASE. MCS performs slightly worse than BASE (0.97).

Mp3d has frequent lock accesses but these locks are largely uncontended. The 128K data
cache is unable to hold all locks and hence the processor suffers miss latency to locks. With TLR,
significant lock contribution still remains. TLR achieves a speedup of 1.40 over BASE. BASE per-
forms better than MCS (speedup over MCS: 1.47) because MCS pays a software overhead even
for uncontended locks. This overhead adds up significantly if locking is frequent. TLR outper-
forms MCS by achieving a speedup of 2.06 because TLR pays no software overhead.

The performance gap between MCS and TLRfarnes and the TLR restarts in the appli-
cations suggests more optimizations are possible for TLR where coherence protocol support can
be used. A similar gap (between TLR and an ideal TLR execution) was also observed in Figure 6-2

in Section 6.2.

6.3.2.1 TLR data conflict characteristics

Table 6-1 shows data conflict characteristics for a TLR execution for a 16 processor system.
The rows correspond to the number of dynamic critical section executions that either had no con-

flict, a conflict, or a resource constraint. This may not correspond strictly to the number of lock
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acquires in the system because for nested critical sections are counted as a single instance. These
do not include restart counts. For example, for raytrace 87,742 dynamic critical sections did not
have any detected conflict-induced restarts and 7,754 had detected conflict-induced restarts for the
given system. A conflict that is masked due to timestamp order induced deferral is counted under
the no-conflict category. The accounting is performed only once per dynamic execution—repeated

restarts are not counted here.

6.3.2.2 Impact of TLR on network traffic

Figure 6-12 shows the network traffic for various configurations. The y-axis is normalized
message count. The first bar is the BASE. The second bar corresponds to MCS and is normalized

to BASE. The third bar is TLR and is also normalized to BASE. The lower portion of the bar is the
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Figure 6-12: Impact of TLR on network trafficThe y-axis is hormalized message count. The

first bar is the BASE. The second bar corresponds to MCS and is normalized to BASE. The third
bar is TLR and is also normalized to BASE. The lower portion of the bar is the coherence traffic
contribution (read for shared and exclusives, upgrades, write-backs, and instruction fetches)
and the upper portion is the data traffic. The numbers below the benchmarks are the total num-
ber of messages, in millions, sent in the network for BASE. For TLR, two additional categories
exist: marker messages and probe messages. These are not shown because their numbers are
very small: ocean: 0.09% 0.05%, water: 0.6% ~0%, raytrace: 0.4% 0.2%, radiosity: 0.24%
0.06%, barnes: 1.66% 0.40%, cholesky: 0.6% 0.01%, and mp3d: 0.3% and 0.03%. TLR intro-
duces minimal probe and marker messages as compared to the total number of messages in the
system.
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coherence traffic contribution (read for shared and exclusives, upgrades, write-backs, and instruc-

tion fetches) and the upper portion is the data traffic. The numbers below the benchmarks are the
total number of messages, in millions, sent in the network for BASE. For TLR, two additional cat-
egories exist: marker messages and probe messages. These are not shown because their numbers
are very small: ocean: 0.09% 0.05%, water: 0.6% ~0%, raytrace: 0.4% 0.2%, radiosity: 0.24%
0.06%, barnes: 1.66% 0.40%, cholesky: 0.6% 0.01%, and mp3d: 0.3% and 0.03%. TLR introduces

minimal probe and marker messages as compared to the total number of messages in the system

6.3.2.3 Coarse-grain vs. fine-grain experiment

With mp3d, a noticeable locking overhead remained and we investigated it further. We con-
jectured replacing the per-cell fine-grain locksnp3d by one single coarse-grain lock should
provide better performance because the data foot-print reduces and the memory system behavior
should improve substantially. We replaced the individual cell locks\p8d with a single lock.

This is bad for BASE (and MCS) because now the benchmark has severe lock contention. As
expected, TLR with one lock for all cells imp3d outperforms BASE with fine-grain per-cell
locks by 58% (speedup 2.40) and outperforms TLR with fine-grain per-cell locks by 41% (speedup

1.70). Thus, using coarse-grain locks can improve performance significantly over fine-grain locks.

