Multiple Reservations
and the
Oklahoma Update

Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek
IBM T.J. Watson Research Center

Y A multiple

ultiprocessor computers provide instruction-set sup-

reservation approach port for updating shared variables consistently.! With-
allows atomic updates out such support, processors that modify shared vari-

) ables concurrently risk failure if the updates leave the
Of multzple shared variables in an inconsistent state. In the most common
variables, and support technique, each process obtains exclusive access to a set of shared

simplifies concurrent variables, reads those variables and updates them while holding exclusive
. access, and then releases the exclusive access. The region of exclusive

and ﬂonblodemg codes access is called a critical section, and the process typically obtains access
f()r mana gi ng shared through control variables called seznaphore or lock variables. Special machine
data structures such as instructions, such as Test-and-Set, control the modification of sema-
phores to assure that they are updated consistently, and thereby guaran-

queues and linked lists. tee that at most one processor can execute instructions from a critical sec-

This method can be tion at one time. "The special semaphore-based instructions update a single

implemented as an variable atomically by performing an uninterruptible Read/Modify/Write
. sequence of operations. By definition, no other processor can alter the

extension 1o any cache operand between the Read and Write of an atomic update.

protocol that grants However, the use of critical sections can lead to performance degra-

write access to at most dation. A single processor that is busy updating shared variables can keep

many processors waiting at the entrance to a critical section. Moreover,
if a processor in a critical section should be suspended by a page fault,
context swap, processor crash, or similar mechanism, then no other wait-
ing processor can do useful work in the interim. Consequently, the mul-
tiprocessing community is very interested in updating schemes that are
free of critical sections.”

one processor dt a time.

58 1063-6532/93/1100-0038 $3.00 © 1993 IFEEE IEEE Parallel & Distributed Technology

A technique based on reservations is perhaps the most
efficient general method for updating a single shared
variable. (The terminology and implementations differ
among the machines that use this approach, so we
describe the scheme here in a generic form whose details
are not necessarily identical to any particular imple-
mentation. Qur description can easily be adapted to spe-
cific machines.) Two instructions use a special reserva-
tion register in each processor to perform atomic
updates of a single variable:

* Read-and-Reserve copies a vari-
able from memory into a gen-

In this article, we extend the notion of reservations
to support the atomic modification of multiple shared
variables. An update changes all shared variables or none
of them, and any change is made atomically so that no
other processor can modify the shared variables once
the update has begun and until the update has ended.
We call this an Oklaboma update, a reference to the song
“All er Nothin’” from the Rodgers and Hammerstein
musical Oklaboma!.

This concept has also been developed concurrently

and independently by Herlihy and
Moss in their work on transac-

eral register, and reserves the
address by copying it into a spe-
cial reservation register and
marking that reservation as
valid.

® Write-if-Reserved tests the reser-
vation register, and if the reser-
vation is still valid, updates the
shared variable in memory. If
the reservation is not valid, the
instruction aborts the update.

The reservation register in a
processor, say processor A is inval-
idated when any other processor

I
An update changes
all shared variables
or none of them,
and any change is
made atomically so
that no other
processor can
modify the shared
variables once the
update has begun
and until the
update has ended.

tional memory,’® although many
implementation details differ. Our
implementation is deadlock-free,
assures progress in the absence of
false sharing and context swaps,
and supports livelock-avoidance
(using an exponential back-off
mechanism). There is also an
option to restart the atomic update
immediately when a change to a
shared variable guarantees that the
Write-if-Reserved will fail.
Atomic updates and fault toler-
ance are also assured by the stable
storage structure of Lampson* and

changes the value of the reserved

variable, or when processor A exe-

cutes a Write-if-Reserved. So,

Write-if-Reserved updates the variable only if its orig-
inal value (read by Read-and-Reserve) is the most recent
value of that variable in the multiprocessor system. A
valid reservation thus indicates that the updated value
was computed correctly because it was based on the
shared variable’s current value.

Write-if-Reserved returns a condition code to indi-
cate whether or not it performed the update. A program
can test the condition code and repeat the attempted
update if the code shows that the most recent attempt
failed.

Many processors can execute concurrently and con-
sistently when trying to update a single variable pro-
tected by these two instructions. Consequently, system
performance is less sensitive to context swaps and page
faults for such codes than for codes based on critical sec-
tions. Later we show that performance may also be bet-
ter because the effective length of a critical section can
be shorter with a reservation-based scheme than with
semaphore-based operations.

others,’ but this typically requires

a separate external module.

Instead, we show how to imple-

ment atomic updates within conventional micro-
processors by using existing cache-coherence protocols
together with multiple reservation registers and some
associated functions. While using a separate module
might provide additional fault tolerance, the addition-
al cost of our implementation is negligible for a multi-
processor with hardware support for cache coherence.
Architectural support for concurrent programming
without critical sections goes back to the Compare-and-
Swap instruction, which provides a way to break an atom-
ic Read/Modify/Write sequence across several instruc-
tions. Compare-and-Swap has been implemented on the
IBM 370 architecture, among others. A program reads
a shared variable to a local register, computes a new value
of that variable in a second local register, and then exe-
cutes Compare-and-Swap, which compares the current
value of the variable in memory to the register copy of the
original value. If the values are equal, the instruction
completes by writing the updated local copy back to main
memory. Compare-and-Swap supposedly assures the

November 1993

59

atomicity of the Read/Modify/Write sequence because
the shared variable’s modified value is written to mem-
ory only if the original value equals the current value,
thus indicating that another processor has not modified
the variable in the interim.

