
Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers

Norman P. Jouppi

Digital Equipment Corporation Western Research Lab

100 Hamilton Ave.. Palo Alto, CA 94301

Abstract

Projections of computer technology forecast proces-
sors with peak performance of 1,000 MIPS in the rela-
tively near future. These processors could easily lose
half or more of their performance in the memory hierar-
chy if the hierarchy design is based on conventional
caching techniques. This paper presents hardware tech-
niques to improve the performance of caches.

Miss caching places a small fully-associative cache
between a cache and its refill path. Misses in the cache
that hit in the miss cache have only a one cycle miss
penalty, as o

K
posed to a many cycle miss penalty without

the nuss cat e. Small miss caches of 2 to 5 entries are
shown to be very effective in removing mapping conflict
misses in first-level direct-mapped caches.

Victim caching is an improvement to miss caching
that loads the small full

Ii
-associative cache with the vic-

tim of a miss and not t e requested line. Small victim
caches of 1 to 5 entries are even more effective at remov-
ing conflict misses than miss caching.

Stream buffers refetch cache lines starting at a
cache miss address. f he prefetched data is placed in the
buffer and not in the cache. Stream buffers are useful in
removing capacity and compulsory cache misses, as well
as some instruction cache conflict misses. Stream buf-
fers are more effective than previously investigated
mefetch techniques at using the next slower level in the
bemory hierarchy when it is
the basic stream buffer, calle B

ipelined. An extension to
multi-way stream buffers,

is introduced. Multi-way stream buffe>s are w&i for
prefetching along multiple intertwined data reference
streams.

Together, victim caches and stream buffers reduce
the miss rate of the first level in the cache hierarchy by a
factor of two to three on a set of six large benchmarks.

1. Introduction
Cache performance is becoming increasingly impor-

tant since it has a dramatic effect on the performance of
advanced processors. Table l-l lists some cache miss
times and the effect of a miss on machine performance.
Over the last decade, cycle time has been decreasing
much faster than main memory access time. The average
number of machine cycles per instruction has also been
decreasing dramatically, especially when the transition
from CISC machines to RISC machines is included.
These two effects are multiplicative and result in tremen-

dous increases in miss cost. For example, a cache miss
on a VAX 1 l/780 only costs 60% of the average instruc-
tion execution. Thus even if every instruction had a
cache miss, the machine performancfe would slow down
by only 60%! However, if a RISC machine like the
WRL Titan [lo] has a miss, the cost is almost ten in-
struction times. Moreover, these trends seem to be con-
tinuing, especially the increasing ratio of memory acce:ss
time to machine cycle time. In the future a cache miss
all the way to main memory on a superscalar machine
executing two instructions per cycle could cost well over
100 instruction times! Even with careful application of
well-known cache design techniques, machines with
main memory latencies of over 100 instruction times can
easily lose over half of their potential performance to the
memory hierarchy. This makes both hardware and
software research on advanced memory hierarchies in-
creasingly important.

Machine cycles cycle mem miss miss
p== time time cost cost
instr (a-49) (ns) (cycles) (in&r)

__-_--------____--------------------------------
VAx11/780 10.0 200 1200 6 .6
WFG Titan 1.4 45 540 12 8.6

? 0.5 4 280 70 140.0
______------______------------------------------

Table l-l: The increasing cost of cache misses

This pa er investigates new hardware techniques for
increasing K t e performance of the memory hierarchy.
Section 2 describes a baseline design using conventional
caching techniques, The large performance loss due to
the memory hierarchy is a detailed motivation for the
techniques discussed in the remainder of the paper.
Techniques for reducing misses due to map ing conflicts
(i.e., lack of associativity) are presented in B . ectlon 3. An
extension to prefetch techniques called stream buffering
is evaluated in Section 4. Section 5 summarizes this
work and evaluates promising directions for future work

2. Baseline Design
Figure 2-l shows the range of configurations of in-

terest in this study. The CPU, floating-point unit,
memory management unit (e.g., TLl3), and first level in-
struction and data caches are-on the same chip or on a
single hirrh-sneed module built with an advanced vack-
ag&g te&no~ogy. (We will refer to the central prockssor
as a single chip in the remainder of the paper, but chip or

CH2887-8/90/0000/0364$01 .OO Q 1990 IEEE 364

module is implied.) The cycle time off this chip is 3 to 8
times longer than the instruction issue rate (i.e., 3 to 8
instructions can issue in one off-chip clock cycle). This
is obtained either by having a very fast on-chip clock
(e.g., superpipelining [S]), by issuing many instructions
per cycle (e.g., superscalar or VLIW), and/or by using
higher speed technologies for the processor chip than for
the rest of the system (e.g., GaAs vs. BiCMOS).