6.3.2.4 Read-modify-write prediction effects

The performance we report for the BASE case uses the instruction-based predictor for col-
lapsing read-modify-write sequences within predicted critical sections into a single write opera-
tion. We give speedups of BASE with the predictor (the results in Figure 6-11) with respect to
BASE without the predictor (BASE-no-opt: a more conventional base case). The speedup is calcu-
lated as the ratio of the parallel cycle count for BASE and parallel cycle count for BASE-no-opt. A
speedup value greater than 1 is better. The speedupsoaean-cont:  1.00, water-nsq
1.04,raytrace :1.28,radiosity: 1.05,barnes : 1.04,cholesky :1.33, andmp3d: 1.13.

With the optimization, the time spent waiting for lock operations increases because critical section
data latencies are reduced. Thus, our speedups in Figure 6-11 would be much larger if we assumed
a more conventional base case without the predictor. For all benchmarks, a 128 entry PC-indexed

predictor was sufficient (onlyadiosity used more than 30 entries—using just under 100) and
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most of the remaining benchmarks used less than 20 entries). The above results suggest supporting

such a predictor even in systems without TLR.

6.4 Chapter summary

We have demonstrated with a set of microbenchmarks and applications that SLE and TLR
have the potential to outperform common locking algorithms transparently. We now summarize

the results for microbenchmarks and benchmarks.

6.4.1 Microbenchmark summary

In the absence of data conflicts, SLE can remove all dependence on locks and locking over-
head as was demonstrated by theltiple-counter microbenchmark. TLR behaves identi-
cal to SLE as demonstrated by thaltiple-counter microbenchmark.

In the presence of data conflicts, TLR can remove locking overhead and perform coordinated
and low latency data transfer among conflicting processors as was demonstratedsby the
gle-counter microbenchmark. For theingle-counter and doubly-linked list
microbenchmarks, SLE degrades to BASE performance because speculation is not performed.
SLE performs a little poorer than BASE because the cost of misspeculation cannot be recovered.
TLR consistently outperforms BASE.

TLR can extract and exploit dynamic concurrency in programs—situations where data con-
flict varies along an execution. For example, in tdheubly-linked list TLR identified
dynamically circumstances wheesnqueue () and dequeue () operations could occur concur-
rently.

TLR performance is sensitive to the ordering of the chains constructed for deadlock-free con-
currency control. This was observed in teimgle-counter microbenchmark. Selectively
relaxing timestamp order gave consistently better and stable performance as compared to a time-
stamp-enforced ordering. This suggests to future work for further improving performance of TLR.

Except for situations where using unfair primitives gets better performance than when using
fair algorithms, TLR outperforms test&test&set without requiring any changes to the software.

TLR consistently outperforms MCS for all microbenchmarks. MCS experiences a fixed soft-

ware overhead independent of the concurrency possible in the benchmark. TLR does not suffer



185
software overhead and performs coordinated and efficient data transfer between any conflicting

processors.

6.4.2 Benchmark summary

We now discuss performance for the benchmarks we use. SLE performance is sensitive to
true data sharing. If frequent data conflicts occur, SLE should not be applied to those critical sec-
tions else performance loss may occur.

SLE performance is sensitive to restart thresholdhdmes andradiosity performance
loss of up to 15% was observed for some configurations if the restart threshold is not chosen care-
fully.

For critical sections in our benchmarks, local buffering resources were sufficient to handle
critical section data accesses for all but one configuration. The only configuration where the write
buffer was not sufficiently large washolesky for the input set tk15.0 where about 3.7% critical
sections experienced limited resources.

Using TLR removes sensitivity of performance on the restart threshold. This is because TLR
provides a lock-free execution even in the presence of high data conflicts. TLR never performs
worse than BASE or SLE for the applications and system configurations chosen.

TLR performs better than MCS for all benchmarks exdsges . In the presence of con-
tention, TLR performs better than MCS while in the absence of contention, TLR outperforms
MCS. MCS performs better than TLR for one benchmark because MCS constructs an ordered
gqueue of requestors while TLR undergoes restarts due to a mismatch between coherence-order and
timestamp-order.

