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Abstract 

Projections of computer technology forecast proces- 
sors with peak performance of 1,000 MIPS in the rela- 
tively near future. These processors could easily lose 
half or more of their performance in the memory hierar- 
chy if the hierarchy design is based on conventional 
caching techniques. This paper presents hardware tech- 
niques to improve the performance of caches. 

Miss caching places a small fully-associative cache 
between a cache and its refill path. Misses in the cache 
that hit in the miss cache have only a one cycle miss 
penalty, as o 

K 
posed to a many cycle miss penalty without 

the nuss cat e. Small miss caches of 2 to 5 entries are 
shown to be very effective in removing mapping conflict 
misses in first-level direct-mapped caches. 

Victim caching is an improvement to miss caching 
that loads the small full 

Ii 
-associative cache with the vic- 

tim of a miss and not t e requested line. Small victim 
caches of 1 to 5 entries are even more effective at remov- 
ing conflict misses than miss caching. 

Stream buffers refetch cache lines starting at a 
cache miss address. f he prefetched data is placed in the 
buffer and not in the cache. Stream buffers are useful in 
removing capacity and compulsory cache misses, as well 
as some instruction cache conflict misses. Stream buf- 
fers are more effective than previously investigated 
mefetch techniques at using the next slower level in the 
bemory hierarchy when it is 
the basic stream buffer, calle B 

ipelined. An extension to 
multi-way stream buffers, 

is introduced. Multi-way stream buffe>s are w&i for 
prefetching along multiple intertwined data reference 
streams. 

Together, victim caches and stream buffers reduce 
the miss rate of the first level in the cache hierarchy by a 
factor of two to three on a set of six large benchmarks. 

1. Introduction 
Cache performance is becoming increasingly impor- 

tant since it has a dramatic effect on the performance of 
advanced processors. Table l-l lists some cache miss 
times and the effect of a miss on machine performance. 
Over the last decade, cycle time has been decreasing 
much faster than main memory access time. The average 
number of machine cycles per instruction has also been 
decreasing dramatically, especially when the transition 
from CISC machines to RISC machines is included. 
These two effects are multiplicative and result in tremen- 

dous increases in miss cost. For example, a cache miss 
on a VAX 1 l/780 only costs 60% of the average instruc- 
tion execution. Thus even if every instruction had a 
cache miss, the machine performancfe would slow down 
by only 60%! However, if a RISC machine like the 
WRL Titan [lo] has a miss, the cost is almost ten in- 
struction times. Moreover, these trends seem to be con- 
tinuing, especially the increasing ratio of memory acce:ss 
time to machine cycle time. In the future a cache miss 
all the way to main memory on a superscalar machine 
executing two instructions per cycle could cost well over 
100 instruction times! Even with careful application of 
well-known cache design techniques, machines with 
main memory latencies of over 100 instruction times can 
easily lose over half of their potential performance to the 
memory hierarchy. This makes both hardware and 
software research on advanced memory hierarchies in- 
creasingly important. 

Machine cycles cycle mem miss miss 
p== time time cost cost 
instr (a-49) (ns) (cycles) (in&r) 

__-_--------____-------------------------------- 
VAx11/780 10.0 200 1200 6 .6 
WFG Titan 1.4 45 540 12 8.6 

? 0.5 4 280 70 140.0 
______------______------------------------------ 

Table l-l: The increasing cost of cache misses 

This pa er investigates new hardware techniques for 
increasing K t e performance of the memory hierarchy. 
Section 2 describes a baseline design using conventional 
caching techniques, The large performance loss due to 
the memory hierarchy is a detailed motivation for the 
techniques discussed in the remainder of the paper. 
Techniques for reducing misses due to map ing conflicts 
(i.e., lack of associativity) are presented in B . ectlon 3. An 
extension to prefetch techniques called stream buffering 
is evaluated in Section 4. Section 5 summarizes this 
work and evaluates promising directions for future work 

2. Baseline Design 
Figure 2-l shows the range of configurations of in- 

terest in this study. The CPU, floating-point unit, 
memory management unit (e.g., TLl3), and first level in- 
struction and data caches are-on the same chip or on a 
single hirrh-sneed module built with an advanced vack- 
ag&g te&no~ogy. (We will refer to the central prockssor 
as a single chip in the remainder of the paper, but chip or 
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module is implied.) The cycle time off this chip is 3 to 8 
times longer than the instruction issue rate (i.e., 3 to 8 
instructions can issue in one off-chip clock cycle). This 
is obtained either by having a very fast on-chip clock 
(e.g., superpipelining [S]), by issuing many instructions 
per cycle (e.g., superscalar or VLIW), and/or by using 
higher speed technologies for the processor chip than for 
the rest of the system (e.g., GaAs vs. BiCMOS). 