The expected size of the on-chip caches varies with
the implementation technology for the processor, but
higher-speed technologies generally result in smaller on-
chip caches. For example, quite large on-chip caches
should be feasible in CMOS but only small caches are
feasible in the near term for GaAs or bi

P
alar processors.

Thus, although GaAs and bipolar are aster, the higher
miss rate from their smaller caches tends to decrease the
actual system performance ratio between GaAs or
bipolar machines and dense CMOS machines to less than
the ratio between their gate speeds. In all cases the first-
level caches are assumed to be direct-mapped, since this
results in the fastest effective access time [7]. Line sizes
in the on-chip caches are most likely in the range of 16B
to 32B. The data cache may be either write-through or
write-back, but this paper does not examine those
tradeoffs.

I 2nd~level cache (mixed) /
512KB-16MB. 1252568 lines L2 cache access:
6-121% latch to latch 16-30ns I

Malnmsmory intarleaved >= 16-way

160-320ns ’
Figure 2-1: Baseline design

The second-level cache is assumed to range from
5 12KB to 16MB, and to be built from very high speed
static RAMS. It is assumed to be direct-mapped for the
same reasons as the first-level caches. For caches of this
size access times of 16 to 30ns are likely. This yields an
access time for the cache of 4 to 30 instruction times.
The relative speed of the processor as compared to the
access time of the cache implies that the second-level
cache must be pipelined in order for it to provide suf-
ficient bandwidth. For example, consider the case where
the first-level cache is a write-through cache. Since
stores typically occur at an average rate of 1 in every 6 or
7 instructions, an unpipelined external cache would not
have even enough bandwidth to handle the store traffic
for access times greater than seven instruction times.
Caches have been pipelined in mainframes for a number
of years [12], but this is a recent development for
workstations. Recently cache chips with ECL I/O’s and
registers or latches on their inputs and outputs have ap-
peared; these are ideal for pipelined caches. The number

of pipeline stages in a second-level cache access could be
2 or 3 depending on whether the pipestage going from
the processor chip to the cache chips and the pipestage
returning from the cache chips to the processor are full or
half pipestages.

In order to provide sufficient memory for a proces-
sor of this speed (e.g., several megabytes per MIP), main
memory should be in the range of 512MB to 4GB. This
means that even if 16Mb DRAMS are used that it will
contain roughly a thousand DRAMS. The main memory
system probably will take about ten times longer for an
access than the second-level cache. This access time is
easily dominated by the time required to fan out address
and data signals among a thousand DRAMS spread over
many cards. Thus even with the advent of faster
DRAMS, the access time for main memory may stay
roughly the same. The relatively large access time for
main memory in turn requires that second-level cache
line sizes of 128 or 256B are needed. As a counter
example, consider the case where only 16B are returned
after 320ns. This is a bus bandwidth of SOMB/sec.
Since a 10 MIP processor with this bus bandwidth would,
be bus-bandwidth limited in copying from one memory
location to another [ll], little extra erformance would
be obtained by the use of a 100 to 1, 60 0 MIP processor.
This is an important consideration in the system perfor-
mance of a processor.

Several observations are in order on the baseline
system. First, the memory hierarchy of the system is
actually quite similar to that of a machine like the VAX
1 l/780 [3,4], only each level in the hierarchy has moved
one step closer to the CPU. For example, the 8KB
board-level cache in the 780 has moved on-chip. The
5 12KB to 16MB main memory on early VAX models
has become the board-level cache. Just as in the 780’s
main memory, the incoming transfer size is large
(128-256B here vs. 512B pages in the VAX). The main
memory in this system is of similar size to the disk sub-
systems of the early 780’s and performs similar functions
such as paging and file system caching.

The actual parameters assumed for our baseline sys-
tem are 1,000 MB’S peak instruction issue rate, separate
4KB first-level instruction and data caches with 16B
lines, and a 1MB second-level cache with 128B lines.
The miss penalties are assumed to be 24 instruction times
for the first level and 320 instruction times for the second
level. The characteristics of the test programs used in
this study are given in Table 2-l. These benchmarks are
reasonably long in comparison with most traces in use
today, however the effects of multiprocessing have not
been modeled in this work. The first-level cache miss
rates of these programs running on the baseline system
configuration are given in Table 2-2.

program dynamic data total program
X-ISllle instr. refs. refs. tYP=

ccom
v=r
yacc
met
linpack
liver

total

31.5t.l 14.OM 45.5M C compiler
134.21 59.2t-l 193.4M PC board CAD

51.OM 16.7M 67.71 Unix utility
99.41 50.3M 149.W PC board CAD

144.81 40.7M 105.51 100x100 numeric
23.6M 7.4M 31.OM LEZ (numeric)