However, it is not sufficient to base the update only
on the variable’s original and current values. If the value
is originally A, and other processors meanwhile change
it to B and then back to A, then Compare-and-Swap
performs the memory update, even though it could lead
to inconsistent results in many
programs.® This problem — often
called the ABA problem — can arise
when one processor examines a
pointer, a second processor deal-
locates the storage accessed by that
pointer, and a third processor real-
locates new storage through that
pointer. The allocation strategy
happens to reuse the most recent-
ly discarded storage so that the
pointer to storage returns to its
original value, even though the
storage is newly allocated. The
storage state seen by the first
processor through the pointer is a

The major reason
to provide multiple
reservations is to
remove critical
sections from
concurrent
programs when
possible. A critical
section is a serial
bottleneck. It
limits the amount

Single-reservation schemes

Current implementations of reservation-based updates
have a single reservation associated with each processor,
and support the two special instructions Read-and-
Reserve and Write-if-Reserved. Different processors can
have reservations for the same shared variable. A proces-
sor loses its reservation if, before it executes a Write-if-
Reserved, another processor modifies the variable.
The correctness of updates that use these instructions
relies on the cache-coherence protocol, which must seri-
alize the writes to each location
and guarantee that no processor
can observe the writes to a partic-
ular location out of order. The
privilege to write to a location
passes from one processor to
another sequentially, and thus the
writes to that location are proper-
ly serialized. When a processor has
write privilege for a location, we
say it is the owner of that location.
In multiprocessor cache imple-
mentations, ownership is record-
ed in state bits associated with each
cache line.!! Any cache protocol
that grants write access for a

combination of two different valid of useful shared variable to at most one

storage states. The Compare-and- concurrency processor at a time, such as the

Swap could succeed when, in fact, - = Berkeley and Firefly protocols, !

. . available in a

it should fail. Iti can be extended by our method to
If Compare-and-Swap were multiprocessor. support multiple reservations. We

defined to succeed only if the

shared variable’s original value is

held continuously until the point of update is reached,
the ABA problem would not arise. The reservation
mechanism provides such a solution to the ABA prob-
lem. The implementation of a single reservation is due
to Jensen, Hagensen, and Broughton,” who proposed
instructions essentially the same as Read-and-Reserve
and Write-if-Reserved. Their basic ideas are imple-
mented in the load-linked and store-conditional instruc-
tions on the MIPS R-4000,? in the load-locked and
store-conditional instructions on the DEC Alpha,” and
in the load-and-reserve and store-conditional instruc-
tions on the IBM PowerPC. !

In the rest of this article, we discuss the implementa-
tion of the Oklahoma update and the extensions of auto-
matic restart and livelock avoidance. We also offer pro-
gramming examples illustrating the application of
multiple reservations in typical situations.

60

assume here that there is an under-

lying cache-coherence protocol
with a method for controlling and passing write privi-
lege. There are many acceptable protocols, so we do not
limit our discussion to any particular one.

A processor need not request write privilege when the
Read-and-Reserve is executed. (Implementations can
differ on this characteristic.) However, when the Write-
it-Reserved is executed, if the processor does not already
own the shared variable, it must obtain write privilege
before the write can be completed.

When processor A requests write privilege, there are
two possible outcomes:

* 'The current owner, processor B, grants A write priv-
ilege, and A continues normal execution of Write-if-
Reserved.

* Processor B sends a sequence of two messages: one
stating that the shared variable’s reserved value has

|EEE Parallel & Distributed Technology

Address

Valid " privilege Data

Write

been modified, and a second grant-
ing write privilege. This occurs
when B tries to update the same

Figure 1. Structure of a reservation register.

shared variable concurrently, and | ——

has write privilege. Because B can

perform the update, it does so, and
the cache-coherence protocol com-

Registers

municates the change to other

Arithmetic unit [~

= Processor

processors. B subsequently receives i
A’s request for write privilege, i |
which it grants. B’s two messages to
A must remain in order; if they were
received out of order, A could make
an erroneous update.

Control unit

This mechanism assures correctness

because a processor that owns a vari-
able necessarily holds that variable’s

most recent value. If a processor does

= Processor|
Reservation :
registers
Processor el
Interconnection { Processor
Shared locations network

not own a reserved variable before
executing Write-if-Reserved, then by

Main memory

the time the processor receives write
privilege while executing Write-if-
Reserved, either the reservation will
have been invalidated or the proces-
sor will have confirmation that the reserved value is the
most recent. An update based on the most recent value
of a shared variable is deemed correct.

The multiple-reservation scheme

"The extension of these notions to two or more reserva-
tions uses three special instructions instead of just two,
and a reservation register with five fields and three
optional fields, as shown in Figure 1. (We later discuss
the optional fields restart, rvalid, and delay.) The structure
of a processor with multiple reservation registers appears
in Figure 2; the reservation registers are included with
the cache structure to indicate that they are extensions to
cache memory.

The Read-and-Reserve instruction loads a shared vari-
able into a specified general register, and places a reser-
vation on the variable in a specified reservation regis-
ter. Executing this instruction initializes the reservation
register by making the reservation valid, saves the
address of the shared variable in the register, clears the
data field that holds an updated value, and clears the
update bit to indicate that the data field has not received
amodified value. The register also has a write-privilege
bit to indicate if the processor has write privilege for the

Figure 2. Multiprocessor organization with multiple reservation
registers per processor.

variable; the bit is set if the processor receives write priv-
ilege while executing this instruction, or had write priv-
ilege before executing it. The update bit and the data
field of the reservation register do not exist in current
implementations of reservation registers.

The Store-Contingent instruction tentatively updates
one shared datum. It copies the contents of a specified
general register into a specified reservation register data
field, and changes the update bit to show that the data
field has been updated. The Store-Contingent instruc-
tion does not require ownership to execute. When it is
executed, the cache-coherence protocol does not com-
municate a change in a variable to other processors. All
data to be updated atomically by an Oklahoma update
are updated first in their reservation registers by means
of this instruction.

‘The Write-if-Reserved instruction specifies a set of
reservation registers and performs an Oklahoma update
of the variables reserved by those registers. To do so, it
obtains write privilege for all specified reserved vari-
ables. If write privilege is obtained for all of them and the
reservations remain valid, then the instruction updates
in storage the variables for which data in the specified
reservation registers were modified. Once the update has
begun it is done atomically so that no other processor

November 1993

61

Precommit phase
| Begin DEFER REQUESTS
Defer external request if

reserved and selected here and
address < outstanding request

Start

' Fallure exity Commit phase

Test validity of
reservations

Find least selected address
without write privilege

No @ Yes

64

Reset condition code

Defer all external requests for [
reserved and selected addresses } *

Request write privilege |

!

