
I M P L E M E N T A T I O N O F P R E C I S E I N T E R R U P T S I N P I P E L I N E D P R O C E S S O R S

James E. Smi th

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, 14'1 53706

Andrew R. Pleszkun

Computer Sciences Department
University of Wisconsin-Madison

Madison. WI 53706

Abst rac t

An interrupt is precise if the saved process state corresponds with
the sequential model of program execution where one instruction com-
pletes before the next begins. In a pipelined processor, precise inter-
rupts are difficult to achieve because an instruction may be initiated
before its predecessors have been completed. This paper describes and
evaluates solutions to the precise interrupt problem in pipelined proces-
sors.

The precise interrupt problem is first described. Then five solu-
tions are discussed in detail. The first forces instructions to complete
and modify the process state in architectural order. The other four
allow instructions to complete in any order, but additional hardware is
used so that a precise state can be restored when an interrupt occurs.
All the methods are discussed in the context of a parallel pipeline struc-
lure. Simulation results based on the CR.AY-IS scalar architecture are
used to show that, at best, the first solution results in a performance
degradation of about 16~ . The remaining four solutions offer similar
performance, and three of them result in as litlle as a 3% performance
loss. Several extensions, including virtual memory and linear pipeline
structures, are briefly discussed.

1. In t roduct ion

Most current computer architectures are based on a sequential
model of program execution in which an architectural program counter
sequences through instructions one-by-one, finishing one before start-
ing the next. In contrast, a high performance implementation may be
pipelined, permining several instructions to be in some phase of execu-
tion at the same time. The use of a sequential architecture and a pipe-
lined implementation clash at the time of an interrupt; pipelined
instructions may modify the process state in an order different from that
defined by the sequential architectural model. At the time an interrupt
condition is detected, the hardware may not be in a state that is con-
sistent with any specific program counter value.

When an interrupt occurs, the state of an interrupted process is
typically saved by the hardware, the software, or by a combination of
the two. The process state generally consists of the program counter,
registers, and memory. If the saved process state is consistent with the
sequential architectural model then the interrupt is precise. To be more
specific, the saved state should reflect the following conditions.

(1) All instructions preceding the instruction indicated by the saved
program counter have been executed and have modified the pro-
oess state correctly.

(2) All instructions following the instruction indicated by the saved
program counter are unexecuted and have not modified the pro-
cess state.

(3) If the interrupt is caused by an exception condition raised by an
instruction in the program, the saved program counter points to

the interrupted instruction. The interrupted instruction may or
may not have been executed, depending on the definition of the
architecture and the cause of the interrupt. Whichever is the
case, the interrupted instruction has either completed, or has not
started execution.

If the saved process state is inconsistent with the sequential architec-
tural model and does not satisfy the above conditions, then the interrupt
is imprecise.

This paper describes and compares ways of implementing precise
interrupts in pipelined processors. The methods used are designed to
modify the state of an executing process in a carefully controlled way.
The simpler methods force all instructions to update the process state in
the architectural order. Other, more complex methods save portions of
the process state so that the proper state may be restored by the
hardware at the time an interrupt occurs.

l , l , C |ass i f ica t ion of In t e r rup t s

We consider interrupts belonging to two classes.

(1) Program interrupts, sometimes referred to as " t raps ' , result from
exception conditions detected during fetching and execution of
specific instructions. These exceptions may be due m software
errors, for example trying to execute an illegal opcode, numerical
errors such as overflow, or they may be part of normal execution,
for example page faults.

(2) Exwrnal inwrrupls are not caused by specific instructions and are
often caused by sources outside the currently executing process,
sometimes completely unrelated to it. I/O interrupts and timer
interrupts are examples.

For a specific architecture, all interrupts may be defined to be
precise or only a proper subset. Virtually every architecture, however,
has some types of interrupts that must be precise. There are a number
of conditions under which precise interrupts are either necessary or
desirable.

(1) For I /O and timer interrupts a precise process state makes res-
tarting possible.

(2) For software debugging it is desirable for the saved state to be
precise. This information can be helpful in isolating the exact
instruction and circumstances that caused the exception condition.

(3) For graceful recovery from arithmetic exceptions, software rou-
tines may be able to take steps, re-scale floating point numbers
for example, to allow a process to continue. Some end cases of
modern floating point arithmetic systems might best be handled
by software; gradual underflow in the proposed IEEE floating
point standard [Stev81], for example.

(4) In virtual memory systems precise interrupts allow a process m
be correctly restarted aher a page fault has been serviced.

(5) Unimplemented opcodes can be simulated by system software in a

0149-7111/85/0000/0036501.00 © 1985 IEEE
36

way transparent to the programmer if interrupts are precise. In
this way, lower performance models of an architecture can main-
rain compatibility with higher performance models using extended
instruction sets.

(6) Virtual machines can be implemented if privileged instruction
faults cause precise interrupts. Host software can simulate these
instructions and return to the guest operating system in a user-
transparent way.

1.2. Historical Survey'

The precise interrupt problem is as old as the first pipelined com-
puter and is mentioned as early as Stretch [Buch62]. The IBM 360191
[Ande67] was a well-known computer that produced imprecise inter-
rupts under s o m e circumstances, floating ix~int exceptions, for exam-
ple. Imprecise interrupts were a break with the IBM 360 architecture
which made them even more noticeable. All subsequent IBM 360 and
370 implementations have used less aggressive pipeline designs where
instructions modify the process state in strict program order, and all

interrupts are precise, t A more complete description of the method
used in these "linear" pipeline implementations is in Section 8.4.

Most pipelined implementations of general purpose architectures
are similar to those used by IBM. These pipelines constrain all
instructions to pass through the pipeline in order with a stage at the end
where exception conditions are checked before the process state is
modified. Examples include the Amdahl 470 and 580
[AmdhS1,AmdhS0] and the Gould/SEL 32187 [Ward82].