The expected size of the on-chip caches varies with 
the implementation technology for the processor, but 
higher-speed technologies generally result in smaller on- 
chip caches. For example, quite large on-chip caches 
should be feasible in CMOS but only small caches are 
feasible in the near term for GaAs or bi 

P 
alar processors. 

Thus, although GaAs and bipolar are aster, the higher 
miss rate from their smaller caches tends to decrease the 
actual system performance ratio between GaAs or 
bipolar machines and dense CMOS machines to less than 
the ratio between their gate speeds. In all cases the first- 
level caches are assumed to be direct-mapped, since this 
results in the fastest effective access time [7]. Line sizes 
in the on-chip caches are most likely in the range of 16B 
to 32B. The data cache may be either write-through or 
write-back, but this paper does not examine those 
tradeoffs. 

I 2nd~level cache (mixed) / 
512KB-16MB. 1252568 lines L2 cache access: 
6-121% latch to latch 16-30ns I 

Malnmsmory intarleaved >= 16-way 

160-320ns ’ 
Figure 2-1: Baseline design 

The second-level cache is assumed to range from 
5 12KB to 16MB, and to be built from very high speed 
static RAMS. It is assumed to be direct-mapped for the 
same reasons as the first-level caches. For caches of this 
size access times of 16 to 30ns are likely. This yields an 
access time for the cache of 4 to 30 instruction times. 
The relative speed of the processor as compared to the 
access time of the cache implies that the second-level 
cache must be pipelined in order for it to provide suf- 
ficient bandwidth. For example, consider the case where 
the first-level cache is a write-through cache. Since 
stores typically occur at an average rate of 1 in every 6 or 
7 instructions, an unpipelined external cache would not 
have even enough bandwidth to handle the store traffic 
for access times greater than seven instruction times. 
Caches have been pipelined in mainframes for a number 
of years [12], but this is a recent development for 
workstations. Recently cache chips with ECL I/O’s and 
registers or latches on their inputs and outputs have ap- 
peared; these are ideal for pipelined caches. The number 

of pipeline stages in a second-level cache access could be 
2 or 3 depending on whether the pipestage going from 
the processor chip to the cache chips and the pipestage 
returning from the cache chips to the processor are full or 
half pipestages. 

In order to provide sufficient memory for a proces- 
sor of this speed (e.g., several megabytes per MIP), main 
memory should be in the range of 512MB to 4GB. This 
means that even if 16Mb DRAMS are used that it will 
contain roughly a thousand DRAMS. The main memory 
system probably will take about ten times longer for an 
access than the second-level cache. This access time is 
easily dominated by the time required to fan out address 
and data signals among a thousand DRAMS spread over 
many cards. Thus even with the advent of faster 
DRAMS, the access time for main memory may stay 
roughly the same. The relatively large access time for 
main memory in turn requires that second-level cache 
line sizes of 128 or 256B are needed. As a counter 
example, consider the case where only 16B are returned 
after 320ns. This is a bus bandwidth of SOMB/sec. 
Since a 10 MIP processor with this bus bandwidth would, 
be bus-bandwidth limited in copying from one memory 
location to another [ll], little extra erformance would 
be obtained by the use of a 100 to 1, 60 0 MIP processor. 
This is an important consideration in the system perfor- 
mance of a processor. 

Several observations are in order on the baseline 
system. First, the memory hierarchy of the system is 
actually quite similar to that of a machine like the VAX 
1 l/780 [3,4], only each level in the hierarchy has moved 
one step closer to the CPU. For example, the 8KB 
board-level cache in the 780 has moved on-chip. The 
5 12KB to 16MB main memory on early VAX models 
has become the board-level cache. Just as in the 780’s 
main memory, the incoming transfer size is large 
(128-256B here vs. 512B pages in the VAX). The main 
memory in this system is of similar size to the disk sub- 
systems of the early 780’s and performs similar functions 
such as paging and file system caching. 

The actual parameters assumed for our baseline sys- 
tem are 1,000 MB’S peak instruction issue rate, separate 
4KB first-level instruction and data caches with 16B 
lines, and a 1MB second-level cache with 128B lines. 
The miss penalties are assumed to be 24 instruction times 
for the first level and 320 instruction times for the second 
level. The characteristics of the test programs used in 
this study are given in Table 2-l. These benchmarks are 
reasonably long in comparison with most traces in use 
today, however the effects of multiprocessing have not 
been modeled in this work. The first-level cache miss 
rates of these programs running on the baseline system 
configuration are given in Table 2-2. 

program dynamic data total program 
X-ISllle instr. refs. refs. tYP= 
-------- 
ccom 
v=r 
yacc 
met 
linpack 
liver 

total 

31.5t.l 14.OM 45.5M C compiler 
134.21 59.2t-l 193.4M PC board CAD 

51.OM 16.7M 67.71 Unix utility 
99.41 50.3M 149.W PC board CAD 

144.81 40.7M 105.51 100x100 numeric 
23.6M 7.4M 31.OM LEZ (numeric) 