.______---_------------------------------
484.5M 188.31 672.81

Table 2-1: Test program characteristics

365

The effects of these miss rates are given graphically
in Figure 2-2. The region below the solid line gives the
net performance of the system, while the region above
the solid line gives the performance lost in the memory
hierarchy. For example, the difference between the top
dotted line and the bottom dotted line gives the perfor-
mance lost due to first-level data cache misses. As can
be seen in Figure 2-2, most benchmarks lose over half of
their potential performance in first level cache misses.
Only relatively small amounts of performance are lost to
second-level cache misses. This is primarily due to the
large second-level cache size in comparison to the size of
the programs executed. Longer traces [2] of larger
programs exhibit significant numbers of second-level
cache misses. Since the test suite used in this paper is
too small for significant second-level cache activity,
second-level cache misses will not be investigated in
detail, but will be left to future work.

program baseline miss rate
name instr. data
________-_____----__----------------
ccom 0.096 0.120
g== 0.061 0.062
yacc 0.028 0.040
met 0.017 0.039
linpack 0.000 0.144
liver 0.000 0.273
_____-_--____-----__----------------

Table 2-2: Baseline system first-level cache miss rates

600
Lost due to

300

v

Programinstmctionexecution

200

100 ccom grr
I

yacc met Enpack live

1
1 2 3 4 5 6

Benchmark

Figure 2-2: Baseline design performance

Since the exact parameters assumed are at the ex-
treme end of the ranges described (maximum perfor-
mance processor with minimum size caches), other con-
figurations would lose proportionally less performance in
their memory hierarchy. Nevertheless, any configuration
in the range of interest will lose a substantial proportion
of its potential performance in the memory hierarchy.
This means that the greatest leverage on system perfor-
mance will be obtained by improving the memory hierar-
chy performance, and not by attempting to further in-
crease the performance of the CPU (e.g., by more ag-
gressive parallel issuing of instructions). Techniques for
improving the performance of the baseline memory

hierarchy at low cost are the subject of the remainder of
this paper. Finally, in order to avoid compromising the
performance of the CPU core (comprising of the CPU,
FPU, MMU, and first level cache+, any additional
hardware required by the techniques to be investigated
should reside outside the CPU core (i.e., below the first
level caches). By doing this the additional hardware will’
only be involved during cache misses, and therefore will
not be in the critical path for normal instruction execu-
tion.

3. Reducin
Victim aching c!

Conflict Misses: Miss Caching and

Misses in caches can be classified into four
categories: conflict, compulsory, capacity [7], and
coherence. Conflict misses are misses that would not
occur if the cache was fully-associative and had LRU
replacement. Compulsory misses are misses required in
any cache organization because they are the first
references to an instruction or piece of data. Capacity
misses occur when the cache size is not sufficient to hold
data between references. Coherence ,rnisses are misses
that occur as a result of invalidation to preserve mul-
tiprocessor cache consistency.

Even though direct-mapped cache.s have more con-
flict misses due to their lack of associativity, their perfor-
mance is still better than set-associative caches when the
access time costs for hits are considered. In fact, the
direct-mapped cache is the only cache configuration
where the critical path is merely the time required to
access a RAM [V]. Conflict misses typically account for
between 20% and 40% of all direct-mapped cache
misses [7]. Figure 3-1 details the percentage of misses
due to conflicts for our test suite. On average 39% of the
first-level data cache misses are due to conflicts, and
29% of the first-level instruction cache misses are due to
conflicts. Since these are significant percentages, it
would be nice to “have our cake and eat it too” by some-
how providing additional associativity without adding to
the critical access path for a direct-mapped cache.

100

90

80

Key: M Ll D-cache misses
8 + Ll I-cache misses Ip

1 L

Figure 3-1: Conflict misses, 4KB I and D, 16B lines

3.1. Miss Caching
We can add associativity to a direct-mapped cache

by placing a small miss cache on-chip between a first-
level cache and the access port to the second-level cache
(Figure 3-2). A miss cache is a small fully-associative
cache containing on the order of two to five cache lines
of data. When a miss occurs, data is returned not only to
the direct-mapped cache, but also to the miss cache un-
der it, where it replaces the least recently used item.
Each time the upper cache is probed, the miss cache is
probed as well. If a miss occurs in the upper cache but
the address hits in the miss cache, then the direct-mapped
cache can be reloaded in the next cycle from the miss
cache. This replaces a long off-chip miss penalty with a
short one-cycle on-chip miss. This arrangement satisfies
the requirement that the critical path is not worsened,
since the miss cache itself is not in the normal critical
path of processor execution.