The high performance CDC 6600 [Thor70J, CDC 7600
[Bons69]. and Cray Research [Russ78. Cray79] computers allow
instructions to complete out of the architectural sequence. Conse-
quently, they have some exception conditions that result in imprecise
interrupts. In these machines, the advantages of precise interrupts have
been sacrificed in favor of maximum parallelism and design simplicity,
I /O interrupts in these machines are precise, and they do not imple-
ment virtual memory.

The CDC STAR-100 [HiTa72] and CYBER 200 [CDCSI] series
machines also allow instructions to complete out of order, and they do
support virtual memory. In these machines the use of vector
instructions further compficates the problem, and all the difficulties
were not fully recognized until late in the development of the STAR-
100. The eventual solution was the addition o f an invisible excha~tge
package [CDCSI]. This captures machine-dependent state information
resulting from partially completed instructions. A similar approach has
more recently been suggested in MIPS [Henri82] where pipeline infor-
mation is dumped at the time of an interrupt and restored to the pipeline
when the process is resumed. This solution makes a process restartable
although it is arguable whether it has all the features and advantages of
an architecturally precise interrupt. For example, it might be neces-
sary to have implementa'tion-dependent software sift through the
machine-dependent state in order to provide complete debug informa-
tion.

The recently-announced CDC CYBER 180/990 [CDC84] is a
pipelined implementation of a new architecture that supports virtual.
memory, and offers roughly the same performance as a CRAY-IS. To
provide precise interrupts, the CYBER 180/990 uses a history buffer,
to be described later in this paper, where state information is saved just
prior to being modified. Then when an interrupt occurs, this "history"
information can be used to back the system up into a precise state.

1.3. Paper Overview

This paper concentrates on explaining and discussing basic
methods for implementing precise interrupts in pipelined processors.
We emphasize scalar architectures (as opposed to vector architectures)
because of their applicabilit 3, to a wider range of machines. Section 2

IExcept for the models 95 and 195 which were derived from the original model 91
design. Also. the models 85 and 165 had imprecise interrupts for the cgse of protection
exceplions and .addressing exceptions caused b)' store oIx'rations.

describes the model architecture to be used in describing precise inter-
rupt implementations. The model architecture is very simple so that the
fundamentals of the methods can be clearlv described. Sections 3
through 6 describe methods for implementing precise interrupts. Sec-
tion 3 describes a simple method thal is easy to implement, but which
reduces performance. It forces instructions to complete'in architectural
order which sometimes inhibits the degree of parallelism in a pipelined
system. Section 4 describes a higher performance variation where
results may be bypassed to other instructions before the results are used
to modify the process state. Sections 5 and 6 describe methods where
instructions are allowed to complete in any order, but where state infor-
mation is saved so that a precise state may be restored when an inter-
rupt occurs. The descriptions of these methods assume that the only
state information is the program counter, general purpose registers,
and main memo~-. The methods are also discussed in the absence of a
data cache. Section 7 presents simulation results. Experimental results
based on these CRAY-IS simulations are presented and discussed.
Section 8 contain a brief discussion of 1) saving additional state infor-
mation, 2) supporting virlual memory, 3) precise interrupts when a
data cache is used, and 4) linear pipeline structures.

2. Preliminaries

2,1. Model Archi tec ture

For describing the various techniques, a model architecture is
chosen so that the basic methods are not obscured by details and
unnecessary complications brought about by a specific architecture.

We choose a ' regis ter-regis ter architecture where all memory
accesses are through registers and all functional operations involve
registers. In this respect it bears some similarity to the CDC and Cray
architectures, but has only one set of registers. The load instructions
are of the form: Ri = (Rj+disp). That is, the content of Rj plus a dis-
placement given in the instruction are added to form an effective
address. The content of the addressed memory location is loaded into
Ri. Similarly, a store is of the form: (Rj + disp) = RJ, where Ri is
stored at the address found by adding the content of Rj and a displace-
ment. The functional instructions are of the form Ri = Rj up Rk,
where up is the operation being performed. For unary operations, the
degenerate form Ri s up Rk is used. Conditional instructions are of
the form P = disp : Ri up Rj, where the displacement is the address of
the branch target; up is a relational operator, = , > , < , etc.

The only process state in the model architecture consists of the
program counter, the general purpose registers and main memory.
The architecture is simple, has a minimal amount of process state, can
be easily pipelined, and can be implemented in a straightforward way
with parallel" functional units like the CDC and Cray architectures.
Hence, implementing precise interrupts for the model architecture
presents a realistic problem.

Initially. we assume no operand cache. Similarly, condition
codes are not used. They add other problems beyond precise interrupts
when a piperined intplementation is used. Extensions for operand
cache and condition codes are discussed in Section 8. •

The implementation for the simple architecture is shown in Fig.
1. It uses an instruction fetch/decode pipeline which processes instruc-
tions in order. The last stage of the fetch/decode pipeline is an issue
register where all register interlock conditions are checked. If there
are no register conflicts, an instruction issues to one of the parallel
functional units. Here, the memory access function is implemented as
one of the functional units. The operand registers are read at the time
an instruction issues. There is a single result bus that returns results to
the register file. This bus may be reserved at the time an instruction
issues or when an instruction is approaching, completion. This
assumes the functional unit times are deterministic. A new instruction
can issue every clock period in the absence of register or result bus
conflicts.

37

FUNCTIONAL UNIT I

INSTRUCTION --I • • • , I

III I

RESULT BUS

Figure 1. Pipelined implementation of our model architecture. Not
shown is the result shift register used to control the result bus.