Wait for response | e

Process deferred
requests

Commit values

End DEFER REQUESTS
Exit

exit i
Set condition code

R
E |

Set write privilege bit
—T—

can modify those variables until the process has ended.
The instruction returns a condition code to indicate if
the update has succeeded or not.

The implementation of Write-if-Reserved relies
heavily on the underlying cache-coherence protocol,
and can be added to a processor with such a protocol at
relatively low cost.

The key to the implementation is to divide the Write-
if-Reserved execution into two phases that mimic the
two-phase locking protocols of transaction process-
ing.'>13 In the first phase, the processor requests write
privilege for all specified reserved variables for which it
does not already have write privilege. This uses the com-
mands and replies available in the underlying cache-
coherence protocol. When all requests have been
answered, and the processor has obtained write privi-
lege for all such reserved variables, it enters the second
phase, which is equivalent to the commit phase of a data-
base transaction. The processor holds write privilege
for all specified reserved variables throughout this phase,
preventing intervening writes by other processors. The
commit phase must be executed as quickly as possible
to minimize the performance impact of one processor
holding exclusive control of a set of shared variables. Tt
lasts long enough for the processor to modify the shared
variables in its local cache and to send out the cache-
coherence messages associated with these updates. The
commit phase must be uninterruptible.

62

Figure 3. Execution logic for the Write-if-Reserved instruction.

Because Write-if-Reserved grants exclusive rights to
multiple resources, there is a possibility of deadlock. Two
processors could try to update shared variables X and I
and reach deadlock when one owns X, the other owns Y,
and both hold write privilege for one variable while wait-
ing for the other to relinquish its write privilege for the
other variable. To eliminate this possibility, Write-if-
Reserved obtains write privilege in ascending order of
address. This satisfies the sufficient condition of Coff-
man, Elphick, and Shoshani for deadlock freedom.!*
Write-if-Reserved performs the following steps during
execution (see Figure 3):

(1) Precommit phase: Scan the specified reservation reg-
isters for validity and for reservations without write
privilege.

(2) If all specified reservation registers are valid, then
order the reservations without write privilege in
ascending order of address, and issue requests for
write privilege in that order. If any reservation
becomes invalid before write privilege has been
obtained for all specified reservations, then perform
failure exit processing at step 5. During this period
some requests for write privilege received from
other processors can be deferred in a local buffer
(described later).

(3) Commir phase: Update all moditied shared variables.
If requests for write privilege are received for any

IEEE Parallel & Distributed Technology

@

)

reserved variables specified by Write-if-Reserved,
defer them until the phase has completed.

Success exit: Respond to all deferred requests for
write privilege in the local buffer. Remove all spec-
ified reservations. Exit indicating that the update
was successful.

Failure exit: Respond to all deferred requests for
write privilege in the local buffer. Remove all spec-
ified reservations. Exit indicating that the update
was not performed.

for that address. Deferring the request may generate
a reply message, if the implementation requires an
immediate response to all requests.

If the processor does not have write privilege for a
requested address and therefore cannot grant write
privilege, make a null response. This can be a nega-
tive acknowledgment message or no reply at all.

When processing deferred requests from the local

Note that during the commit

buffer, a processor grants write
privilege to the first deferred
request for a particular variable;

phase, write-privilege requests Multiple for subsequent deferred requests

from other processors for specified = for the same variable, it sends mes-
. reservations

reserved variables are deferred h th sages that ask the requester to

until the commit phase is over. If shor te_n @ repeat the request because owner-

processor A in its commit phase effective length ship has changed since the request

modifies a variable for which of the critical was issued.

processor B has requested write
privilege from processor A, A first
notifies B that the variable has
changed value, and then grants
write privilege. The first message
invalidates a reservation at B if B
holds one, and the invalidation
occurs before B receives write

section in some
codes, and they
provide multiple
concurrent updates
when the updates
do not conflict.

privilege.
To prevent deadlock, special
actions have to be taken during the

precommit phase. When a processor receives a write-priv- ~ (2)
ilege request for a reserved variable specified by Write-if-
Reserved for which it currently holds write privilege, it
must do one of the following: 3)

If the address of the variable for which write privi-
lege is requested is larger than the least reserved-
address for which the processor does not have write
privilege, grant the request. The processor releasing
the reservation can either invalidate its reservation
and abort the Write-if-Reserved, or continue and
request write privilege again later. In the latter case,
it is very likely that the variable will be modified
before write privilege is returned, which will force
the Write-if-Reserved to abort.

If the address of the variable for which write privi-
lege is requested is smaller than the least reserved-
address for which the processor does not have write
privilege, defer the requestin a local buffer and honor
it after the commit phase. If the request is deferred,
the processor continues to hold a valid reservation

@

Multiple reservations are used
in a context in which several vari-
ables must be updated concur-
rently by creating a conditional
sequence:

(1) Issue a Read-and-Reserve for
each shared variable to be
updated and for each shared
variable on which the update
depends.

Compute the new values of the modified shared vari-

ables. Save each modified value with a Store-Con-

tingent instruction.

For correctness, the success of a conditional

sequence has to force the failure of any other con-

ditional sequence whose set of reserved variables
intersects with the set of variables reserved in step

1. Success is communicated by writing to one or

more shared variables in the intersection of the

reserved sets. Even if no variable in the intersection
is modified, the code must have at least one Store-

Contingent for a variable in the intersection. The

Store-Contingent writes back the unchanged cur-

rent value to the reservation register. The current

value will be transmitted by a subsequent Write-if-

Reserved, so no change of value in memory will

occur, but the communication will invalidate reser-

vations held elsewhere for the variable. (Such 2

Store-Contingent appears later in a list-manage-

ment algorithm.)