TLR with coarse-grain locks can outperform the BASE system with fine-grain locks. This
was seen fomp3d where replacing all cell locks by a single lock resulted in TLR achieving a
speedup of 2.4 over BASE and 1.7 over TLR with fine-grain locks.

If the locks can be cached locally, the overhead of locking can be nearly eliminated. Only
mp3d was an example where a small cache size resulted in frequent evictions. Replacing
fine-grain locks by coarse-grain locks (as described above) addresses this issue quite effectively.

The read-modify-write sequence predictor for collapsing such sequences within critical sec-
tions is quite effective even without TLR with large performance gains being obtained (speedup of
1.00 up to 1.33).
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TLR adds minimal extra messages (probes and marker messages) for concurrency control as

can be seen from Figure 6-12. Further, the total number of messages in the system with TLR is

consistently lesser than systems without TLR and MCS-based systems.
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Chapter 7

Conclusion

This dissertation provides the first solution that bridges the long-standing gap between writ-
ing correct and stable multithreaded code and writing high-performance multithreaded code. We
first summarize the contributions of the thesis in Section 7.1 and discuss some future research

directions in Section 7.2.

7.1 Contributions

This thesis makes two core contributions—Speculative Lock Elision and Transactional Lock
Removal—as a step towards achieving transparent high-performance lock-free and reliable execu-

tion of multithreaded programs.

7.1.1 Speculative Lock Elision

Speculative Lock Elision (SLE) is a microarchitectural technique to remove unnecessary setri-
alization from a dynamic instruction stream. The key idea behind SLE involves using the cache
coherence protocol to obtain appropriate permissions on the necessary cache blocks, accessing and
modifying data speculatively if needed, and then providing the appearance of instantly committing
the critical section by making updates visible to other processors at a single commit point.

Three key features of SLE are:

1. Enables highly concurrent multithreaded executibtultiple threads can concurrently execute
critical sections guarded by the same lock. Correctness is determined without acquiring (or
modifying) the lock. No write permissions are required on the lock variable in the event of a

successful speculation.
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2. Simplifies correct multithreaded code developm@&rbgrammers can use conservative syn-
chronization to write correct multithreaded programs without significant performance impact.
If the synchronization is not required for a correct execution, the execution will behave as if the

synchronization were not present.

3. Can be implemented easilyLE can be implemented entirely in the microarchitecture, without
instruction set support and without system-level modifications (e.g., no coherence protocol
changes are required) and is transparent to programmers. Existing synchronization instructions
are identified dynamically. Programmers do not have to learn a new programming methodology
and can continue to use well understood synchronization routines. The technique can be incor-
porated into modern processor designs, independent of the system and the cache coherence pro-
tocol.

SLE is a step towards enabling high-performance multithreaded programming. SLE permits
programmers to use frequent and conservative synchronization tooarreetmultithreaded code
easily; SLE automatically and dynamically removes unnecessary instances of synchronization in

the absence of data conflicts.

7.1.2 Transactional Lock Removal

Transactional Lock Removal (TLR) is a hardware mechanism to convert lock-based critical
sections transparently and optimistically into lock-free optimistic transactions and a time-
stamp-based fair conflict resolution scheme to provide transactional semantics and starvation free-
dom, if the data accessed by the transaction can be locally cached and subject to some
implementation specific constraints.

While SLE provides benefits in the absence of data conflicts, TLR provides benefits even in
the presence of conflicts. TLR provides both serializability and failure atomicity. TLR transpar-
ently and cleanly addresses the trade-off among programmaubility, performance, and stability dis-
cussed earlier in Section 1.2. We have presented one deferral-based implementation of TLR that
does not require changes to the coherence protocol state transitions.

Three contributions of TLR are:

1. Programmability TLR simplifies correct multithreaded code development. Reasoning about

granularity of locks is not required because serialization decisions are made at run time based
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on actual data conflicts and independent of lock granularity. Cache blocks are the coherence

unit and represent a fine granularity for sharing. TLR provides this granularity without pro-

grammer involvement.

2. Stability.Since locks are not written to and the “wait” on the lock variable is no longer required,
properties of lock-free and wait-free execution are achieved transparently. This translates to
improved system wide performance, no convoying or priority-inversion dangers, and robust
execution in the presence of failing threads. TLR addresses the inherent limitations of the lock-
ing construct while maintaining the well-understood critical section abstraction for the pro-

grammer.