.______---_------------------------------ 
484.5M 188.31 672.81 

Table 2-1: Test program characteristics 
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The effects of these miss rates are given graphically 
in Figure 2-2. The region below the solid line gives the 
net performance of the system, while the region above 
the solid line gives the performance lost in the memory 
hierarchy. For example, the difference between the top 
dotted line and the bottom dotted line gives the perfor- 
mance lost due to first-level data cache misses. As can 
be seen in Figure 2-2, most benchmarks lose over half of 
their potential performance in first level cache misses. 
Only relatively small amounts of performance are lost to 
second-level cache misses. This is primarily due to the 
large second-level cache size in comparison to the size of 
the programs executed. Longer traces [2] of larger 
programs exhibit significant numbers of second-level 
cache misses. Since the test suite used in this paper is 
too small for significant second-level cache activity, 
second-level cache misses will not be investigated in 
detail, but will be left to future work. 

program baseline miss rate 
name instr. data 
________-_____----__---------------- 
ccom 0.096 0.120 
g== 0.061 0.062 
yacc 0.028 0.040 
met 0.017 0.039 
linpack 0.000 0.144 
liver 0.000 0.273 
_____-_--____-----__---------------- 

Table 2-2: Baseline system first-level cache miss rates 
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Figure 2-2: Baseline design performance 

Since the exact parameters assumed are at the ex- 
treme end of the ranges described (maximum perfor- 
mance processor with minimum size caches), other con- 
figurations would lose proportionally less performance in 
their memory hierarchy. Nevertheless, any configuration 
in the range of interest will lose a substantial proportion 
of its potential performance in the memory hierarchy. 
This means that the greatest leverage on system perfor- 
mance will be obtained by improving the memory hierar- 
chy performance, and not by attempting to further in- 
crease the performance of the CPU (e.g., by more ag- 
gressive parallel issuing of instructions). Techniques for 
improving the performance of the baseline memory 

hierarchy at low cost are the subject of the remainder of 
this paper. Finally, in order to avoid compromising the 
performance of the CPU core (comprising of the CPU, 
FPU, MMU, and first level cache+, any additional 
hardware required by the techniques to be investigated 
should reside outside the CPU core (i.e., below the first 
level caches). By doing this the additional hardware will’ 
only be involved during cache misses, and therefore will 
not be in the critical path for normal instruction execu- 
tion. 

3. Reducin 
Victim aching c! 

Conflict Misses: Miss Caching and 

Misses in caches can be classified into four 
categories: conflict, compulsory, capacity [7], and 
coherence. Conflict misses are misses that would not 
occur if the cache was fully-associative and had LRU 
replacement. Compulsory misses are misses required in 
any cache organization because they are the first 
references to an instruction or piece of data. Capacity 
misses occur when the cache size is not sufficient to hold 
data between references. Coherence ,rnisses are misses 
that occur as a result of invalidation to preserve mul- 
tiprocessor cache consistency. 

Even though direct-mapped cache.s have more con- 
flict misses due to their lack of associativity, their perfor- 
mance is still better than set-associative caches when the 
access time costs for hits are considered. In fact, the 
direct-mapped cache is the only cache configuration 
where the critical path is merely the time required to 
access a RAM [V]. Conflict misses typically account for 
between 20% and 40% of all direct-mapped cache 
misses [7]. Figure 3-1 details the percentage of misses 
due to conflicts for our test suite. On average 39% of the 
first-level data cache misses are due to conflicts, and 
29% of the first-level instruction cache misses are due to 
conflicts. Since these are significant percentages, it 
would be nice to “have our cake and eat it too” by some- 
how providing additional associativity without adding to 
the critical access path for a direct-mapped cache. 

100 

90 

80 

Key: M Ll D-cache misses 
8 + Ll I-cache misses Ip 

1 L 

Figure 3-1: Conflict misses, 4KB I and D, 16B lines 



3.1. Miss Caching 
We can add associativity to a direct-mapped cache 

by placing a small miss cache on-chip between a first- 
level cache and the access port to the second-level cache 
(Figure 3-2). A miss cache is a small fully-associative 
cache containing on the order of two to five cache lines 
of data. When a miss occurs, data is returned not only to 
the direct-mapped cache, but also to the miss cache un- 
der it, where it replaces the least recently used item. 
Each time the upper cache is probed, the miss cache is 
probed as well. If a miss occurs in the upper cache but 
the address hits in the miss cache, then the direct-mapped 
cache can be reloaded in the next cycle from the miss 
cache. This replaces a long off-chip miss penalty with a 
short one-cycle on-chip miss. This arrangement satisfies 
the requirement that the critical path is not worsened, 
since the miss cache itself is not in the normal critical 
path of processor execution. 

