How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT .

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
- is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprocessor
computer, such a correct execution by each processor does not
guarantee the correct execution of the entire program. Additional
conditions are given which do guarauntee that a computer correctly
executes multiprocess programs.

Index Terms—Computer design, mmﬁrem computing, hardware
correctuess, multiprocessing, parallel processing.

A high-speed processor may execute operations in a different
order than is specified by the program. The correctness of the
execution is guaranteed if the processor satisfies the following
condition: the result of an execution is the same as if the opera-
tions had been executed in the order specified by the program. A
processor satisfying this condition will be called sequential. Con-
sider a computer composed of several such processors accessing a
common memory. The customary approach to designing and
proving the correciness of multiprocess algorithms [1]-{3] for
such a computer assumes that the following condition is satisfied:
the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program. A multiprocessor satisfying this

condition will be called sequentially consistent. The sequentiality.

Manuscript received September 28, 1977; revised May 8, 1979.

The author is with the Computer Science Laboratory, SRI International, Merls

Park, CA 94025.

_we describe a method of interconnecting sequential processors

T .
of each individual processor does not guarantee that the multi--

processor computer is sequentially consistent. In this brief note,

with memory modules that insures the sequential consistency of :
the resulting muitiprocessor. '

We assume that the computer consists of a collection of proces- :
sors and memory modules, and that the processors communicate’
with ‘one another only through the memory modules. (Any special
communication registers may be regarded as separate memory !

modules.) The only processor operations that concern us are the :
operations of sending fetch and store requests to memory mod-
ules. We assume that each processor issues a sequence of such j

requests. (It must sometimes wait for requests to be executed, but

S B AT B ) ST R
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 9, SEPTEMBER 19793

that does not concern us.)

We illustrate the problem by considering a simple two-process
mutual exclusion protocol. Each process contains a critical

section, and the purpose of the protocol is te insure that only one
process may be executing its critical section at any time. The
protocol is as follows.

process 1
a=1;

if b = 0 then critical section;

a=0
else fi
process 2
b=1;
if a = O then critical section;
b=0
else ‘e fi

The else clauses contain some mechanism for guaranteeing even-

tual access to the critical section, but that is irrelevant to the
discussion. It is easy to prove that this protocol guarantees mu-
tually exclosive access to the critical sections. (Devising a proof
provides a nice exercise in*sing the assertional techniques of {2]

- and [3], and is left to the reader.) Hence, when this two-process

program is executed by a sequentially consistent multiprocessor
computer, the two processors cannot both be executing their criti-
cal sections at the same time.

We first observe that a sequential processor could execute the
“b+=1" and “fetch b” operations of process 1 in either order.
{(When process 1's program is considered by itself, it does not
matter in which order these two operations are performed.)
However, it is easy to sec that executing the “fetch b” operation
first can lead to an error—both processes could then execute their
critical sections at the same time. This immediately suggests our
first requirement for a multiprocessor computer. '

Requirement R1: Each processor issues memory requests in the
order specified by its program.

Satisfying Requirement R1 is complicated by the fact that stor-
ing a value is posﬁible only after the value has been computed. A
processor will often be ready to issue a memory fetch request
before it knows the value to be stored by a preceding store
request. To minimize waiting, the processor can issue the store
request to the memory module without specifying the value to be
stored. Of course, the store request cannot actually be executed by
the memory module until it receives the value to be stored.

0018-9340/79/0900-0690800.75 © 1979 IEEE




* “iFEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 9, SEPTRMBER

Requirement R1 is not sufficient to guarantee correct execution.
 To see this, suppose that each memory module has several ports,
~ and each port services one processor (or I/O channel). Let the
values of “a” and “b” be stored in separate memory modules and
consider the following sequence of events.

1) Processor 1 sends the “a == 1” request to its port in memory
module 1. The module is currently busy ¢xecuting an opera-
tion for some other processor (or, I/O channel).

2) Processor 1 sends the “fetch b” requiest to its port in memory
module 2. The module is free, and execution is begun.

3) Processor 2 sends its “b *= 1" request to memory module 2.
This request will be executed after processor 1's “fetch b”
request is completed.

4) Processor 2 sends its “fetch a” request to its port in memory
module 1. The module is still busy.

There are now two operations waiting to be performed by
memory module 1. If processor 2's “fetch a” operation is per-
formed first, then both processes can enter their critical sections at
the same time, and the protocol fails. This could happen if the
memory module uses a round robin scheduling discipline in ser-
vicing its ports.

In this situation, an error occugs only 1f the two requests to
memory module 1 are not executed in the same order in which
they were received. This suggests the following requirement.

Requirement R2: Memory requests from all processors issued to
an individual memory module are serviced from a single FIFO
queue. Issuing a memory request consists of entering the request
on this queue.

Condition R1 implies that a processor may not issue any fur-
ther memory requests until after its current request has been
entered on the queue. Hence, it must wait if the queue is full. If two
Of More Processors are trying to enter requests in the queue at the
same time, then it does not matter in which order they are
serviced.

Note. ¥ a fetch requests the contents of a memory location for
which there is already a write request on the queue, then the fetch
need not be entered on the queue. It may simply return the value
from the last such write request on the quene. ’ 0

Requirements R1 and R2 insure that if the individual proces-
sors are sequential, then the entire multiprocessor computer is
sequentially consistent. To demonstrate this, one first introduces a
relation — on memory requests as follows. Define A — B if and
only if 1) A and B are issued by the same processor and A is issued
before B, or 2) A and B are issued to the same memory module,

.and A is entered in the queue before B (and is thus executed before
B). It is easy to sec that R1 and R2 imply that — is a partial
ordering on the set of memory requests. Using the sequentiality of
each processor, one can then prove the following result: each fetch
and store operation fetches or stores the same value as if all the
operations were executed sequentially in any order such that
A — B implies that A is executed before B. This in turn proves the
sequential consistency of the multiprocessor computer.

Requirement R2 states that a memory module’s request queue
must be serviced in a FIFO order. This implies that the memory
module must remain idle if the request at the head of its queucis a
store request for which the value to be stored has not yet been
received. Condition R2 can be weakened to allow the memory
module to service other requests in this situation. We need only
require that all requests to the same memory cell be serviced in the
order that they appear in the queue. Requests to different memory
cells may be serviced out of order. Sequential consistency is

preserved because such a service policy is logically equivalent to
considering each memory cell to be a separate memory module
with its own request queue. (The fact that these modules may
share some hardware affects the rate at which they service re-
quests and the capacity of their queues, but it does not affect the
logical property of sequential consistency.)

The requirements needed to guarantee sequential consistency
rule out some techniques which can be used to speed up indivi-
dual sequential processors. For some applications, achieving se-
quential consistency may not be worth the price of slowing down
the processors. In this case, one must be aware that conventional
methods for designing multiprocess algorithms cannot be relied
upon to produce correctly executing programs. Protocols for
synchronizing the processors must be designed at the lowest level
of the machine instruction code, and verifying their correctness
becomes a monumental task. .

REFERENCES

[1] E. W. Dijkstra, “Hierarchical ordering of sequential processes,” Acta Informatica,
vol. 1, pp. 115-138, 1971.

[2] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans.
Software Eng., vol. SE-3, pp. 125-143, Mar. 1977.

[3] S. Owicki and D. Gries, “Verifying properties of parallel programs: an axiomatic
approach,” Commun. Assoc. Comput. Mach., vol. 19, pp. 279-285, May 1976.

0018-9340/79/0900-0691500.75 © 1979 IEEE