3. Performance TLR enables high-performance multithreaded execution. Independent of lock
granularity, because serialization decisions are made only in the presence of data conflicts and
is not based on lock contention, performance of fine-granularity locking is achieved. Further,
since a queue of requestors is constructed in the hardware by using the coherence protocol, the
data transfers are efficient and low overhead. Programmers can focus on writing correct code
while hardware automatically extracts performance.

TLR is the first proposal to address the trade-off among all the above three aspects and pro-
vide a robust solution to the synchronization problem. While TLR does trade off hardware for
these properties, we believe the hardware cost is modest. Subject to resource constraints, our
scheme is the first to transparently provide a wait-free execution of a lock-based critical section.

We showed hardware with TLR outperforms hardware without TLR and performs better than
MCS locks for a range of microbenchmarks and benchmarks representing both high and low data
conflict conditions. Importantly, TLR provides sustained high performance even for fine-grain
sharing by providing efficient and coordinated data transfer among conflicting threads. Further,

TLR provides better load balancing because of the use of timestamps for fairness.

7.2 Future directions

We have introduced the concepts of SLE and TLR and given an implementation of each of the
techniques. In this section we discuss future research directions. We first discuss directions for

improving the core mechanisms of SLE and TLR themselves. Then we discuss the ways operating
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systems can be involved to improve the TLR guarantees and ways to exploit the programmability

benefits of TLR.

7.2.1 SLE mechanisms

SLE performance is sensitive to the restart threshold. While the experiments in this thesis
have used a static restart threshold, dynamically selecting such a threshold may provide better per-
formance characteristics. Future work remains in selecting dynamic restart thresholds depending
upon the application phase.

Further work remains in confidence predictors for deciding which locks to apply SLE to. If
data-conflict-induced restarts repeatedly occur for a given lock, applying SLE in those situations
may degrade performance. Sophisticated mechanisms for determining when to apply SLE should

be investigated.

7.2.2 TLR mechanisms

TLR removes sensitivity of performance to the restart threshold because TLR provides a
lock-free execution even in the presence of data conflicts. The design space for TLR is large and
this dissertation has investigated only part of the design space—namely the use of

wound-wait-type algorithms using request deferrals. While this design often provides high perfor-

mance, sometimes performance was sub-optiah. example is where MCS performs better
than TLR for the benchmaikarnes . Further, thesingle-counter microbenchmark empha-
sized the performance difference that may arise if coherence-order is different from time-
stamp-order.

Future work remains in studying nhew mechanisms for keeping the queues due to coher-
ence-order and timestamp-order matched. Section 4.4.4 discussed in detail the performance inter-
actions of timestamp-ordered queues and coherence-ordered queues. Performance was
sub-optimal when these queues were out of order with respect to each other.

Selectively relaxing timestamp-order for performance was discussed in Section 4.4.5 and

modified TLR algorithms were briefly discussed in Section 4.4.2.3 where a wounded processor

1. Performance is often still better than without TLR even though it may not be optimal.
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may potentially continue executing in TLR mode for a while under certain conditions. These tech-
nigues present potential for performance improvement of TLR and should be investigated further.
The wait-die mechanism should be investigated along with hybrid mechanisms of
wound-wait and wait-die. Selective use of NACKs may also help performance in certain imple-

mentations.

7.2.3 Stability and programmability interactions

While TLR provides the mechanisms for providing a wait-free execution of a critical section
subject to certain implementation-specific constraints (see Section 4.6), the conditional aspect

must be investigated in more detail. Often this aspect is a function of the specific microarchitecture

and system. Events such as certain interfuits! the scheduling quantum may make it difficult or
impossible to guarantee TLR. While a misspeculation can always be triggered and the lock
acquired thus guaranteeing correct execution even under these conditions, transactional properties
may not be maintained. While these limitations can be specified to the programmer so that the pro-
grammer can write programs while taking these into consideration, operating system support can
be used to improve upon these guarantees.