From processor To processor 

1‘ 

1 

tag and comparator one cache line of data 

From next lower cache 

Figure 3-2: Miss cache organization 

The success of different miss cache organizations at 
removing conflict misses is shown in Figure 3-3. The 
first observation to be made is that many more data con- 
flict misses are removed by the miss cache than instruc- 
tion conflict misses. This can be explained as follows. 
Instruction conflicts tend to be widely spaced because 
the instructions within one procedure will not conflict 
with each other as long as the procedure size is less than 
the cache size, which is almost always the case. Instxuc- 
tion conflict misses are most likely when another proce- 
dure is called. The target procedure may map anywhere 
with respect to the calling procedure, possibly resulting 
in a large overlap. Assuming at least 60 different in- 
structions are executed in each procedure, the conflict 
misses would span more than the 15 lines in the max- 
imum size miss cache tested. In other words, a small 
miss cache could not contain the entire overlap and so 
would be reloaded repeatedly before it could be used. 
This type of reference pattern exhibits the worst miss 
cache performance. 

Data conflicts, on the other hand, can be quite 
closely spaced. Consider the case where two character 
strings are being compared. If the points of comparison 
of the two strings happen to map to the same line, alter- 
nating references to different strings will always miss in 
the cache. In this case a miss cache of only two entries 

would remove all of the conflict misses. Obviously this 
is another extreme of performance and the results in 
Figure 3-3 show a range of performance based on the 
program involved. Nevertheless, for 4KB data caches a 
miss cache of only 2 entries can remove 25% percent of 
the data cache conflict misses on average,’ or 13% of the 
data cache misses overall. If the miss cache is increased 
to 4 entries, 36% percent of the conflict misses can be 
removed, or 18% of the data cache misses overall. After 
four entries the improvement from additional miss cache 
entries is minor, only increasing to a 25% overall reduc- 
tion in data cache misses if 15 entries are provided. 

-_” 

Number of entries in miss cache 

Figure 3-3: Conflict misses removed by miss caching 

Since doubling the data cache size results in a 32% 
reduction in misses (over this set of benchmarks when 
increasing data cache size from 4K to XK), each ad- 
ditional line in the first level cache reduces the number 
of misses by approximately 0.13%. Although the miss 
cache requires more area per bit of storage than lines in 
the data cache, each line in a two line miss cache effects 
a 50 times larger marginal improvement in the miss rate, 
so this should more than cover any differences in layout 
size. 

Comparing Figure 3-3 and Figure 3-1, we see that 
the higher the percentage of misses due to conflicts, the 
more effective the miss cache is at eliminating them. For 
example, in Figure 3-l mer has by far the highest ratio of 
confhct misses to total data cache misses. Similarly, grr 
and yacc also have greater than average percentages of 
conflict misses, and the miss cache helps these programs 
significantly as well. Zinpuck and ccom have the lowest 

‘Throughout this paper the average reduction in miss rates is used as 
a metric. This is computed by calculating the percent reduction in miss 
rate for each benchmark, and then taking the average of these per- 
centages. This has the advantage that it is independent of the number 
of memory references made by each program. Furthermore, if two 
programs have widely different miss rates, the average percent reduc- 
tion in miss rate gives equal weighting to each benchmark. This is in 
contrast with the percent reduction in average miss rate. which wei@ 
the program with the highest miss rate most heavily. 



percentage of conflict misses, and the miss cache 
removes the lowest percentage of conflict misses from 
these programs. This results from the fact that if a 
program has a large percentage of data conflict misses 
then they must be clustered to some extent because of 
their overall density. This does not prevent programs 
with a small number of conflict misses such as liver from 
benefiting from a miss cache, but it seems that as the 
percentage of conflict misses increases, the percentage of 
these misses removable by a miss cache increases. 

3.2. Victim Caching 
Consider a system with a direct-mapped cache and a 

miss cache. When a miss occurs, data is loaded into both 
the miss cache and the direct-mapped cache. In a sense, 
this duplication of data wastes storage space in the miss 
cache. The number of duplicate items in the miss cache 
can range from one (in the case where all items in the 
miss cache map to the same line in the direct-mapped 
cache) to all of the entries (in the case where a series of 
misses occur which do not hit in the miss cache). 