Execute Write-if-Reserved.

November 1993

63

(5) Test the condition code returned by Write-if-
Reserved. If the instruction was unsuccessful, return
to step 1; otherwise continue.

Herlihy and Moss describe essentially the same set of
instructions and a similar intent for their use, but they
do not incorporate an equivalent deadlock avoidance
into their implementation.’

Performance
improvement

effective length of a critical section includes only
the code that protects the updated region, and
excludes the code for regions that are temporarily
reserved but not updated.

(2) They provide multiple concurrent updates when
the updates do not conflict. In situations that
involve incremental changes to linked data struc-
tures, different processors can perform local updates
to different parts of the structure concurrently. In
such cases, it can be impractical to provide concur-

rent multiple updates of the
data structure by using criti-

The major reason to provide mul-
tiple reservations is to remove crit-
ical sections from concurrent pro-
grams when possible. A critical
section is a serial bottleneck. It
limits the amount of useful con-
currency available in a multi-
processor. For example, if a pro-
gram has to execute N instructions
in a critical section for every M

A disadvantage of
a lock-free scheme
based on
reservations is that
processors that fail
in their attempts to
perform updates of
shared variables

cal-section methods. Hence,
with critical sections, updates
anywhere within a structure
might have to be serialized.

Because atomic updates are
done without placing locks on
memory regions, a system that
uses multiple reservations has a
lower risk of system blockage due

instructions outside the critical
section, then at most M/N copies
of the program can execute con-
currently on different processors,
and speedup cannot exceed M/N.
If more processors try to execute
concurrently, the critical section
will be occupied continuously, and
the excess processors will be idle
while awaiting entry to the critical
section.

Multiple reservations remove the effects of this bottle-
neck in at least two ways:

(1) They shorten the effective length of the critical sec-
tion in some codes. Consider a code for updating a
queue or a linked data structure. In codes with crit-
ical sections, we might need to embed all accesses to
the queue or linked data structure so that at most
one processor can access it ata time. In reservation-
based code, the effective length of a critical section
is the time between the first Read-and-Reserve and
the Write-if-Reserved of a successful update
sequence, which may be much less than the full
length of the execution sequence that accesses the
structure. This is true when reservation-based code
tentatively protects different regions of the shared
structure while searching for a region to alter. The

may expend a
considerable
number of cycles
before discovering
that the update has
been unsuccessful.

to a processor crash while it is
updating shared variables. Assum-
ing that the data are duplicated in
memory or in another processor,
a crash before or after the atomic
update does not lead to total sys-
tem failure because all other
processors see either no update or
the full update, depending on the
point of the failure.

However, multiple reservations
do not totally eliminate the possibility of system block-
age. During the brief period, in the commit phase, when
variables are written atomically to memory, the proces-
sor essentially holds a lock on them. A processor crash
during this period could lead to system blockage, since
the variables are inaccessible and might not become
accessible again without external intervention. Depend-
ing on the underlying system assumptions, we might be
able to incorporate fault tolerance by extending the
cache-coherence protocol. One possible approach is
based on a two-phase commit protocol'® which is based
on a write-update protocol, in which a modifying
processor tentatively sends all the updates to other
processors that have copies of the shared variables. Tt
can also send them to a nonvolatile memory if this is
required for fault tolerance by the base protocol. How-
ever, these updates are not applied until after a commit

64

IEEE Parallel & Distributed Technology

message is sent by the processor performing the update.
We do not have space here to fully discuss the implica-
tions of this fault-tolerance strategy.

Automatic restart

A disadvantage of a lock-free scheme based on reserva-
tions is that processors that fail in their attempts to per-
form updates of shared variables may expend a consid-
erable number of cycles before discovering that the
update has been unsuccessful.
These cycles are lost because the
update is not restarted at the earli-
est possible time. One way to avoid
the loss of time due to delayed
restart is to use a critical section in
which processors wait at a lock. In
this scheme, immediately after an
atomic update completes, the lock
opens, and a new process can ini-
tiate the next atomic update.
Although this scheme is free of lost
cycles due to delayed restart, it suf-
fers from lost cycles due to waiting
at the lock.

Since the Oklahoma update is
wait-free, by incorporating a
means for automatic restart,
processors do not waste cycles
unnecessarily because of delayed
restart or waiting at locks. Thus, when multiple proces-
sors operate concurrently on a shared data structure
using this scheme, all can do useful work when this is
possible. For example, multiple processors can perform
concurrent insertions and deletions in a linked list by
using the algorithms in the next section. When the
processors conflict, the conflict is detected and an auto-
matic restart occurs. The wasted effort caused by the
restart is no worse than the cycles lost waiting for a lock,
but the potential to perform useful work when no con-
flicts occur offers increased performance over lock-
based algorithms.

Automatic restart can protect regions of memory whose
contents change or are deallocated. All processors that
modify a region reserve a shared pointer to that region. If
processor A changes something in the region or deallo-
cates the region’s memory while processor B is scanning
the region, then A invalidates the reservation, and B
restarts immediately, before it can observe the changes or
try to reference the freshly deallocated memory.

at locks.

.
Since the
Oklahoma update
is wait-free, by
incorporating a
means for
automatic restart,
processors do not
waste cycles
unnecessarily
because of delayed
restart or waiting

Automatic restart requires two additional fields in
each reservation register (see Figure 1): restart contains
the restart address for code that will begin the update
process again, and rvalid contains a bit indicating (when
set) that restart should occur automatically when the
reservation is invalidated by another processor. (Ber-
shad, Redell, and Ellis have described a more con-
strained automatic restart feature for uniprocessor sys-
tems, in which a process that is suspended during a
restartable atomic sequence is automatically restarted
at the beginning of the sequence. !¢
Our technique can be used in that
way as well.) '

Automatic restart is controlled by
a bit field in the Read-and-Reserve
instruction. When this field con-
tains a 0 bit, the instruction oper-
ates as described earlier. When it
contains a 1 bit, the execution of this
instruction places the instruction’s
address (or that of a restart point
associated with the instruction) into
the designated reservation register,
and designates the address to be
valid by setting the rvalid bit. The
restart information stored in the
reservation register should include
or point to the values of general reg-
isters that are required to establish
the context of the restart point.