From processor To processor

1‘

1

tag and comparator one cache line of data

From next lower cache

Figure 3-2: Miss cache organization

The success of different miss cache organizations at
removing conflict misses is shown in Figure 3-3. The
first observation to be made is that many more data con-
flict misses are removed by the miss cache than instruc-
tion conflict misses. This can be explained as follows.
Instruction conflicts tend to be widely spaced because
the instructions within one procedure will not conflict
with each other as long as the procedure size is less than
the cache size, which is almost always the case. Instxuc-
tion conflict misses are most likely when another proce-
dure is called. The target procedure may map anywhere
with respect to the calling procedure, possibly resulting
in a large overlap. Assuming at least 60 different in-
structions are executed in each procedure, the conflict
misses would span more than the 15 lines in the max-
imum size miss cache tested. In other words, a small
miss cache could not contain the entire overlap and so
would be reloaded repeatedly before it could be used.
This type of reference pattern exhibits the worst miss
cache performance.

Data conflicts, on the other hand, can be quite
closely spaced. Consider the case where two character
strings are being compared. If the points of comparison
of the two strings happen to map to the same line, alter-
nating references to different strings will always miss in
the cache. In this case a miss cache of only two entries

would remove all of the conflict misses. Obviously this
is another extreme of performance and the results in
Figure 3-3 show a range of performance based on the
program involved. Nevertheless, for 4KB data caches a
miss cache of only 2 entries can remove 25% percent of
the data cache conflict misses on average,’ or 13% of the
data cache misses overall. If the miss cache is increased
to 4 entries, 36% percent of the conflict misses can be
removed, or 18% of the data cache misses overall. After
four entries the improvement from additional miss cache
entries is minor, only increasing to a 25% overall reduc-
tion in data cache misses if 15 entries are provided.

-_”

Number of entries in miss cache

Figure 3-3: Conflict misses removed by miss caching

Since doubling the data cache size results in a 32%
reduction in misses (over this set of benchmarks when
increasing data cache size from 4K to XK), each ad-
ditional line in the first level cache reduces the number
of misses by approximately 0.13%. Although the miss
cache requires more area per bit of storage than lines in
the data cache, each line in a two line miss cache effects
a 50 times larger marginal improvement in the miss rate,
so this should more than cover any differences in layout
size.

Comparing Figure 3-3 and Figure 3-1, we see that
the higher the percentage of misses due to conflicts, the
more effective the miss cache is at eliminating them. For
example, in Figure 3-l mer has by far the highest ratio of
confhct misses to total data cache misses. Similarly, grr
and yacc also have greater than average percentages of
conflict misses, and the miss cache helps these programs
significantly as well. Zinpuck and ccom have the lowest

‘Throughout this paper the average reduction in miss rates is used as
a metric. This is computed by calculating the percent reduction in miss
rate for each benchmark, and then taking the average of these per-
centages. This has the advantage that it is independent of the number
of memory references made by each program. Furthermore, if two
programs have widely different miss rates, the average percent reduc-
tion in miss rate gives equal weighting to each benchmark. This is in
contrast with the percent reduction in average miss rate. which wei@
the program with the highest miss rate most heavily.

percentage of conflict misses, and the miss cache
removes the lowest percentage of conflict misses from
these programs. This results from the fact that if a
program has a large percentage of data conflict misses
then they must be clustered to some extent because of
their overall density. This does not prevent programs
with a small number of conflict misses such as liver from
benefiting from a miss cache, but it seems that as the
percentage of conflict misses increases, the percentage of
these misses removable by a miss cache increases.

3.2. Victim Caching
Consider a system with a direct-mapped cache and a

miss cache. When a miss occurs, data is loaded into both
the miss cache and the direct-mapped cache. In a sense,
this duplication of data wastes storage space in the miss
cache. The number of duplicate items in the miss cache
can range from one (in the case where all items in the
miss cache map to the same line in the direct-mapped
cache) to all of the entries (in the case where a series of
misses occur which do not hit in the miss cache).

To make better use of the miss cache we can use a
different replacement algorithm for the small fully-
associative cache [5]. Instead of loading the requested
data into the miss cache on a miss, we can load the
fully-associative cache with the victim line from the
direct-mapped cache instead. We call this victim caching
(see Figure 3-4). With victim caching, no data line ap-
pears both in the direct-mapped cache and the victim
cache. This follows from the fact that the victim cache is
loaded only with items thrown out from the direct-
mapped cache. In the case of a miss in the direct-
mapped cache that hits in the victim cache, the contents
of the direct-mapped cache line and the matching victim
cache line are swapped.

flitting lines between the procedure and loop body were
larger than the miss cache, the miss cache would be of no
value since misses at the beginning of the loop would be
flushed out by later misses before execution returned to1
the beginning of the loop. If a victim cache is used;
instead, however? the number of conflicts in the loop that
can be captured is doubled compared to that stored by a
miss cache. This is because one set of conflicting in-
structions lives in the direct-mapped cache, while the
other lives in the victim cache. As execution proceeds
around the loop and through the procedure call these
items trade places.

The percentage of conflict misses removed by vic-
tim caching is given in Figure 3-5. Note that victim
caches consisting of just one line are useful, in contrast
to miss caches which must have two lines to be useful.
All of the benchmarks have improved performance in
comparison to miss caches, but instruction cache perfor-
mance and the data cache performance of benchmarks
that have conflicting long sequential reference streams
(e.g., ccom and linpack) improve the most.