To make better use of the miss cache we can use a 
different replacement algorithm for the small fully- 
associative cache [5]. Instead of loading the requested 
data into the miss cache on a miss, we can load the 
fully-associative cache with the victim line from the 
direct-mapped cache instead. We call this victim caching 
(see Figure 3-4). With victim caching, no data line ap- 
pears both in the direct-mapped cache and the victim 
cache. This follows from the fact that the victim cache is 
loaded only with items thrown out from the direct- 
mapped cache. In the case of a miss in the direct- 
mapped cache that hits in the victim cache, the contents 
of the direct-mapped cache line and the matching victim 
cache line are swapped. 

flitting lines between the procedure and loop body were 
larger than the miss cache, the miss cache would be of no 
value since misses at the beginning of the loop would be 
flushed out by later misses before execution returned to1 
the beginning of the loop. If a victim cache is used; 
instead, however? the number of conflicts in the loop that 
can be captured is doubled compared to that stored by a 
miss cache. This is because one set of conflicting in- 
structions lives in the direct-mapped cache, while the 
other lives in the victim cache. As execution proceeds 
around the loop and through the procedure call these 
items trade places. 

The percentage of conflict misses removed by vic- 
tim caching is given in Figure 3-5. Note that victim 
caches consisting of just one line are useful, in contrast 
to miss caches which must have two lines to be useful. 
All of the benchmarks have improved performance in 
comparison to miss caches, but instruction cache perfor- 
mance and the data cache performance of benchmarks 
that have conflicting long sequential reference streams 
(e.g., ccom and linpack) improve the most. 
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Figure 3-5: Conflict misses removed by victim caching 

3.3. The Effect of Direct-Mapped C,ache Size on 
Victim Cache Performance 
Figure 3-6 shows the performanc:e of 1,2,4, and 15 

entry victim caches when backing up direct-mapped data 
caches of varying sizes. In general smaller direct- 
mapped caches benefit the most from the addition of a 
victim cache. Also shown for reference is the total per- 
centage of conflict misses for each cache size. There are 
two factors to victim cache performance versus direct- 
mapped cache size. First, as the direct-mapped cache 
increases in size, the relative size of the victim cache 
becomes smaller. Since the direct-mapped cache gets 
larger but keeps the same line size (:16B), the likelihood 
of a tight mapping conflict which would be easily 
removed by victim caching is reduced. Second, the 
centage of conflict misses decreases slightly from KB l?” 
to 32KB. As we have seen previously, as the percentage 
of conflict misses decreases, the percentage of these 
misses removed by the victim cache decreases. The first 
effect dominates, however, since as the percentage of 

-3 
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cache 

J h mu envy 

Figure 3-4: Victim cache organization 

Depending on the reference stream, victim caching 
can either be a small or significant improvement over 
miss caching. The magnitude of this benefit depends on 
the amount of duplication in the miss cache. Victim 
caching is always an improvement over miss caching. 

As an example, consider an instruction reference 
stream that calls a small procedure in its inner loop that 
conflicts with the loop body. If the total number of con- 
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conflict misses increases with very large caches (as in 
[7]), the victim cache performance only improves 

slightly. 

Figure 3-6: Victim cache: vary direct-map cache size 

3.4. The Effect of Line Size on Victim Cache 
Performance 
Figure 3-7 shows the performance of victim caches 

for 4KB direct-mapped data caches of varying line sizes. 
As one would expect, as the line size at this level in- 
creases, the number of conflict misses also increases. 
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Figure 3-7: Victim cache: vary data cache lime size 

The increasing percentage of conflict misses results 
in an increasing percentage of these misses being 
removed by the vrctim cache. Systems wrth vrctim 
caches can benefit from longer line sizes more than sys- 
tems without victim caches, since the victim caches help 
remove misses caused by conflicts that result from 
longer cache lines. Note that even if the area used for 
data storage in the victim cache is held constant (i.e., the 

number of entries is cut in half when the line size 
doubles) the performance of the victim cache still im- 
proves or at least breaks even when line sizes increase. 

3.5. Victim Caches and Second-Level Caches 
As the size of a cache increases, a larger percentage 

of its misses are due to conflict and compulsory misses 
and fewer are due to capacity misses. (Unless of course 
the cache is larger than the entire program, in which case 
only compulsory misses remain.) Thus victim caches 
might be expected to be useful for second-level caches as 
well. Since the number of conflict misses increases with 
increasing line sizes, the large line sizes of second-level 
caches would also tend to increase the potential useful- 
ness of victim caches. 

One interesting aspect of victim caches is that they 
violate inclusion properties [1] in cache hierarchies, 
However, the line size of the second level cache in the 
baseline design is 8 to 16 times larger than the first-level 
cache line sizes, so this violates inclusion as well. 

Note that a first-level victim cache can contain many 
lines that conflict not only at the first level but also at the 
second level. Thus, using a first-level victim cache can 
also reduce the number of conflict misses at the second 
level. In investigating victim caches for second-level 
caches, both configurations with and without first-level 
victim caches will need to be considered. 