Invalidating the reservation will force a restart at the
address stored in the reservation register, if the address
is active. The restart process can be handled as an inter-
rupt, a conditional branch, or a subroutine call, depend-
ing on the implementation. The implementation has to
assure that the restart is done in a correct context, so
that the restart can run to a successful conclusion regard-
less of where the restart signal is received. If, for exam-
ple, the signal is received when two levels of subroutine
calls are active, the calls must be unwound two levels
before restarting.

Itis straightforward to force a restart from the begin-
ning of the update process if any reservation is invalidat-
ed. Fach Read-and-Reserve forces the address of the
update’s starting point to be saved in its reservation reg-
ister. Itis also straightforward to restart the process at the
Read-and-Reserve instruction whose reservation has been
lost, and to repeat only the code from that point. This
eliminates the repetition of the code prior to that point.

It is less straightforward, but still possible, to reexe-

November 1993

65

Figure 4. Typical queue structure: (a) an empty queue;
(b) a nonempty queue.

cute only those instructions that need to be repeated.
The details depend on the exact nature of the code, and
can become complicated. The hardware support must
enable restart at a point that depends on which reserva-
tion was invalidated, and must allow the machine con-
text to be restored correctly when the restart initiates.

Livelock avoidance

The Read-and-Reserve, Store-Contingent, and Write-
if-Reserved instructions guarantee that the system as a
whole will make progress when multiple tasks contend
for shared variables. If concurrent processors use inter-
secting sets of reserved variables that are accessed only
with these special instructions, and if several proces-
sors execute a Write-if-Reserved, one processor suc-
ceeds. However, because the intended implementation
is based on cache coherence, some variables may be
shared inadvertently because they lie in the same cache
line. This false sharing may cause a reservation to be
canceled by a store made by another processor to any
location in the same cache line as a reserved variable.
Two processors may repeatedly cancel each other’s
reservations by an ordinary store to a variable that
shares a cache line with a reserved variable, with no
processor able to make progress.

This problem occurs for single-reservation systems
as well as for our proposed multiple-reservation system.
One recommended solution is to allocate shared vari-
ables dynamically in ways that eliminate false sharing.
An alternative is not to perform any ordinary stores in
a conditional sequence.

However, we suggest an alternative that allows arbi-
trary conditional sequences to contend without risking
this kind of livelock. The central notion is a well-known

exponential-back-off technique.!”!® If a processor exe-
cutes a conditional sequence unsuccessfully and elects
to retry it, the processor delays before its next attempt;
each successive attempt has a delay that is double the
delay of the previous attempt. If this delaying technique
is followed by all N processors contending to modify a
shared variable in a conditional sequence that can be
performed within M cycles, then one processor will suc-
cessfully modify the shared variable within NxM cycles.
Thus, the back-off mechanism assures that at least one
processor makes progress. However, it does not prevent
an individual processor from experiencing starvation.
While it is improbable and unusual for a processor to
fail repeatedly when it executes Write-if-Reserved using
the back-off mechanism, it is not impossible.

The hardware implementation of exponential back-
off associates a delay with a restart address. The delay
field in Figure 1 is a counter that can hold a value up to
NxM, where N is the maximum number of processors
that may contend, and M is a bound on the cycles a con-
ditional sequence can take. The counter is given an ini-
tial value of 1 when the Read-and-Reserve is first exe-
cuted, and is shifted left for each subsequent restart, but
no shift occurs when the 1-bit reaches the most signif-
icant position in the field.

When a restart occurs, it is initiated after a variable
delay that depends on the contents of the delay field.
The field’s binary value is an integer 2. The length of
the delay before restarting is an integral number of clock
periods 7 chosen at random from the interval 2/ < r < 21,
This distributes the restart times so that some proces-
sor can begin early enough to complete successfully in
the next interval, while other processors delay long
enough to avoid interference.

This extension to the special instructions protects
against livelock induced by false sharing and supports a
guarantee of overall progress. In any particular system,
other implementation details, such as the treatment of
reservations during context swaps and interrupts, might
affect the validity of such a progress guarantee.

Sample programs

An important use of multiple reservations is for man-
aging queues. Figure 4 shows a typical queue structure
in which a queue is accessed through two pointers, Tail
and Head. Figure 4a shows an empty queue, and Fig-
ure 4b shows a queue with two items. Items in the queue
are linked by one-way pointers from the front (Head)
to the rear (Tail).

66

IEEE Parallel & Distributed Technology

The Enqueue procedure adds a new
item to the rear of the queue, and the
Dequeue procedure removes items
from the front. We could create
Enqueue and Dequeue procedures
that use an architecture with a single
reservation register; however, because
the code might have to change multi-
ple shared variables in some cases, it
must protect against inconsistencies
that could arise when the variables are
changed nonatomically.

An architecture with multiple reser-
vations enables the changes to be
made atomically. It is simple and effi-
cient code. Moreover, it is sufficient-
ly brief to be used in-line, eliminating
the overhead of a subroutine call and
streamlining the fetching and paging
of code.

Figure 5 shows the Enqueue proce-
dure. The if statement handles the
queue’s two possible states: empty and
nonempty. (The pseudocode in the fig-
ure omits begin/end pairs and similar
bracketing. Instead, it uses indentation
to indicate which statements fall with-
in an if; else, or repeat statement.)

¢ Read-and-Reserve(Memory[X].next, ¥)
loads the address of the field next of
location X into the address field of
reservation register Y. The data in the
next field is copied into a general reg-
ister. Any modification of the next
field at X by another processor inval-
idates the reservation.
* Store-Contingent(X, Y) places value
X in the data field of reservation reg-
ister ¥ in preparation for an Okla-
homa update.
Write-if-Reserved(X, ¥) does an
Oklahoma update on the reservation
registers X and Y. In the figure, the
update is performed on the ext fields
of the reserved addresses.