Example l

To demonstrate how an imprecise process state may occur in our
model architecture, consider the following section of code which sums
the elements of arrays A and B into array C. Consider the instructions
in statements 6 and 7. Although the integer add which increments the
loop count will be issued after the floating point add, it will complete

Comments Execute
Time

0 R2 < - 0 Init. loop index
1 R0 < - 0 Init. loop count
2 R5 < - 1 Loop inc. value
3 R7 < - 100 Maximum loop count
4 LI : RI < - (R2 + A) Load A(I) l l cp
5 R3 < - (R.2 + B) Load B(I) 11 cp
6 R4 < - R1 + f R3 Floating add 6ep
7 R0 < - R0 + R5 Inc. loop count 2cp
8 (R0 + C) < - R4 Store C(1)
9 R2 < - R2 + R5 Inc. loop index 2cp

10 P = L1 : R0 ! = R7 con& branch not equal

before the floating poim add. The integer add will therefore change the
process state before an overflow condition is detected in the floating
point add. In the event of such an overflow, there is an imprecise
interrupt.

2.2. I n t e r rup t s Prior to Ins t ruc t ion I s sue

Before proceeding with the various precise interrupt methods, we
discuss interrupts that occur prior to instruction issue separately
because they are handled the same way by all the methods.

In the pipeline implementation of Fig. 1, instructions stay in
sequence until the time they are issued. Furthermore, the process state
is not modified by an instruction before it issues. This makes precise
interrupts a simple matter when an exception condition can be detected
prior to issue. Examples of such exceptions are privileged instruction
faults and unimplemented instructions. This class also includes exter-
nal interrupts which can be checked at the issue stage.

When such an interrupt condition is detected, instruction issuing
is halted. Then, there is a wait while all previously issued instructions
complete. After they have completed, the process is in a precise state,

with the program counter value corresponding to the instruction being
held in the issue register. The registers and main memory are in a
state consistent with this program counter value.

Because exception conditions detected prior to instruction can be
handled easily as described above, we will not consider them any
further. Rather, we will concentrate on ex~ption conditions detected
after instruction issue.

3. In -o rde r Ins t ruc t ion Complet ion

With this method, instructions modif 3" the process state only when
all previously issued instructions are known to be free of exception con-
ditions. This section describes a strategy that is most easily imple-
mented when pipeline delays in the parallel functional units are fixed.
That is, they do not depend on the operands, only on the function.
Thus , the result bus can be reserved at the time of issue.

First, we consider a method commonly used to control the pipe-
lined organization shown in Fig. 1. This method may be used regard-
less of whether precise interrupts are to be implemented. The precise
interrupt methods described in this paper are integrated into this basic
control strategy, however. To control the result bus, a "result shift
register" is used: see Fig. 2. Here, the stages are labeled 1 through n,

5 T ~ FUNCTIONAL
UNIT 50URCE

INTEGER ADD
3
4
5 FLT PT ADO
• $

N l

Figure 2.

DE5TN, I U A L I D PROGRAM
R E G I S T E R , COUNTER

© 1 7
B
o

4 l
• • •

Result Shift Register

I OIR~_TX OW

MOUEMENT

where n is the length of the longest functional unit pipeline. An
instruction that takes i clock periods reserves stage i of the result shift
register at the time it issues. If the stage already contains valid control
information, then issue is held until the next clock period, and stage i is
checked once again. An issuing instruction places control information
in the result shift register. This control information identifies the func-
tional unit that will be supplying the result and the destination register
of the result. This control information is also marked "valid" with a
validity bit. Each clock period, the control information is shifted down
one stage toward stage one. When it reaches stage one, it is used dur-
in~ the next clock to control the result bus so that the functional unit
result is placed in the correct result register,

Still disregarding precise interrupts, it is possible for a short
instruction to be placed in the result pipeline in stage i when previously
issued instructions are in stage j , j > i. This leads to instructions fin-
ishing out of the original program sequence. If the instruction at stage
j eventually encounters an exception condition, the interrupt will be
imprecise because the instruction placed in stage i will complete and
modify the process state even though the sequential architecture model
says i does not begin until j completes.

Example 2

If one considers the section of code presented in Example 1, and
an initially empty result shift register (all the entries invalid), the float-
ing point add would be placed in stage 6 while the integer add would be
placed in stage 2. The result shift register entries shown in Fig. 2
reflect the state of the result shift register after the integer add issues.
Notice that the floating point add entry is in stage 5 since one clock
period has passed since it issued. As described above, this situation
leads to instructions finishing out of the original program sequence.

38

3.1. Registers

To implement precise interrupts with respect to registers using
the above pipeline control structure, the control should "reserve" stages
i < j as well as stage j. That is, the stages i < j that were not previ-
ously reserved by other instructions are reserved, and they are loaded
with null control information so that they do not affect the process state.
This guarantees that instructions modifying registers finish in order.

There is logic on the result bus that checks for exception condi-
lions in instructions as thev complete. If an instruction contains a
non-masked exception condition, then control logic "cancels" all subse-
quent instructions coming on the result bus so that they do not modif 3
the process stale.

Example 3

For our sample section of code given in Example 1, assuming the
the result shift register is initially empty, such a policy would have the
floating point add instruction reserve stages 1 through 6 of the result
shift register. When, on the next clock cycle, the integer add is in the
issue register, it would normally issue and reserve stage 2. However,
this is now prohibited from happening because stage 2 is alread)-
reserved. Thus, the integer add must wait at the issue stage until stage
2 of the result shift register is no longer reserved. This would be 5
clock periods after the issue of the floating point add.

A generalization of this method is to determine, if possible, that
an instruction is free of exception conditions prior to the time it is com-
plete. Only result shift register stages that will finish before exceptions
are detected need to be reserved (in addition to the stage thai controls
the result).