P

s from
MT

c b9S

1
I

247-e-4-44 1

4 5 6 7 8 9 101112131415
Number of entries in victim cache Direct-mapped

cache
data

Figure 3-5: Conflict misses removed by victim caching

3.3. The Effect of Direct-Mapped C,ache Size on
Victim Cache Performance
Figure 3-6 shows the performanc:e of 1,2,4, and 15

entry victim caches when backing up direct-mapped data
caches of varying sizes. In general smaller direct-
mapped caches benefit the most from the addition of a
victim cache. Also shown for reference is the total per-
centage of conflict misses for each cache size. There are
two factors to victim cache performance versus direct-
mapped cache size. First, as the direct-mapped cache
increases in size, the relative size of the victim cache
becomes smaller. Since the direct-mapped cache gets
larger but keeps the same line size (:16B), the likelihood
of a tight mapping conflict which would be easily
removed by victim caching is reduced. Second, the
centage of conflict misses decreases slightly from KB l?”
to 32KB. As we have seen previously, as the percentage
of conflict misses decreases, the percentage of these
misses removed by the victim cache decreases. The first
effect dominates, however, since as the percentage of

-3
Address to
next lower next bwer cache
cache

J h mu envy

Figure 3-4: Victim cache organization

Depending on the reference stream, victim caching
can either be a small or significant improvement over
miss caching. The magnitude of this benefit depends on
the amount of duplication in the miss cache. Victim
caching is always an improvement over miss caching.

As an example, consider an instruction reference
stream that calls a small procedure in its inner loop that
conflicts with the loop body. If the total number of con-

368

conflict misses increases with very large caches (as in
[7]), the victim cache performance only improves

slightly.

Figure 3-6: Victim cache: vary direct-map cache size

3.4. The Effect of Line Size on Victim Cache
Performance
Figure 3-7 shows the performance of victim caches

for 4KB direct-mapped data caches of varying line sizes.
As one would expect, as the line size at this level in-
creases, the number of conflict misses also increases.

100

90

p 8o

p 7cl

.I 6a

% 5o

s!D40 cu
k j 30

20

10

a

Key: - - - - 1 envy victim cache
- 2 entry victim cache
-- - 4 entry victim cache
------ 15entIyvictimcache
.-.- percentage conflict misses

b Ll D-cache
0

/
1’

8 16 32 64 128 :
Cache Line Size in Bytes

Figure 3-7: Victim cache: vary data cache lime size

The increasing percentage of conflict misses results
in an increasing percentage of these misses being
removed by the vrctim cache. Systems wrth vrctim
caches can benefit from longer line sizes more than sys-
tems without victim caches, since the victim caches help
remove misses caused by conflicts that result from
longer cache lines. Note that even if the area used for
data storage in the victim cache is held constant (i.e., the

number of entries is cut in half when the line size
doubles) the performance of the victim cache still im-
proves or at least breaks even when line sizes increase.

3.5. Victim Caches and Second-Level Caches
As the size of a cache increases, a larger percentage

of its misses are due to conflict and compulsory misses
and fewer are due to capacity misses. (Unless of course
the cache is larger than the entire program, in which case
only compulsory misses remain.) Thus victim caches
might be expected to be useful for second-level caches as
well. Since the number of conflict misses increases with
increasing line sizes, the large line sizes of second-level
caches would also tend to increase the potential useful-
ness of victim caches.

One interesting aspect of victim caches is that they
violate inclusion properties [1] in cache hierarchies,
However, the line size of the second level cache in the
baseline design is 8 to 16 times larger than the first-level
cache line sizes, so this violates inclusion as well.

Note that a first-level victim cache can contain many
lines that conflict not only at the first level but also at the
second level. Thus, using a first-level victim cache can
also reduce the number of conflict misses at the second
level. In investigating victim caches for second-level
caches, both configurations with and without first-level
victim caches will need to be considered.

A thorough investigation of victim caches for
megabyte second-level caches requires traces of billions
of instructions. At this time we only have victim cache
performance for our smaller test suite, and work on ob-
taming victim cache performance for multi-megabyte
second-level caches is underway.

4. Reducing Capacity and Compulsory Misses
Compulsory misses are misses required in any cache

organization because they are the first references to a
piece of data. Capacity misses occur when the cache size
1s not sufficient to hold data between references. One
way of reducing the number of capacity and compulsory
misses is to use prefetch techniques such as longer cache
line sizes or prefetching methods [13, 61. However, line
sizes can not be made arbitrarily large without increasing
the miss rate and greatly increasing the amount of data to
be transferred. In this section we investigate techniques
to reduce capacity and compulsory misses while mitigat-
ing traditional problems with long lines and excessive
prefetching.