Figure 6 shows the Dequeue proce-
dure, which must deal with three cases:
an empty queue, a queue with one item
(the queue becomes empty), and a

Procedure Enqueue(newpointer)

Memory[newpointer].next := nil
status := “unfinished”

repeat
last_pointer := Read-and-Reserve(Memory[tail].next, reservation1)

if last_pointer = nil then
{empty queue}
first_pointer := Read-and-Reserve(Memory[head].next, reservation2)
Store-Contingent(newpointer, reservation1) {Updated taif
Store-Contingent(newpointer, reservation2) {Updated head
status := Write-if-Reserved(reservation1, reservation2)

else
{one or more items in queue}
temp_pointer := Read-and-Reserve(Memory[last_pointer].next, reservation?2)
Store-Contingent(newpointer, reservation1) {Updated taift
Store-Contingent(newpointer, reservation2) {Updated pointer in former last
item in queue}
status := Write-if-Reserved(reservation1, reservation2)

until status is “successful”

Figure 5. The Enqueue procedure.

Procedure Dequeue(first_pointer)
status := “unfinished”
repeat

first_pointer := Read-and-Reserve(Memory[head].next, reservation1)
if first_pointer = nil then
{empty queue}
Write-if-Reserved(reservationt)
status := “successful”

{Remove the reservation}

else
last_pointer := Read-and-Reserve(Memory[tail].next, reservation2)
if first_pointer = last_pointer then
{one-item queue}
Store-Contingent(nil, reservationt) {Updated head}
Store-Contingent(nil, reservation2) {Updated taify
status := Write-if-Reserved(reservation1, reservation2)

else
{two or more items in queue}
second_pointer := Memory[first_pointer].next
Store-Contingent(second_pointer, reservation1) {Updated head}
status := Write-if-Reserved(reservation1, reservation2) {Clear both
reservations}

until status is “successful”

return (first_pointer)

i
Figure 6. The Dequeue procedure.

November 1993

67

intent of the deletions. The correct
result is a list containing only items 3
and 41, whereas the list actually con-
tains items 3, 23, and 41. This failure
occurs because the processor that was
deleting the third item moved a point-
er in the second item, which itself was
being deleted.

A correct program must use two
reservations, reserving not only the
pointer to be changed but also the
pointer to the cell that contains the
changed pointer. This cell must
remain reachable throughout the

atomic update, so the pointer to it must

not change while the pointer contained
within the cell changes. Figure 8 shows

deletions have left it in an incorrect state (c).

queue with multiple items (the queue remains non-
empty). There can be concurrent attempts to enqueue
and dequeue on any of these three queue states; in all
cases, the actions are correct and leave the queue in a
consistent state.

LIST INSERTION AND DELETION
Let’s now look at a one-way linked list, in which arbi-
trary items can be deleted, to show that two or more
deletes can be done concurrently and consistently with-
out locking when two reservation registers are available.
Figure 7a shows a one-way linked list before a dele-
tion. The list has four elements and a reserved cell
(Head) that points to the first element. Even though
only one pointer changes at a time to perform a dele-
tion, two pointers must be reserved to assure consis-
tency. T'o see why this is true, assume that one proces-
sor tries to delete item 17, and another tries to delete
item 23. Figure 7b shows the form the list would take if
the deletions were serialized. If both processors perform
their deletions in the same cycle, and both have reserved
only the link that they are about to change, the dele-
tions can occur concurrently, and the list will be in an
erroneous final state such as that shown in Figure 7c,
where item 17 has been deleted by pointing item 3 to
itern 23, and item 23 has been deleted by pointing item
17 to item 41. This final state is inconsistent with the

Figure 7. A one-way linked list prior to deletion (a), after the second
and third items have been deleted (b), and after two concurrent

a program that deletes an item from
the list. It detects the unreachability of
a cell that contains a pointer to be
changed by reserving the pointer to
that cell. The variable reservation2
reserves the cell to be altered, while
reservation] reserves a pointer to that cell. If the cell to be
altered is being deleted and deallocated by another
processor, that processor must alter the pointer reserved
by reservation]. By reserving both cells, the algorithm
guarantees that the cell is changed correctly, and that the
cell itself has not been deleted from the list by a differ-
ent processor executing a conditional sequence.

The program in Figure 8 also illustrates the use of
automatic restart to protect codes from accessing
unreachable regions of memory. The pseudocode nota-
tion is similar to that in Figures 5 and 6, except that
Read-and-Reserve also indicates a restart address, which
appears as an optional argument giving a label. No addi-
tional context information has to be saved because there
is no context change within the program.

Fach item has two fields: contents and next. The con-
tents field gives the actual data for the item. The next
field is a pointer to the next item on the list and has the
value nil if there is no next item. The program searches
through a linked list for a match with the input param-
eter delete_point. If the program reaches the end of the
list, indicated by a n#/ pointer value for the variable sz,
the program exits without making a deletion after clear-
ing the reservations that have been placed.

For this data structure, the empty list is denoted by a
nil pointer value in the next field of the head. Because
the head cannot be deleted, the program uses only a sin-

68

IEEE Parallel & Distributed Technology

Procedure Delete(delete_point)

if pred = nil then
Write-if-Reserved(reservation1) {Clear the reservation}

else
if Memory[pred].contents = delete_point then
new_head := Memory[pred].next
Store-Contingent(new_head, reservation1) {Update head}
Write-if-Reserved(reservation1)

else

if succ = nil then
{Delete-point has been reached)
temp_pointer := Memory[succ].next
Store-Contingent(pred, reservation1)
Store-Contingent(temp_pointer, reservation2)
Write-if-Reserved(reservation1, reservation2)

else

Write-if-Reserved(reservation1, reservation2)

Init_pred: pred := Read-and-Reserve(Memory[head].next, reservation1, recover: Init_pred)

Init_succ: succ := Read-and-Reserve(Memory[pred).next, reservation2, recover: Init_succ)
while (succ = nil) and (Memory([succ].contents = delete_point) do

pred := Read-and-Reserve(Memory[pred].next, reservation1, recover: Init_pred)
Reset_succ: succ := Read-and-Reserve(Memory[pred].next, reservation2, recover: Reset_succ)

{Pointer to element after delete point}
{Write back old value of pred.next;

{No match, therefore no delete. Just clear the reservations.)