3.2. Main ~lemory

Store instructions modify the pot-lion of process state that resides
in main memory. To implemenl precise interrupts with respect to+
memory, one solution is to force store instructions to wait for the result
shift register to be empty before issuing. Alternatively, stores can issue
and be held in the load/store pipeline until all preceding instructions
are known to be exception-free. Then the store can be released to

memory.

To implement the second alternative, recall that memory can be
treated as a special functional unit. Thus, as with any other instruc-
lion, the store can make an entry in the result shift register. This entry
is defined as a dummy store. The dummy store does not cause a result
to be placed in the registers, but is used for controlling the memory
pipeline. The dummy store is placed in the result shift register so that
it will not reach stage] until the store is known to be exception-free.
When the dummy store reaches stage 1, all previous instructions have
completed without exceptions, and a signal is sent to the load/store unit
to release the store to memory. If the store itself contains an exception
condition, then 'the store is cancelled, all following load/store instruc-
tions are cancelled, and the store unit signals the pipeline control so
that all instructions issued subsequent to the store are cancelled as they
leave the result pipeline.

3.3. Program Counter

To implement precise interrupts with respect to the program
counter, the result shift register is widened to include a field for the
program counter of each instruction (see Fig. 2). This field is filled as
the instruction issues. When an instruction with an exception condition
appears at the result bus. its program counter is available and becomes
parl of the saved slate.

4, The Reorder Buffer

The primary disadvantage of the above method is that fast instruc-
lions may sometimes get held up at the issue register even though the)
have no dependencies and would otherwise issue. In addition, the)'
block the issue register while slower instructions behind them could
conceivably issue.

This leads us to a more complex, but more general solution.
Instructions are allowed to finish out o f order, bul a special buffer
calico the reorder buffer is used to reorder them before the), modify the
process slate.

4.1. Basic Method

The overall organization is shown in Fig. 3a. The reorder buffer,
Fig. 3b, is a circular buffer with head and tail pointers. Entries
between the head and tail are considered valid. At instruction issue time
the next available reorder buffer entry, pointed to by the 'tail pointer, is
given to the issuing instruction. The tail pointer value is used as a lag
to idemify the entry in the buffer reserved for the instruction. The tag is
placed in the result shift register along with the other control informa-
lion, The tail pointer is then incremented, modulo the buffer size.
The result shift register differs from the one used earlier because there
is a field containing a reorder tag instead of a field specifying a destina-
tion register.

REGISTER

FILE

I
REORDER L /

BUFFER

SOURCE DATA
TO FUNCTIONAL UNIT5

RESULT
SHIFT
REGISTER

L CONTROL

RESULT BU5

(a)

IZXCEP- ! ENTRY BEST. PROGRf~M
NUMBER REG, RESULT rIONS UALID COUNTER

3
HEAD-~ 4 4 B

5 e B
TAIL--~ S

REORDER BUFFER

STAGE FUNCTIONAL
UNIT SOURCE

1

3
DIRECTIO 4

OF / 5
MOVEMENT

i

N

UALIB TAG

INTEGER ADD £
B
B

FLT PT ADD I

i •

• 9

RESULT SHIFT REGISTER

(b)

Figure 3. (a) Reorder Duffer Organization. (b) Reorder Buffer and
associated Result Shift Register.

39

When an instruction completes, both results and exception condi-
tions are sent to the reorder buffer. The tag from the result shift regis-
ter is used to guide them to the correct reorder buffer entry. When the
entry at the head of the reorder buffer contains valid results (its instruc-
tion has finished) then its exceptions are checked. If there are none, the
results are written into the registers. If an exception is detected, issue is
stopped in preparation for the interrupt, and all further writes into the
register file are inhibited.

Example 4

The entries in the reorder buffer and result shift register shown
in Figure 3b reflect their state after the integer add from Example 2 has
issued. Notice that the result shift register entries are vet 3, similar to
those in the Figure 2. The integer add will complete execution before
the floating point add and its results will be placed in entry 5 of the
reorder buffer. These results, however, will not be wrhaen into R0
until the floating point result, found in entry 4, has been placed in R4.

4.2. Main M e m o r y

Preciseness with respect to memory is maintained in manner
similar to that in the in-order completion scheme (Section 3.2). The
simplest method holds stores in the issue register until all previous
instructions are known to be free of exceptions. In the more complex
method, a store signal is sent to the memor 3, pipeline as a "dummy"
store is removed from the reorder buffer. Stores are allowed to issue,
and block in the store pipeline prior to being committed to memory
while they wait for their dummy counterpart.

,4.3, P rog ram Counte r

To maintain preciseness with respect to the program counter, the
program counter can be sent to a reserved space in the reorder buffer at
issue time (shown in Figure 3b). While the program counter could be
sent to the result shift register, it is expected that the result shift register
will contain more stages than the reorder buffer and thus require more
hardware. The length of the result shift register must be as long as the
longest pipeline stage. As will be seen in Seclion 7, the number of
entries in the reorder buffer can be quite small. When an instruction
arrives at the head of the reorder buffer with an exception condition,
the program counter found in the reorder buffer emrx, becomes part of
the saved precise state.

4.4. Bypass Pa ths

While an improvement over the method described in Section 3,
the reorder buffer still suffers a performance penalty. A computed
result that is generated out of order is held in the reorder buffer until
previous instructions, finishing later, have updated the register file. An
instruction dependent on a result being held in the reorder buffer can-
not issue until the result has been wrirten into the register file.

The reorder buffer may, however, be modified to minimize some
of the drawbacks of finishing strictly in order. For results to be used
early, bypass paths may be provided from the entries in the reorder
buffer to the register file ourput latches, see Fig. 4. These paths allow
data being held in the reorder buffer to be used in place of register
data. The implementation of this method requires comparators for each
reorder buffer stage and operand designator. If an operand register
designator of an instruction being checked for issue matches a register
designator in the reorder buffer, then a multiplexer is set to gaie the
data from the reorder buffer to the register output latch. In the absence
of other issue blockage conditions, the instruction is allowed to issue,
and the data from the reorder data is used prior to being written into the
register file.