A detailed analysis of three prefetch algorithms has
appeared in [13]. Prefetch always prefetches after every
reference. Needless to say this is impractical in our base
system since many level-one cache accesses can take
place in the time required to initiate a single level-two
cache reference. This is especially true in machines that
fetch multiple instructions per cycle from an instruction
cache and can concurrently perform a load or store per
cycle to a data cache. Prefetch on miss and tagged
prefetch are more promising techniques. On a miss
prefetch on miss always fetches the next line as well. It
can cut the number of misses for a purely sequential
reference stream in half. Tagged prefetch can do even
better. In this technique each block has a tag bit as-
sociated with it. When a block is prefetched, its tag bit is
set to zero. Each time a block is used its tag bit is set to

369

one. When a block undergoes a zero to one transition its
successor block is prefetched. This can reduce the num-
ber of misses in a purely sequential reference stream to
zero, if fetching is fast enough. Unfortunately the large
latencies in the base system can make this impossible.
Consider Figure 4-1, which gives the amount of time (in
instruction issues) until a prefetched line is required
during the execution of CCOIIZ. Not surprisingly, since the
line size is four instructions, prefetched lines must be
received within four instruction-times to keep up with
the machine on uncached straight-line code. Because the
base system second-level cache takes many cycles to ac-
cess, and the machine may actually issue many instruc-
tions per cycle, tagged prefetch may only have a one-
cycle-out-of-many head start on providing the required
instructions.

ccom I-cache prefetch, 16B lines
100

80
“3
%
E
2 60
8
j
o a 40
8
$

20

0 0”

Key:

- prefetch on miss

- - - - - - tagged prefetch

---- prefetch always

2 4 6 8 10 12 14 16 18 20 22 24 :
Instructions until prefetch returns

26

Figure 4-1: Limited time for prefetch

4.1. Stream Buffers
What we really need to do is to start the prefetch

before a tag transition can take place. We can do this
with a mechanism called a stream buffer (Figure 4-2). A
stream buffer consists of a series of entries, each consist-
ing of a tag, an available bit, and a data line.

When a miss occurs, the stream buffer begins
prefetching successive lines starting at the miss target.
As each prefetch request is sent out, the tag for the ad-
dress is entered into the stream buffer, and the available
bit is set to false. When the prefetch data returns it is
placed in the entry with its tag and the available bit is set
to true. Note that lines after the line requested on the
miss are placed in the buffer and not in the cache. This
avoids polluting the cache with data that may never be
needed.

Subsequent accesses to the cache also compare their
address against the first item stored in the buffer. If a
reference misses in the cache but hits in the buffer the
cache can be reloaded in a single cycle from the stream
buffer. This is much faster than the off-chip miss
penalty. The stream buffers considered in this section
are simple FIFO queues, where only the head of the
queue has a tag comparator and elements removed from
the buffer must be removed strictly in sequence without

skipping any lines. In this simple model non-sequentia.1
fine misses will cause a stream buffer to be flushed and
restarted at the miss address even if tlhe requested line is’
already present further down in the queue.

When a line is moved from a stream buffer to th,e
cache, the entries in the stream buffer can shift up by one
and a new successive address is fetched. The pipelined
interface to the second level allows the buffer to be filled
at the maximum bandwidth of the second level cache,
and many cache lines can be in the process of being
fetched simultaneously. For example, assume the
latency to refill a 16B line on a instruction cache miss is
12 cycles. Consider a memory interface that is pipelined
and can accept a new line request every 4 cycles. A
four-entry stream buffer can provide (4B instructions at a
rate of one per cycle by having three requests outstand-
ing at all times. Thus during sequential instruction execu-
tion tong latency cache misses will not occur. This is in
contrast to the performance of tagged prefetch on purely
sequential reference streams where only one line is being
prefetched at a time. In that case sequential instructions
will only be supplied at a bandwidth e ual to one instruc-
tion everv three cycles (i.e., 12 cycle 9 atency / 4 instruc-
tions perIine).

From processor

tags

:

To processor

1‘-

data Direct-mapped
cache

Figure 4-2: Sequential stream buffer design

Figure 4-3 shows the performance of a four-entry
instruction stream buffer backing a 4KB instruction
cache and a data stream buffer backing a 4KB data
cache, each with 16B lines. The graph gives the cumula-
tive number of misses removed based on the number of
lines that the buffer is allowed to prefetch after the
original miss. (In practice the stream buffer would prob-
ably be allowed to fetch until the end of a virtual
memory page or a second-level cache line. The major
reason for plotting stream buffer performance as a func-
tion of prefetch length is to get a better idea of how far
streams continue on average,) Most instruction
references break the purely sequential access pattern by
the time the 6th successive line is fetched, while many
data reference patterns end even sooner. The exceptions
to this appear to be instruction references for liver and
data references for linpack. liver is probably an anomaly
since the 14 loops of the program are executed sequen-
tially, and the first 14 loops do not generally call other
procedures or do excessive branching, which would