Subiject to resource constraints, TLR can provide a wait-free execution of a synchronization
primitive such as critical sections. Wait freedom is a more broadly applicable property than merely
for critical sections and is a function of the actual program itself. Critical sections are only one
aspect but a key aspect because they make reasoning about correctness of sharing easy. The next
step is to investigate how programmers can exploit the understanding of conditional wait-free exe-
cution and write algorithms and programs accordingly. TLR provides the programmer with a
high-performance implementation of conditional wait-free synchronization and the performance
limitations of wait-free algorithms can potentially be addressed. It would be useful for the hard-
ware to inform the program whether TLR was not successful for a given instance to maintain cer-
tain properties so that the program can proceed to a more heavy-weight slow algorithm that meets
the guarantees without TLR. This way, in the common case TLR provides guarantees with high

performance and in the uncommon case (such as resource-induced failures and other unexpected

2. Interrupts that can be delayed for a finite time do not pose a problem.
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conditions) the more heavy-weight algorithm can be invoked to achieve the TLR guarantees of
wait freedom and starvation freedom.

Reducing hardware requirements by adding some support in software should also be investi-
gated. These include adding hints in software for identifying transactions. These hints need not

always be correct because TLR does not rely on them for correctness.
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Appendix A

Correctness Constructions

Here we show that a successful SLE and TLR execution is serializable—the execution corre-
sponds to some legal serial execution. We define a legal execution as some serial execution and
show that SLE (and thus TLR) will only commit serializable executions. Any non-serializable exe-

cutions will be detected and rejected.

A.1 Maintaining serializability

Let CS ={CS,...,.CS} be a set of critical section executiohis the system. Further let C$R
= {CSrjg,..., CSpp} be the set of read operations in critical section;G8d CSW =
{CSwjy,...,CSwg} be the set of write operations in critical section C&ssume all operations,

CSR and CSVy, for a given critical section GSre ordered as per program order requirements.
Let R = {rq,...,5} be normal individual read operations and W = {w.,w} be normal individual

write operations interleaved in some order and belonging to regions outside critical sections (or in
non-speculating critical sections).

If conflicting accesses occur, then the execution for these accesses is serialized by the coher-
ence protocol—only one cache can have a writable copy of a cache block at any given time. Spec-
ulatively modified (and uncommitted) data by a thread in a critical section is never exposed to
other threads. Further these values are only exposed at commit time. Since write serialization is
maintained by our scheme, all values updated are exposed at the same time—the key is that only

one processor can retire a store into the cache for a given address at any one time.

1. These can be any sequence of memory operations identified to be critical sections. We do not specify pro-
tected access to these operations via the use of any lock—no restrictions are placed on it.
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All CS are serializable. As discussed in Section 2.3.1.1, three conflict situations must be

avoided to guarantee a serializable execution. Assume bqtar@3C$ have committed and GS

committed before QSThe three situations are:

1. Write-read conflict Occurs if C$reads something GSvrote. This can never occur because

uncommitted modified data is never exposed to other threads. Under SLE and TLR, this condi-
tion would be detected and O&ould restart.

2. Read-write conflictOccurs if C$overwrites what CSread and then GSeads it again. This
cannot occur because when;@8rforms a conflicting write with GSCS§ would misspeculate
and restart and thus would re-execute the transaction. Thus the read-again problem will not
occur.

3. Write-write conflict Occurs if C$overwrites what CSvrote. This cannot occur because a con-

flict would have been detected earlier and one of the critical sections would have re-executed.

Thus, if C§ commits before C&and they have accessed conflicting data sets, then all depen-
dence arcs flow from G& CS—there cannot be a cycle.

Each individual memory operation from R and W can be viewed as a critical section of unit

size. Thus, they are a degenerate case gfdD8 the same conflict resolution schemes can be

applied as above to guarantee a serializable execution.

Further, the implementation must guarantee that for a critical sectigna@$lependences
from memory operations {R, Wj_csprior to CS to {CSR;, CSW} are maintained and all depen-
dences from {CSRCSW} to {R,W} ost.csOperations after G&ire maintained as per the underly-
ing memory consistency model.

In other words,

{RW}pre-cs = po {CSRi, CSWi} — o {R,W}post-cs
where - 4 is the program order chain.