There may be bypass paths from some or all of the reorder buffer
entries. If multiple bypass paths exist, it is possible for more than one
destination entry in the reorder buffer to correspond to a single regis-
t e l Clearly only the latest reorder buffer entry" that corresponds to an
operand designator should generate a bypass path to the register output
latch. To prevent muhiple bypassing of the same register, when an

EGISTER _ ~

- ~ ~ C E ~ T R
FILE TO F~CTIONRL UNITS

' f
~MPARATORS/ RESULT

I BYPA~ SHIFT
REGISTER I E T N ~ K

tll I I
BUFFER RESULT BUS

Figure 4. Reorder Buffer Method with Bypasses.

instruction is placed in the reorder buffer, an}' entries with the same
destination register designator must be inhibited from malching a
bypass check.

When bypass paths are added, preciseness with respect to the
memory and the program counter does not change from the previous
method.

The greatest disadvantage with this method is the number of
bypass comparators needed and the amount of circuitr 3' required for the
multiple bypass check. While Ibis circuitry is conceptually simple,
there is a great deal of it.

5, History Buffer

The methods presented in this section and the next are intended to
reduce or eliminate performance losses experienced with a simple
reorder buffer, but without all the control logic needed for multiple
bypass paths. Primarily, these methods place computed results in a
working register file, but retain enough state information so a precise
state can be restored if an exception occurs.

Fig. 5a illustrates the histo~' buffer method. The history buffer
is organized in a manner verx similar to the reorder buffer. At issue
time, a buffer entry is loaded with control information, as with the
reorder buf fer , but the value of the destination register (soon to be
overwritten) is also read from the register file and written into the
buffer entry. Results on the result bus are written directly into the
register file when an instruction completes. Exception reports come
back as an instruction completes and are written into the history buffer.
As with the reorder buffer, the exception reports are guided to the
proper history buffer entry through the use of tags found in the result
shift register. When the history buffer contains an element at the head
that is known to have finished without exceptions, the history buffer
entry is no longer needed and that buffer location can be re-used (the
head pointer is incremented). As with the reorder buffer, the history
buffer can be shorter than the maximum number of pipeline stages. If
all history buffer entries are used (the buffer is too small), issue must
be blocked until an entry becomes available. Hence the buffer should
be long enough so that this seldom happens. The effect of the history
buffer on performance is determined in Section 7.

Example 5

'The entries in the history buffer and result shift register shown
Fig. 5b correspond to our code in Example 1, after the integer add has
issued. The only differences between this and the reorder buffer
method shown in Fig. 3b are the addition of an "old value" field in the
history buffer and a "destination register" field in the result shift regis-
ter. The result shift register now looks like the one shown in Fig. 2.

40

f_ _ _ ~_D_ _~_ _Y_
% ON EXCEPTION5

REGISTER

F ILE

RESULT
SHIFT
REGISTER

HISTORY

BUFFER

(a)

SOURCE DATA

TO FUNCTIONAL
UNITS

DESTN.
REG,
CONTENTS

(
RESULT BUS

HERD-~

TRIL--~

ENTRY nEST. OLD EXCEP- UALID
NUMBER R E G . UALUE TIONS

3
4 4 488088BO 0

0 42

HISTORY SUFFER

PROGRAM
COUNTER

B
7

STAGE

N~ I 2
DIRECTIO 3

OF / 4
MOVEMENT 5

o

N

FUNCTIONAL DEST. UALIDi TAG
UNIT SOURCE REG. I

O
INTEGER ADD 0 l 5

8
8

FLT PT ADD 4 1 4

0

RESULT SHIFT REGISTER

(b)

Figure 5. (a) History Buffer Organization. (b) History Buffer and
associated Resuh Shift Register.

When an exception condition arrives at the head of the buffer, the
buffer is held, instruction issue is immediately halted, and there is a
wait until pipeline activity completes. The active buffer entries are then
emptied from tail to head, and the history values are loaded back into
their original registers. The program counter value found in the head
of the history buffer is the precise program counter.

To make main memory precise, when a store entry emerges from
the buffer, it sends a signal that another store can be commiued to
memory. Stores can either wait in the issue register or can be blocked
in the memory pipeline, as in the previous methods.

The extra hardware required by this method is in the form of a
large buffer to contain the history information. Also the register file
must have three read ports since the destination value as well as the
source operands must be read at issue time. There is a slight problem
if the basic implementation has a by'pass of the resuh bus around the
register file. In such a case, the bypass must also be connected into the
history buffer.

6. Future File

The future file method (Fig. 6) is similar to the history buffer
method, however it uses two separate register files. One register file
reflects the state of the architectural (sequential) machine. This file
will be referred to as the architectural file. A second register file is
updated as soon as instructions finish and therefore runs ahead of the
architectural file (i.e. it reflects the future with respect to the architec-
tural file). This ./u|ure f i le is the working file used for computation by
the functional units.

I
U6ED (~ l_Y

ON EXCEPT I Ot~

FUTURE

coNrR~_T/ FILE

RESULT
SHIFT
REGISTER

---'----•'SOURCE DATA

TO FUNCTIONAL

UNITS

RESULT BUS FROM FUNCTIONAL UNITS

ARCHITECTURAL~ REORDER
FILE i~ I BUFFER

Figure 6. Future File Organization.

Instructions are issued and results are returned to the future file
in any order, just as in the original pipeline model. There is also a
reorder buffer that receives results at the same time they are written
into the future file. When the head pointer finds a completed instruc-
tion (a valid entry), the re suh associated with that entry is written in the
architectural file.