A thorough investigation of victim caches for 
megabyte second-level caches requires traces of billions 
of instructions. At this time we only have victim cache 
performance for our smaller test suite, and work on ob- 
taming victim cache performance for multi-megabyte 
second-level caches is underway. 

4. Reducing Capacity and Compulsory Misses 
Compulsory misses are misses required in any cache 

organization because they are the first references to a 
piece of data. Capacity misses occur when the cache size 
1s not sufficient to hold data between references. One 
way of reducing the number of capacity and compulsory 
misses is to use prefetch techniques such as longer cache 
line sizes or prefetching methods [13, 61. However, line 
sizes can not be made arbitrarily large without increasing 
the miss rate and greatly increasing the amount of data to 
be transferred. In this section we investigate techniques 
to reduce capacity and compulsory misses while mitigat- 
ing traditional problems with long lines and excessive 
prefetching. 

A detailed analysis of three prefetch algorithms has 
appeared in [13]. Prefetch always prefetches after every 
reference. Needless to say this is impractical in our base 
system since many level-one cache accesses can take 
place in the time required to initiate a single level-two 
cache reference. This is especially true in machines that 
fetch multiple instructions per cycle from an instruction 
cache and can concurrently perform a load or store per 
cycle to a data cache. Prefetch on miss and tagged 
prefetch are more promising techniques. On a miss 
prefetch on miss always fetches the next line as well. It 
can cut the number of misses for a purely sequential 
reference stream in half. Tagged prefetch can do even 
better. In this technique each block has a tag bit as- 
sociated with it. When a block is prefetched, its tag bit is 
set to zero. Each time a block is used its tag bit is set to 
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one. When a block undergoes a zero to one transition its 
successor block is prefetched. This can reduce the num- 
ber of misses in a purely sequential reference stream to 
zero, if fetching is fast enough. Unfortunately the large 
latencies in the base system can make this impossible. 
Consider Figure 4-1, which gives the amount of time (in 
instruction issues) until a prefetched line is required 
during the execution of CCOIIZ. Not surprisingly, since the 
line size is four instructions, prefetched lines must be 
received within four instruction-times to keep up with 
the machine on uncached straight-line code. Because the 
base system second-level cache takes many cycles to ac- 
cess, and the machine may actually issue many instruc- 
tions per cycle, tagged prefetch may only have a one- 
cycle-out-of-many head start on providing the required 
instructions. 
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Figure 4-1: Limited time for prefetch 

4.1. Stream Buffers 
What we really need to do is to start the prefetch 

before a tag transition can take place. We can do this 
with a mechanism called a stream buffer (Figure 4-2). A 
stream buffer consists of a series of entries, each consist- 
ing of a tag, an available bit, and a data line. 

When a miss occurs, the stream buffer begins 
prefetching successive lines starting at the miss target. 
As each prefetch request is sent out, the tag for the ad- 
dress is entered into the stream buffer, and the available 
bit is set to false. When the prefetch data returns it is 
placed in the entry with its tag and the available bit is set 
to true. Note that lines after the line requested on the 
miss are placed in the buffer and not in the cache. This 
avoids polluting the cache with data that may never be 
needed. 

Subsequent accesses to the cache also compare their 
address against the first item stored in the buffer. If a 
reference misses in the cache but hits in the buffer the 
cache can be reloaded in a single cycle from the stream 
buffer. This is much faster than the off-chip miss 
penalty. The stream buffers considered in this section 
are simple FIFO queues, where only the head of the 
queue has a tag comparator and elements removed from 
the buffer must be removed strictly in sequence without 

skipping any lines. In this simple model non-sequentia.1 
fine misses will cause a stream buffer to be flushed and 
restarted at the miss address even if tlhe requested line is’ 
already present further down in the queue. 

When a line is moved from a stream buffer to th,e 
cache, the entries in the stream buffer can shift up by one 
and a new successive address is fetched. The pipelined 
interface to the second level allows the buffer to be filled 
at the maximum bandwidth of the second level cache, 
and many cache lines can be in the process of being 
fetched simultaneously. For example, assume the 
latency to refill a 16B line on a instruction cache miss is 
12 cycles. Consider a memory interface that is pipelined 
and can accept a new line request every 4 cycles. A 
four-entry stream buffer can provide (4B instructions at a 
rate of one per cycle by having three requests outstand- 
ing at all times. Thus during sequential instruction execu- 
tion tong latency cache misses will not occur. This is in 
contrast to the performance of tagged prefetch on purely 
sequential reference streams where only one line is being 
prefetched at a time. In that case sequential instructions 
will only be supplied at a bandwidth e ual to one instruc- 
tion everv three cycles (i.e., 12 cycle 9 atency / 4 instruc- 
tions perIine). 
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To processor 
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data Direct-mapped 
cache 