Thus, {CSR, CSW} is ordered atomically—it is serializable with respect to all other thread
executions, and it is ordered with respect to operations before and aftgr (g

Assume LRis aread (say, of the lock variable) and |;vénd LW, are writes (say of the lock

variable). Thus the ordering above can be represented as:
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{{R\W} pre-cs = poLRi —potWi1} = po{CSRi, CSWi} o {LW iz — pofR,W} post-cd

We know {CSR, CSW} is serializable by SLE. Since CSRnd CSW are read and write
operations, we can rewrite the above as follows:

{RW}pre-cs = po{LRi =po LWi1 —po {CSR;, CSWi} - o LWiz } — po{R.W} post-cs

Since {CSR, CSW} is serializable, we can rewrite the above again as follows:

{RW} pre-cs — po {LR = po {LW iz —po CSR, CSW, — po LWz }} = pofRW} postecs

Since LW, immediately precedes {CSRCSW]}, and {CSR, CSW} immediately precedes
LWj,, conceptually the region of serializable execution now includes the outmost curly braces
shown above. The above program ordering chain is maintained as per the single thread. Note, LR
LW;q, and LW, are merely notations but no difference exists between them;amiRY.

As seen from the outside of this thread, the entire sequitRE— o {LW j; - o CSR;, CSW,
-poLWi, }} is ordered either before any oth@SR;, CSW;} or {R} or {W} because it is serializ-
able. We also know that LWand LW, are cancelling stores—L/undoes the effects of LW
thus leaving the architectural state unchanged. We also know that @& not contain LW
Thus, to guarantee serializability, L\and LW, can be removed from the operations set (for con-

flict detection) because they are restoring values. Alternatively, one way to view it is the sequence
shown is executed, all addresses are pre-requested. Then the operations are performed and then the
new values checked for the old values. If the two values are the same, then the new value need not
be written to the old value. This is also the case with;L#hd LW,. Since the operations ({CSR
CSW}) between these two stores are indivisible (atomic), all operations from other processors are
either ordered before or after the sequence.

SLE guarantees that any committed execution is serializable. Thus, the lock variable itself
(i.e., LR) is also part of the CSRet for tracking any writes to it and detecting such conflicts. This
is for serializability with respect to other threads. It is however not added to the €8\Wecause
the write is never exposed to other threads in speculative mode. Since the two elided stores are
silent, the architectural state prior to and after the execution remains the same.

TLR builds off SLE and use SLE to commit executions. Therefore, the correctness construc-
tions for SLE also hold for TLR. The TLR proposal in this thesis is based on the wound-wait algo-

rithm by Rosenkrantz et al. [144] and they showed wound-wait to be deadlock-free.
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Figure A-1: Program order for memory operations from a single proces8éemory  opera-

tions are shown. The dashed box including blocks 2a, 2b, 3 and 4 signifies the atomicity of the
region The dotted box around 2a and 2b signifies conceptually a read/write operation on the same
address X. One legal ordering is shown on the right side.

A.2 SLE and program order

This section revisits the above section and informally shows how program order is maintained
with SLE. Figure A-1 shows the program order sequence for an instruction sequence. Blocks 2, 3,
and 4 constitute the atomic region we are interested in. 2a and 2b correspond to the first store we
wish to elide. Note, the operation is conceptually split in two parts: 2a and 2b. We assume an
implicit read before the store is elided to ensure temporal silence. The single processor program
order shown is maintained. Block 1 precedes blocks 2, 3, and 4 in the figure. Thus, all operations
of 1 are assumed to have completed before 2, 3, and 4 are executed. Similarly, Blocks 2, 3, and 4
are assumed to have completed before block 5 executes. Note, the notion of completion does not

imply serialization in physical time but merely the appearance.
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In the program ordering shown, the atomic block comprising of 2, 3, and 4 is assumed to have
semantics of a memory barrier in keeping with most atomic read-modify-write operations. This
will be true for strong models such as sequential consistency and total store ordering. However, for
weaker models such as release consistency, the presence of fence operations is used to enforce
ordering. Thus, an alternate ordering chain may be to relax even the block 1 to block 2 ordering

unless the atomic block has a fence instruction in which case the ordering must be maintained.
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