Figure 8. Delete procedure for a one-way linked list.

gle reservation while deleting the first list element. For
all other deletions, succ is the pointer changed to per-
form the delete, and pred is the pointer through which
succ is linked to the list. By reserving pred during the
update, the program guarantees that succ is not deleted
while being updated.

Because of automatic restart, the program does not
have to reach the Write-if-Reserved instruction to
detect that a restart is required. The restart becomes
effective as soon as another processor changes a reserved
pointer.

Note that the program updates both pointers when
it executes Write-if-Reserved. The value of pred is
unchanged by this update, but the location is still updat-
ed to force a restart by other processors that have reser-
vations on this pointer.

Immediately after executing the statement prior to
the label Reset_succ, the program can reach a state in
which both reservation registers reserve the same
address. If that address is modified at this instant, there
could be a problem in restarting, since two different
restart addresses can be invoked. In this code, the restart
address in the reservation register with the lowest index
has priority. This forces the restart to occur at Init_pred
rather than at Reset_succ.

Overhead is negligible in this implementation because

there are no locks to manage. The worst-case behavior
occurs when contention is high and restarts are frequent.
But some tasks are guaranteed to complete their work
because it takes a successful Write-if-Reserved to inval-
idate other reservations. Hence, frequent restarts are
accompanied by frequent successful executions of
Wirite-if-Reserved.

A companion program for list insertion forces an
update to reservationl when updating reservation2 in case
the cell protected by reservation2 is being deleted by
another processor (see Figure 9).

To verify correct concurrent operation of the insert
and delete programs, we need only confirm that two
inserts can run correctly when they insert at the same
or adjacent places on the list, that two deletes can
attempt to delete the same or adjacent items in either
order, and that a delete and an insert can work correct-
ly when they operate on the same or adjacent cells.

In these examples, two reservations are enough to
manage a FIFO queue and a linked list with insertions
and deletions at arbitrary points. A doubly linked list
can be implemented with four reservations. While there
is no bound on the number of reservations required for
an arbitrary transaction, it is clear that three or four
reservations suffice for a large class of commonly used
functions.

November 1993

69

Procedure Insert(insert_point, new_item)

Init: firstp := Read-and-Reserve(Memory[head].next, reservation1, recover: Init)

if (firstp=nil)
Memory[new_item].next := nil;

Write-if-Reserved(reservation1)

else

{Insert-point has been reached)

Memory[new_item].next := secondp
Store-Contingent(firstp, reservation1)

Write-if-Reserved(reservation1, reservation2)

Store-Contingent(new_item, reservation1) {Update head to point to new_item}

Init_secp: secondp := Read-and-Reserve(Memory(firstp].next, reservation2, recover: Init_secp)
while ((secondp = nil) and (Memory[secondp].contents = insert_point)) do
firstp := Read-and-Reserve(Memory[firstp].next, reservationi, recover: Init)
Reset_secp: secondp := Read-and-Reserve(Memory([firstp].next, reservation2, recover: Reset_secp)

{Insert new item before secondp}
{Dummy update of pointer to the cell whose pointer is modified)
Store-Contingent(new_item, reservation2) {Update a pointer to point to new_item}

Figure 9. Insert procedure for a one-way linked list.

ADVANTAGES OF MULTIPLE RESERVATIONS

If the list-insertion and deletion programs used only a
single critical section for insert and another for delete,
then only one processor at a time could do either an
insert or a delete. This would hurt performance by cre-
ating a long critical section and by limiting concurren-
cy during its execution. If the programs were structured
so that each loop iteration were embedded within one
critical section, the length of the critical section would
be much shorter, but no two programs could traverse
the same part of the linked list concurrently. This would
tend to hold processors at early points in the list and
keep them from examining later portions where con-
current updates might be performed. With multiple
reservations, however, there are no restrictions on the
number of processors that can search a list concurrent-
ly or where the search must be conducted. The effec-
tive parallelism is limited to the number of noncon-
flicting updates that can be executed concurrently.

he Oklahoma update provides an evolu-
tion path for developing concurrent
algorithms that closely resemble their
trusted serial versions, and are therefore
easily created and verified. The method
also provides an evolution path toward highly parallel
systems and continuously available systems. In both sys-
tems, the guarantee of forward progress is an essential
feature for management of shared variables. 7

ACKNOWLEDGMENT
The authors gratefully acknowledge the helpful comments of Mark
Charney and the referees in the preparation of the article.

REFERENCES

1. H.S. Stone, High-Performance Computer Architecture, third edi-
tion, Addison-Wesley, Reading, Mass., 1993.

%)

. M. Herlihy, “A Methodology for Implementing Highly Con-
current Data Structures,” Proc. Second ACM SIGPlan Symp. Prin-
ciples and Practice of Pavallel Programming, SIGPlan Notices, Vol. 25,
No. 3, Mar. 1990, pp. 197-206.

w

. M. Herlihy and J.E.B. Moss, “Transactional Memory: Architec-
tural Support for Lock-Free Data Structures,” Proc. 20th Int’]
Symp. Computer Architecture, IEEE Computer Society Press, Los
Alamitos, Calif., 1993, pp. 289-300.

4. B. Lampson, “Atomic Transactions,” in Distributed Systems ~
Architecture and Implementation, Lecture Notes in Computer Science
105, B.W. Lampson, M. Paul, and H.J. Siegert, eds., Springer-
Verlag, Berlin, 1981, pp. 246-265.

w

. M. Banitre and P. Joubert, “Cache Management in a Tightly
Coupled Fault-Tolerant Multiprocessor,” Proc. 20th Fault-Tol-
erant Computing Systems Symp., IEEE Computer Society Press,
Los Alamitos, Calif., 1990, pp. 89-96.