Figure 4-2: Sequential stream buffer design 

Figure 4-3 shows the performance of a four-entry 
instruction stream buffer backing a 4KB instruction 
cache and a data stream buffer backing a 4KB data 
cache, each with 16B lines. The graph gives the cumula- 
tive number of misses removed based on the number of 
lines that the buffer is allowed to prefetch after the 
original miss. (In practice the stream buffer would prob- 
ably be allowed to fetch until the end of a virtual 
memory page or a second-level cache line. The major 
reason for plotting stream buffer performance as a func- 
tion of prefetch length is to get a better idea of how far 
streams continue on average,) Most instruction 
references break the purely sequential access pattern by 
the time the 6th successive line is fetched, while many 
data reference patterns end even sooner. The exceptions 
to this appear to be instruction references for liver and 
data references for linpack. liver is probably an anomaly 
since the 14 loops of the program are executed sequen- 
tially, and the first 14 loops do not generally call other 
procedures or do excessive branching, which would 
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cause the sequential miss pattern to break. The data 
reference pattern of Iinpack can be understood as fol- 
lows. Remember that the stream buffer is only respon- 
sible for providing lines that the cache misses on. The 
inner loop of linpck (i.e., saxpy) performs an inner 
product between one row and the other rows of a matrix. 
The first use of the one row loads it into the cache. After 
that subsequent misses in the cache (except for mapping 
conflicts with the fist row) consist of subsequent lines of 
the matrix. Since the matrix is too large to fit in the 
on-chip cache, the whole matrix is passed through the 
cache on each iteration. The stream buffer can do this at 
the maximum bandwidth provided by the second-level 
cache. Of course one prerequisite for this is that the 
reference stream is unit-stride or at most skips to every 
other or every third word. If an array is accessed in the 
non-unit-stride direction (and the other dimensions have 
non-trivial extents) then a stream buffer as presented 
here will be of little benefit. 
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Figure 4-3: Sequential stream buffer performance 

4.2. Multi-Way Stream Buffers 
Overall, the stream buffer presented in the previous 

section could remove 72% of the instruction cache 
misses, but it could only remove 25% of the data cache 
misses. One reason for this is that data references tend to 
consist of interleaved streams of data from different 
sources. In order to improve the performance of stream 
buffers for data references, a multi-way stream buffer 
was simulated (Figure 4-4). It consists of four stream 
buffers in parallel. When a miss occurs in the data cache 
that does not hit in any stream buffer, the stream buffer 
hit least recently is cleared (i.e., LRU replacement) and it 
is started fetching at the miss address. 

Figure 4-5 shows the performance of the multi-way 
stream buffer on our benchmark set. As expected, the 
performance on the instruction stream remains virtually 
unchanged. This means that the simpler single stream 
buffer will suffice for instruction streams. The multi- 
way stream buffer does significantly improve the perfor- 
mance on the data side, however. Overall, the multi-way 
stream buffer can remove 43% of the misses for the six 
programs, almost twice the performance of the single 
stream buffer. Although the matrix operations of liver 

experience the greatest improvement (it changes from 
7% to 60% reduction), all of the programs benefit to 
some extent. 
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Figure 4-4: Four-way stream buffer design 
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Figure 4-5: Four-way stream buffer performance 

4.3. Stream Buffer Performance vs. Cache Size 
Figure 4-6 gives the 

tf 
erformance of single and 4- 

way stream buffers with 1 B lines as a function of cache 
size. The instruction stream buffers have remarkably 
constant performance over a wide range of cache sizes. 
The data stream buffer performance generally im 
as the cache size increases. This is especially true or the P 

roves 

single stream buffer, whose performance increases from 
a 15% reduction in misses for a data cache size of 1KB 
to a 35% reduction in misses for a data cache size of 
128KB. This is probably because as the cache size in- 
creases, it can contain data for reference patterns that 
access several sets of data, or at least all but one of the 
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sets. What misses that remain are more likely to consist 
of very long single sequential streams. For example, as 
the cache size increases the percentage of compulsory 
misses increase, and these are more likely to be sequen- 
tial in nature than data conflict or capacity misses. 
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Figure 4-6: Stream buffer performance vs. cache size 

4.4. Stream Buffer Performance vs. Line Size 
Figure 4-7 gives the performance of single and 4- 

way stream buffers as a function of the line size in the 
stream buffer and 4KB cache. The reduction in misses 
provided by a single data stream buffer falls by a factor 
of 6.8 going from a line size of 8B to a line size of 128B, 
while a 4-way stream buffer’s contribution falls by a 
factor of 4.5. This is not too surprising since data 
references are often fairly widely distributed. In other 
words if a piece of data is accessed, the odds that another 
piece of data 128B away will be needed soon are fairly 
low. The single data stream buffer performance is espe- 
cially hard hit compared to the multi-way stream buffer 
because of the increase in conflict misses at large line 
sizes. 
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Figure 4-7: Stream buffer performance vs. line size 

The instruction stream buffers perform well even out 
to 128B line sizes. Both the 4-way and the single strearn 
buffer still remove at least 40% of the misses at 12813 
line sizes, coming down from an 80% reduction with 8B 
lines. This is probably due to the I.arge granularity of 
conflicting instruction reference streams, and the fact 
that many procedures are more than 128B long. 