Example 6

If we consider the code in Example 1 again, there is a period of
time when the architecture file and the future file contain different
entries. With this method, an instruction may finish out of order, so
when the integer add finishes, the future file contains the new contents
of R0. The architecture file however does not. and the new contents of
R0 are buffered in the reorder buffer entry corresponding to the integer
add. Between the time the integer add finishes and the time the floating
'point add finishes, the two files are different. Once the floating point
finishes and its results are written into R4 of both files, R0 of the archi-
tecture file is written.

Just as with the pure reorder buffer method, program counter
values are wrinen into the reorder buffer at issue time. When the
instruction at the head of the reorder buffer has completed without
error, its result is placed in the architectural file. If it completed with
an error, the register designators associated with the buffer entries
between the head and tail pointers are used to restore values in the

future file from the architectural file. 2

The primary advantage of the future file method is realized when
the architecture implements interrupts via an "exchange" where all the
registers are automatically saved in memory and new ones are restored
(as is done in CDC and Cray architectures). In this case. the architec-
tural file can be stored away immediately: no restoring is necessary as
in history buffer method. There is also no .bypass problem as with the
history buffer method.

2The fesloration is l'~..rtormt,d from the al-chitecltu(al tile since the tutttr¢ l~[c is re-
~i~tcr file florll which all execution takt,~ place

4!

7. Pe r fo rmance Evaluat ion

To evaluate the effectiveness of our precise interrupt schemes, we
use a CRAY-1S simulation system developed at the University of
Wisconsin [PaSmg3]. This trace-driven simulator is extremely accu-
rate, due to the highly deterministic nature of the CRAY-1S, and gives
the number of clock periods required to execute a program.

The scalar portion of the CRAY-1S is verx similar to the model
architecture described in Section 2.1. Thus, casting the basic
approaches into the CRAY-IS scalar architecture is straightforward.

For a simulation workload, the first fourteen Lawrence Liver-
more Loops ~McMa72] were used. Because we are primarily
interested in pipelined implementations of conventional scalar architec-
tures, the loops were compiled by the Crav FORTRAN compiler with
the vectorizer turned off.

In the preceding sections, five methods were described thal could
be used for guaranteeing precise interrupts. To evaluate the effect of
these methods on system performance, the methods were partitioned
into three groups. The first and second group respectively contain the
in-order method and the simple reorder buffer method. The third
group is composed of the reorder buffer with bypasses, the history
buffer, and the future file. This partitioning was performed because
the methods in the third group result in identical system performance.
This is because the future file has a reorder buffer embedded as part of
its implementation. And the history buffer length constrains perfor-
mance in the same way as a reorder buffer: when the buffer fills, issue
must stop. All the simulation results are reported as for the reorder
buffer with bypasses. They apply equally well for the history buffer
and future file methods. The selection of a particular method depends
not only on its effect on system performance but also the cost of imple-
mentation and the ease with which the precise CPU state can be
restored.

For each precise interrupt method, two methods were described
for handling stores, Simulations were run for each of these methods.
For those methods other than the in-order completion method, the size
o f the reorder buffer is a parameter. Sizing the buffer with too few
entries degrades performance since instructions thal might issue could
block at the issue register. The blockage occurs because there is no
room for a new entry in the buffer.

Table 1 shows the relative performance of the In-order, Reorder
Buffer, and Reorder Buffer with bypass methods when the stores are
held until the result shift register is empty. The results in the table
indicate the relative performance of these methods with respect to the
CRAY-IS across the first 14 Lawrence Livermore Loops; real CRAY-
1S performance is 1.0. A relative performance greater than 1.0 indi-
cates a degradation in performance. The number of entries in the
reorder buffer was varied from 3 to 10.

Table 1. Relative Performance for the first I4 Lawrence Livermore
Loops, with stores blocked until the results pipeline is empt 3.

I N u m b e r o f I
Envies l ln-order Reorder R w / B P

3

4

5

8

10

1.2322 1.3315 1.3069

1.2322 1.2183 1.1743

1.2322 1.1954 1.1439

1.2322 1.1808 1.1208

1.2322 1.1808 1.1208

The simulation results for the In-order column are constant since
this method does not depend on a buffer that reorders instructions. For
all the methods, there is some performance degradation. Initially,
when the reorder buffer is small, the In-order method produces the
least performance degradation. A small reorder buffer (less than 3
entries) limits the number of instructions that can simultaneously be in
some stage of execution. Once the reorder buffer size is increased
beyond 3 entries, either of the other methods results in belier perfor-
mance. As expected, the reorder buffer ~ith bypasses offers superior
performance when compared with the simple reorder buffer. When the
size of the buffer was increased beyond 10 entries, simulation results
indicated no further performance improvements. (Simulations were
also run for buffer sizes of 15, 16, 20, 25, and 60.) At best, one can
expect a 12% performance degradation when using a reorder buffer
with bypasses and the first method for handling stores.

Table 2 indicates the relative performance when stores issue and
wait at the same memory pipeline stage as for memo~ ' bank conflicts in
the original CRAY-IS. After issuing, stores wait for their counterpart
dummy store to signal that all previously issued register instructions
have finished. Subsequent loads and stores are blocked from issuing.

Table 2. Relan\e Pertormance tor the first 14 Lavrence Li \ermore
Loops, w'ith store.- held in the memor 3, pipeline after issue.

Number of {
Entries In-order Reorder R w / B P

3

4

5

8

10

1.1560 1.3058 1.2797

1.1560 1.1724 1.1152

1.1560 1,1348 1.0539

1.1560 1.1167 1.0279

1.1560 1.1167 1.0279

As in Table 1, the In-order results are constant across all entries.
For the simple reorder buffer, the buffer must have at least 5 entries
before it results in beuer performance than the In-order method. The
reorder buffer with bypasses, however, requires only 4 entries before it
is performing more effectively than the In-order m e t h o d . . l u s t as in
Table l , having more than 8 entries in the reorder buffer does not
result in improved performance. Comparing Table 1 to Table 2, the
second method for handling stores offers a clear improvement over the
first method, If the second method is used with an 8 entry re, order
buffer that has bypasses, a performance degradation of only 3% is
experienced.