310

cause the sequential miss pattern to break. The data
reference pattern of Iinpack can be understood as fol-
lows. Remember that the stream buffer is only respon-
sible for providing lines that the cache misses on. The
inner loop of linpck (i.e., saxpy) performs an inner
product between one row and the other rows of a matrix.
The first use of the one row loads it into the cache. After
that subsequent misses in the cache (except for mapping
conflicts with the fist row) consist of subsequent lines of
the matrix. Since the matrix is too large to fit in the
on-chip cache, the whole matrix is passed through the
cache on each iteration. The stream buffer can do this at
the maximum bandwidth provided by the second-level
cache. Of course one prerequisite for this is that the
reference stream is unit-stride or at most skips to every
other or every third word. If an array is accessed in the
non-unit-stride direction (and the other dimensions have
non-trivial extents) then a stream buffer as presented
here will be of little benefit.

90

80

70

9 60
“0

50

40

30

20

10

Keys - Ll I-cache
- L1 D-cache

0 ccom

“0 1 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 16
Length of stream run

Figure 4-3: Sequential stream buffer performance

4.2. Multi-Way Stream Buffers
Overall, the stream buffer presented in the previous

section could remove 72% of the instruction cache
misses, but it could only remove 25% of the data cache
misses. One reason for this is that data references tend to
consist of interleaved streams of data from different
sources. In order to improve the performance of stream
buffers for data references, a multi-way stream buffer
was simulated (Figure 4-4). It consists of four stream
buffers in parallel. When a miss occurs in the data cache
that does not hit in any stream buffer, the stream buffer
hit least recently is cleared (i.e., LRU replacement) and it
is started fetching at the miss address.

Figure 4-5 shows the performance of the multi-way
stream buffer on our benchmark set. As expected, the
performance on the instruction stream remains virtually
unchanged. This means that the simpler single stream
buffer will suffice for instruction streams. The multi-
way stream buffer does significantly improve the perfor-
mance on the data side, however. Overall, the multi-way
stream buffer can remove 43% of the misses for the six
programs, almost twice the performance of the single
stream buffer. Although the matrix operations of liver

experience the greatest improvement (it changes from
7% to 60% reduction), all of the programs benefit to
some extent.

From processor To processor

From twd lower cache
To nexl lower cache

Figure 4-4: Four-way stream buffer design

100
Keys - LlIsache

0 90 - LlD-cachc

80

70

60

50

40

30

20

10

Q gn
0 yacc
+mt
a liipack W#
0 liver

0’
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Length of 4-way swam run
16

Figure 4-5: Four-way stream buffer performance

4.3. Stream Buffer Performance vs. Cache Size
Figure 4-6 gives the

tf
erformance of single and 4-

way stream buffers with 1 B lines as a function of cache
size. The instruction stream buffers have remarkably
constant performance over a wide range of cache sizes.
The data stream buffer performance generally im
as the cache size increases. This is especially true or the P

roves

single stream buffer, whose performance increases from
a 15% reduction in misses for a data cache size of 1KB
to a 35% reduction in misses for a data cache size of
128KB. This is probably because as the cache size in-
creases, it can contain data for reference patterns that
access several sets of data, or at least all but one of the

371

sets. What misses that remain are more likely to consist
of very long single sequential streams. For example, as
the cache size increases the percentage of compulsory
misses increase, and these are more likely to be sequen-
tial in nature than data conflict or capacity misses.

100
Key: --- single sequential stream buffer

90 0 Ll I-cache - 4-way sequential stream buffer

0’
1 2

I
4 8 16 32 64 128

Cache Size in KB

Figure 4-6: Stream buffer performance vs. cache size

4.4. Stream Buffer Performance vs. Line Size
Figure 4-7 gives the performance of single and 4-

way stream buffers as a function of the line size in the
stream buffer and 4KB cache. The reduction in misses
provided by a single data stream buffer falls by a factor
of 6.8 going from a line size of 8B to a line size of 128B,
while a 4-way stream buffer’s contribution falls by a
factor of 4.5. This is not too surprising since data
references are often fairly widely distributed. In other
words if a piece of data is accessed, the odds that another
piece of data 128B away will be needed soon are fairly
low. The single data stream buffer performance is espe-
cially hard hit compared to the multi-way stream buffer
because of the increase in conflict misses at large line
sizes.

90

80

70

60

50

40

30

20

10

Key: - - single sequential streambuffer
- 4-way sequential streambuffer

Cl Ll D-cache

“4 8 16 32 64 128 256
Cache Line Size. in Bytes

Figure 4-7: Stream buffer performance vs. line size

The instruction stream buffers perform well even out
to 128B line sizes. Both the 4-way and the single strearn
buffer still remove at least 40% of the misses at 12813
line sizes, coming down from an 80% reduction with 8B
lines. This is probably due to the I.arge granularity of
conflicting instruction reference streams, and the fact
that many procedures are more than 128B long.