5. Conclusions 
Small miss caches (e.g., 2 to 5 entries) have been 

shown to be effective in reducing data cache conflict 
misses for direct-mapped caches in range of 1K to 8K 
bytes. They effectively remove tight conflicts where 
misses alternate between several addresses that map to 
the same line in the cache. Miss caches are increasingly 
beneficial as line sizes increase and the percentage of 
conflict misses increases. In general it appears that as 
the percentage of conflict misses increases, the percent of 
these misses removable by a miss cache also increases, 
resulting in an even steeper slope for the performance 
improvement possible by using miss caches. 

Victim caches are an improvement to miss caching 
that saves the victim of the cache miss instead of the 
target in a small associative cache. Victim caches are 
even more effective at removing conflict misses than 
miss caches. 

Stream buffers prefetch cache lines after a missed 
cache line. They store the line until it is requested by a 
cache miss (if ever) to avoid unnecessary pollution of the 
cache. They are particularly useful at reducing the num- 
ber of capacity and compulsory misses. They can take 
full advantage of the memory bandwidth available in 
pipelined memory systems for sequential references, un- 
like previously discussed prefetch techniques such as 
tagged prefetch or prefetch on miss. Stream buffers can 
also tolerate longer memory system latencies since they 
prefetch data much in advance of other prefetch tech- 
niques (even prefetch always). Stream buffers can also 
compensate for instruction conflict misses, since these 
tend to be relatively sequential in nature as well. 

Multi-way stream buffers are a set of stream buffers 
that can prefetch down several streams concurrently. 
Multi-way stream buffers are useful for data references 
that contain interleaved accesses to several different 
large data structures, such as in array operations. 
However, since the prefetching is of sequential lines, 
only unit stride or near unit stride (2 or 3) access patterns 
benefit. 

The performance improvements due to victim 
caches and due to stream buffers are relatively or- 
thogonal for data references. Victim caches work well 
where references alternate between two locations that 
map to the same line in the cache. They do not prefetch 
data but only do a better job of keeping data fetched 
available for use. Stream buffers, however, achieve per- 
formance improvements by prefetching data. They do 
not remove conflict misses unless the conflicts are 
widely spaced in time, and the cache miss reference 
stream consists of many sequential accesses. These are 
precisely the conflict misses not handled well by a victim 
cache due to its relatively small capa.city. Over the set of 
six benchmarks, on average only 2,.5% of 4KB direct- 
mapped data cache misses that hit in a four-entry victim 
cache also hit in a four-way stream buffer for ccoy; met, 
yacc, grr, and liver. In contrast, linpack, due to us se- 
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quential data access patterns, has 50% of the hits in the 
victim cache also hit in a four-way stream buffer. 
However onlv 4% of linvack’s cache misses hit in the 
victim cachg (it benefiis least from victim caching 
among the six benchmarks), so this is still not a sig- 
nificant amount of overlap between stream buffers and 
victim caching. 

Figure 5-l shows the 
P 

erformance of the base sys- 
tem with the addition of a our entry data victim cache, a 
instruction stream buffer, and a four-way data stream 
buffer. (The base system has on-chip 4KB instruction 
and 4KB data caches with 24 cycle miss penalties and 
16B lines to a three-stage pipelined second-level 1MB 
cache with 128B lines sd 326 cycle miss penalty.) The 
lower solid line in Figure 5-l gives the performance of 
the original base system without the victim caches or 
buffers while the upper solid line gives the performance 
with buffers and victim caches. The combination of 
these techniques reduces the fist-level miss rate to less 
than half of that of the baseline system, resulting in an 
average of 143% improvement in system performance 
for the six benchmarks. These results show that the ad- 
dition of a small amount of hardware can dramatically 
reduce cache miss rates and improve system perfor- 
mance. 

100 ccom grr Y== me-1 linpack live 

0 
1 2 3 4 5 6 

Benchmark 

Figure 5-1: Improved system performance 

This study has concentrated on applying victim 
caches and stream buffers to first-level caches. An inter- 
esting area for future work is the application of these 
techniques to second-level caches. Also, the numeric 
programs used in this study used unit stride access pat- 
terns. Numeric programs with non-unit stride and mixed 
stride access patterns also need to be simulated. Finally, 
the performance of victim caching and stream buffers 
needs to be investigated for operating system execution 
and for multiprogramming workloads. 
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