Clearly there is a trade-off be~'een performance degradation and
the cost of implementing a method. For essentially no cost, the In-
order method can be combined with the first method of handling stores.
Selecting this 'cheap' approach results in a 23% performance degrada-
tion. If this degradation is too great, either the second store method
must be used with the In-order method or one of the more complex
methods must be used. If the reorder buffer method is used, one must
use a buffer with at least 3 or 4 entries.

8. E x t e n s i o n s

In previous sections, we described methods 'that could be used to
guarantee precise interrupts with respect to the registers, the main
memory, and the program counter of our simple architectural model.
In the following sections, we extend the previous methods to handle
additional state information, virtual memory, a cache, and linear pipe-
lines. Effectively, some of lhese machine features can be considered to
be functional units with non-deterministic execution times.

42

8.1. Handling Other State Values

Most architectures have more state information than we have
assumed in the model architecture. For example, a process may have
state registers that point to page and segment tables, indicate interrupt
mask conditions, etc. This additional state information can be precisely
maintained with a method similar to that used for stores to memory. If
using a reorder buffer, an instruction that changes a state regisfer
reserves a reorder buffer entry and proceeds to the pan of the machine
where the state change will be made. The instruction then waits there
until receiving a signal to continue from the reorder buffer. When its
entry arrives at the head of the buffer and is removed, then a signal is
sent to cause the state change.

In architectures that use condition codes, the condition codes are
state information. Although the problem condition codes present to
conditional branches is not totally unrelated to the topic here, solutions
to the branch problem are not the primary topic of this paper. It is
assumed thin the conditional branch problem has been solved in some
way, e.g. [Ande67]. If a reorder buffer is being used, condition codes
can be placed in the reorder buffer. That is, just as for data. the
reorder buffer is made sufficiently wide to hold the condition codes.
The condition code entry is then updated ',,,'hen the condition codes
associated with the execution of an instruction are computed. Just as
with data in the reorder buffer, a condition code entry is not used to
change processor state until all previous instructions have completed
without error (however condition codes can be bypassed to the instruc-
tion fetch unit to speed up conditional branches).

Extension of the history buffer and future file methods to handle
condition codes is very similar to that of the reorder buffer. For the
history buffer, the condition code settings at the time of instruction
issue must be saved in the history buffer. The saved condition codes
can then be used to restore the processor state when an exception is
detected. Since the future file method uses a reorder buffer, the above
discussion indicates how condition codes may be saved.

8,2, Virtual Memory

Virtual memory is a very important reason for supporting precise
interrupts; it must be possible to recover from page faults. First, the
address translation pipeline should be designed so that all the load/store
instructions pass through it in order. This has been assumed
throughout this paper. Depending on the method being used, the
load/store instructions reserve time slots in the result pipeline and/or
re-order buffer that are read no earlier than the time at which the
instructions have been checked for exception conditions (especially page
faults). For stores, these entries are not used for data; just for exception
reporting and/or holding a program counter value.

If there is an addressing fault, then the instruction is cancelled in
the addressing pipeline, and all subsequent load/store instructions are
cancelled as they pass through the addressing pipeline. This guaran-
tees that no additional loads or stores modify the process state. The
mechanisms described in the earlier sections for assuring preciseness
with respect to registers guarantee that non-load/store instructions fol-
lowing the faulting load/store will not modify the process state; hence
the interrupt is precise.

For example, if the reorder buffer method is being used, a page
fault would be sent to the reorder buffer when it is detected. The tag
assigned to the corresponding load/store instruction guides it to the
correct reorder buffer entry. The reorder buffer entry is removed from
the buffer when it reaches the head. The exception condition in the
entry causes all further entries of the reorder buffer to be discarded so
that the process state is modified no further (no more registers are writ-
ten). The program counter found in the reorder buffer entry is precise
with respect to the fault.

8.3. Cache-Memory

Thus far we have assumed systems that do not use a cache
memory. Inclusion of a cache in the memory hierarchy affects the
implementation of precise interrupts. As we have seen, an important

part of all the methods is that stores are held until all previous instruc-
tions are known to be exception-free. With a cache, stores may be
macle into the cache earlier, and for performance reasons should be.
The actual updating of main memory, however, is still subject to the
same constraints as before.

8.3.1. Store-through Caches

With a store-through cache, the cache can be updated intmedi-
ately, while the store-through to main memory is handled as in previ-
ous sections. That is, all previous instructions must first be known to
be exception-free. Load instructions are free to use the cached copy,
however, regardless of whether the store-through has taken place. This
means that main memory is always in a precise state, but the cache
contents may "run ahead" of the precise state. If an interrupt should
occur while the cache is potentially in such a state, then the cache
should be flushed. This guarantees that prematurely updated cache.
locations will not be used. However, this can lead to performance
problems, especially for larger caches.

Another alternative is to treat the cache in a way similar to the
register files. One could, for example, keep a history buffer for the
cache. Just as with registers, a cache location would have to be read
just prior to writing it with a new value. This does not necessarily
mean a performance penalty because the cache must be checked for a
hit prior to the write cycle. In many high performance cache organiza-
tions, the read cycle for the history data could be done in parallel with
the bit check. Each store instruction makes a buffer entry indicating
the cache location it has written. The buffer entries can be used to
restore the state of the cache. As instructions'complete without excep-
tions, the buffer entries are discarded. The future file can be extended
in a similar way.