6. R.K. Treiber, “Systems Programming: Coping with Parallelism,”
IBM Research Report R] 5118, IBM T.J. Watson Research Cen-
ter, 1986.

~1

. E.H. Jensen, G.W. Hagensen, and J.M. Broughton, “A New
Approach to Exclusive Data Access in Shared-Memory Multi-
processors,” Tech. Report UCRL-97663, Lawrence Livermore
Nat'l Lab., 1987.

0

. G. Kane and J. Heinrich, MIPS RISC Architecture, Prentice Hall,
Englewood Cliffs, N J., 1992.

9. R. Sites, ed., DEC Alpha Architecture, Digital Press, Burlington,
Mass., 1992,

10. IBM, The IBM Power PC Architecture ~ A New Family of RISC
Processors, Morgan Kaufmann, San Mateo, Calif., 1994.

11. P. Sweazey and A.J. Smith, “A Class of Compatible Cache Con-
sistency Protocols and Their Support by the IEEE Futurebus

70

IEEE Parallel & Distributed Technology

Cache Management in a Tightly Coupled Fault-Tolerant Mul-
tiprocessor,” Proc. 13th Int'l Symp. Computer Architecture, IEEE
Computer Society Press, Los Alamitos, Calif., 1986, pp. 414-423.

12. K.P. Eswaran et al., “The Notions of Consistency and Predicate
Locks in a Database System,” Comm. ACM, Vol. 19, No. 11,
1976, pp. 624-633.

13. P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison-Wesley, Read-
ing, Mass., 1987.

14. E.G. Coffman, Jr., M]J. Elphick, and A. Shoshani, “System Dead-
locks,” Computing Surveys, Vol. 3, No. 1, 1971, pp. 67-78.

15. J.N. Gray, “Notes on Database Operating Systems,” Operating
Systems: An Advanced Course, Lecture Notes in Computer Science 60,
Springer-Verlag, Berlin, 1978, pp. 393-481.

16. B.N. Bershad, D.D. Redell, and J.R. Ellis, “Fast Mutual Exclu-
sion for Uniprocessors,” Proc. ASPLOS-V, ACM Press, New
York, 1992, pp. 223-233.

17. IEEE Standard for Local Area Networks, 802.3: CSMA/CD Access
Method, IEEE Press, Piscataway, N.J., 1985.

18. T.E. Anderson, “The Performance of Spin-Lock Alternatives
for Shared-Memory Multiprocessors,” IEEE, Trans. Parallel and
Distributed Systems, Vol. 1, No. 1, Jan. 1990, pp. 6-16.

Janice M. Stone is an advisory programmer at
the IBM T.J. Watson Research Center. Her
research interests focus on parallel algorithms
and tools for developing and analyzing them.
Her recent work investigates the PowerPC’s
shared-memory architecture. She received her
BA in mathematics from Duke University in
1962, and she has pursued graduate studies in
mathematics at Georgetown University, and
in logic and the philosophy of science at Stan-
ford University.

Harold S. Stone is a research staff member at
the IBM T'J. Watson Research Center. He
has been a faculty member at the University
of Massachusetts and Stanford University, and
he has held visiting faculty appointments at the
University of California at Berkeley, New
York University’s Courant Institute of Math-
ematical Science, Cornell University, and oth-
ers. He holds seven patents, has written sev-
eral textbooks and more than 70 technical
publications, and has been on the editorial
boards of Computer, Transactions on Parallel and Distributed Systems,
and the Journal of the ACM. He has also been a member of the IEEE
Computer Society’s Board of Governors. Stone received his PhD in
electrical engineering from University of California at Berkeley. He
is a fellow of the TEEE. He received the Charles Babbage Outstand-
ing Scientist Award in 1991, and the IEEE Piore Award in 1992.

November 1993

Philip Heidelberger is a research staff mem-
ber at the IBM T J. Watson Research Center.
His research interests include the modeling
and analysis of computer performance, prob-
abilistic aspects of discrete event simulations,
and parallel simulation. He is a member of the
editorial board of ACM’s Transactions on Mod-
eling and Computer Simulation, and has been a
board member of Operations Research. He
received his PhD in operations research from
Stanford University in 1978, and his BA in

mathematics from Oberlin College in 1974.

John Turek is a research staff member at the
IBM T.J. Watson Research Center. His
research interests include database systems,
distributed computing, and optimization
problems in computer science. He received his
PhD and MS degrees from New York Uni-
versity’s Courant Institute of Mathematical
Science in 1991 and 1990, respectively, and his
BS degree from MIT in 1984.

The authors can be reached at the IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598; Internet jmstone@watson.ibm.com

IEEE

Computer Society Press

MULTIDATABASE SYSTEMS:
An Advanced Solution for
Global Information Sharing

edited by A. R. Hurson, M. W. Bright, and S. H. Pakzad

Begins with an introduction that defines multidata-
base systems and provides a background on their evolu-
tion. Subsequent chapters examine the motivations for
and major objectives of multidatabase systems, the envi-
ronment and range of solutions for global information-
sharing systems, different approaches to designing a mul-
tidatabase system, and a review of multidatabase projects.
The book also focuses on the application of multidata-
base systems to integrate data from preexisting, hetero-
geneous local databases in a distributed environment. In
addition, it expands on a number of topics important to
researchers, database designers, practitioners, and users
of database systems.

Sections: Introduction, Global Information-Sharing Envi-
ronment, Multidatabase Issues, Multidatabase Design
Choices, Multidatabase Projects, The Future of Multidata-
base Systems.

408 pages. December 1993. Hardcover. ISBN 0-8186-4422-2.
Catalog # 4422-01 — $62.00 Members $50.00

TO ORDER CALL TOLL-FREE
D 1-800-CS-BOOKS
" E-MAIL: cs.books@computer.org