8.3.2. Write-Back Cache

A write-back cache is perhaps the cache type most compatible
with implementing precise interrupts. This is because stores in a
write-back cache are not made directly to memory; there is a built-in
delay between updating the cache and updating main memory. Before
an actual write-back operation can be performed, however, the reorder
buffer should be emptied or should be checked for data belonging to the
line being written back. If such data should be found, the write-back
must wait until the data has made its way into the cache. If a history
buffer is used, either a cache line must be saved in the history buffer,
or the write-back must wait until the associated instruction has made its
way to the end of the buffer. Notice that in any case, the write-back
will sometimes have to wait until a precise state is reached.

8,4. Linear Pipeline Structures

An alternative to the parallel functional unit organizations we
have been discussing is a linear pipeline organization. Refer to Fig. 7.

II [I
INSTRUCTI ON FETCH/DECODE

t REGISTER
FILE

&4RITE TO MEMORZ

Ili []
E I"l E

RESULT BUS

Figure 7. Example of a linear pipeline implementation.

43

Linear pipelines provide a more natural implementation of register-
storage architectures like the IBM 370. Here, the same instruction can
access a memory' operand and perform some function on it. Hence,
these linear pipelines have an instruction fetch/decode phase, an
operand fetch phase, and an execution phase, any of which may be
composed of one or several pipeline stages.

In general, reordering instructions after execution is not as signi-
ficant an issue in such organizations because it is natural for instruc-
tions to sta) in order as they pass through the pipe. Even if they finish
early in the pipe, they proceed to the end where exceptions are checked
before modifying the process state. Hence, the pipeline itself acts as a
sort of reorder buffer.

The role of the resuh shift register is played by the control infor-
mation that riot's down the pipeline alongside the data path. Program
counter values for preciseness may also riot' down the pipeline so that
the 3 , are available should an exception arise.

Linear pipelines often have several bypass paths connecting inter-
mediate pipeline stages. A complete sel of bypasses is t3'pically not
used, rather there is some critical subset selected to maximize perfor-
mance while keeping control complexil 3' manageable. Hence, using the
terminolog3 of this paper, linear pipelines achieve precise interrupts by
using a reorder buffer method with bypasses.

9. Summary and Conclusions

Five methods have been described thai solve the precise interrupt
problem. These methods were then eva/uated through simulations of a
CRAY-1S implemented with these methods. These simulation results
indicate that. depending on the method and the way stores are handled,
the performance degradation can range from between 25% to 3%. It is
expected that the cost of implementing these methods could vary sub-
stantially, with the method producing the smallest performance degra-
dation probably being the most expensive. Thus, selection of a particu-
lar method will depend not only on the performance degradation, but
whether the implementor is willing to pay for that method.

It is important to note that some indirect causes for performance
degradation were not considered. These include longer control paths
that would rand to lengthen the clock period. Also, additional logic for
supporting precise interrupts implies greater board area which implies
more wiring delays which could also lengthen the clock period.

10. Acknowledgement

One of the authors (J. E. Smith) would like to than'k R. G. Hintz
and J, B. Pearson of the Control Data Corp. with whom he was associ-
ated during 'the development of the CYBER 1801990. This paper is
based upon research supported by the National Science Foundation
under grant ECS-8207277.

I 1. References

[Amdh81] Amdahl Corporation, Amdahl 470V/8 Computing System
Machine Reference Ma~lual, publication no. G1014.0-03A, Oct.
1981.

[Amdh80] Amdahl Corporation, "580 Technical Introduction," 1980.

[Ande67] D.W. Anderson, F.J. Sparacio, F.M. Tomasulo. "The IBM
System/360 Model 91; Machine Philosophy and Instruction-
Handling." IBM Journal of Research and Development, V i 1,
January 1967, pp. 8-24.

[Bans69] P. Bonseigneur, "Description of the 7600 Computer
System." Computer Group News, May 1969, pp. 11-15.

[Buch62] W. Bucholz,ed., Planning a Computer System, McGraw-Hill,
Net' York, 1962.

[CDCg4] Control Dam Corporation, CDC Cyber 180 Computer System
Model 990 Hardware Reference Manual. pub. No. 604-62090,
1984.

[CDCg]] Control Data Corporation, "CDC CYBER 200 Model 205
Computer System Hardware Reference Manual," Arden Hills,
MN, 1981.

[Cray79] Cray Research, Inc., "CRAY-I Computer Systems, Hardware
Reference Manual," Chippewa Falls, WI, 1979.

|Henng2] J. Hennessy et. al., "Hardware/Software Tradeoffs for
Increased Performance," Pro¢. Syrup. on Architectural Support
for Programming Languages and Operatillg 5yslems. April 1982,
pp. 2-11.

[HiTa72] R. G. Hint2 and D. P. Tale, "Control Data STAR-100
Processor Design," Compcon 72. IEEE Computer Society
Conference Proc., Sept. 1972, pp. 1-4.

[McMa72] F. H. McMahon, "FORTRAN CPU Performance
Analysis," Lawrence Livermore Laboratories, 1972.

[PaSm83] N. Pang and . I .E . Smith, "CRAY-I Simulation Tools,"
Tech. Report ECE-83-11, University of Wisconsin-Madison,
Dec. 1983.

[Russ78] R.M. Russell, "The CRAY-I Computer System," Comm.
ACM. V 21, N 1o January 1978, pp. 63-72.

[Stevgl] David Stevenson, "A Proposed Standard for Binary Floating
Point Arithmetic," Computer. V 14 N 3, March 1981, pp. 51-
62.

[ThorT0} ,,I.E. Thornton, Design of a Computer - The Control Data
6600, Scan, Foresman and Co., Glenview, IL, 1.970

[Wardg2] William P. Ward, "Minicomputer Blasts Through 4 Million
Instructions a Second," Electronics, Jan. 13, 1982, pp. 155-
159.

44