5. Conclusions
Small miss caches (e.g., 2 to 5 entries) have been

shown to be effective in reducing data cache conflict
misses for direct-mapped caches in range of 1K to 8K
bytes. They effectively remove tight conflicts where
misses alternate between several addresses that map to
the same line in the cache. Miss caches are increasingly
beneficial as line sizes increase and the percentage of
conflict misses increases. In general it appears that as
the percentage of conflict misses increases, the percent of
these misses removable by a miss cache also increases,
resulting in an even steeper slope for the performance
improvement possible by using miss caches.

Victim caches are an improvement to miss caching
that saves the victim of the cache miss instead of the
target in a small associative cache. Victim caches are
even more effective at removing conflict misses than
miss caches.

Stream buffers prefetch cache lines after a missed
cache line. They store the line until it is requested by a
cache miss (if ever) to avoid unnecessary pollution of the
cache. They are particularly useful at reducing the num-
ber of capacity and compulsory misses. They can take
full advantage of the memory bandwidth available in
pipelined memory systems for sequential references, un-
like previously discussed prefetch techniques such as
tagged prefetch or prefetch on miss. Stream buffers can
also tolerate longer memory system latencies since they
prefetch data much in advance of other prefetch tech-
niques (even prefetch always). Stream buffers can also
compensate for instruction conflict misses, since these
tend to be relatively sequential in nature as well.

Multi-way stream buffers are a set of stream buffers
that can prefetch down several streams concurrently.
Multi-way stream buffers are useful for data references
that contain interleaved accesses to several different
large data structures, such as in array operations.
However, since the prefetching is of sequential lines,
only unit stride or near unit stride (2 or 3) access patterns
benefit.

The performance improvements due to victim
caches and due to stream buffers are relatively or-
thogonal for data references. Victim caches work well
where references alternate between two locations that
map to the same line in the cache. They do not prefetch
data but only do a better job of keeping data fetched
available for use. Stream buffers, however, achieve per-
formance improvements by prefetching data. They do
not remove conflict misses unless the conflicts are
widely spaced in time, and the cache miss reference
stream consists of many sequential accesses. These are
precisely the conflict misses not handled well by a victim
cache due to its relatively small capa.city. Over the set of
six benchmarks, on average only 2,.5% of 4KB direct-
mapped data cache misses that hit in a four-entry victim
cache also hit in a four-way stream buffer for ccoy; met,
yacc, grr, and liver. In contrast, linpack, due to us se-

372

quential data access patterns, has 50% of the hits in the
victim cache also hit in a four-way stream buffer.
However onlv 4% of linvack’s cache misses hit in the
victim cachg (it benefiis least from victim caching
among the six benchmarks), so this is still not a sig-
nificant amount of overlap between stream buffers and
victim caching.

Figure 5-l shows the
P

erformance of the base sys-
tem with the addition of a our entry data victim cache, a
instruction stream buffer, and a four-way data stream
buffer. (The base system has on-chip 4KB instruction
and 4KB data caches with 24 cycle miss penalties and
16B lines to a three-stage pipelined second-level 1MB
cache with 128B lines sd 326 cycle miss penalty.) The
lower solid line in Figure 5-l gives the performance of
the original base system without the victim caches or
buffers while the upper solid line gives the performance
with buffers and victim caches. The combination of
these techniques reduces the fist-level miss rate to less
than half of that of the baseline system, resulting in an
average of 143% improvement in system performance
for the six benchmarks. These results show that the ad-
dition of a small amount of hardware can dramatically
reduce cache miss rates and improve system perfor-
mance.

100 ccom grr Y== me-1 linpack live

0
1 2 3 4 5 6

Benchmark

Figure 5-1: Improved system performance

This study has concentrated on applying victim
caches and stream buffers to first-level caches. An inter-
esting area for future work is the application of these
techniques to second-level caches. Also, the numeric
programs used in this study used unit stride access pat-
terns. Numeric programs with non-unit stride and mixed
stride access patterns also need to be simulated. Finally,
the performance of victim caching and stream buffers
needs to be investigated for operating system execution
and for multiprogramming workloads.

Acknowledgements
Mary Jo Doherty, John Ousterhout, Jeremy Dion,

Anita Borg, Richard Swan, and the anonymous referees
provided many helpful comments on an early draft of
this paper. Alan Eustace suggested victim caching as an
improvement to miss caching.

References

1. Baer, Jean-Loup, and Wang, Wenn-Harm. On the In-
clusion Properties for Multi-Level Cache Hierarchies.
The 15th Annual Symposium on Computer Architecture,
IEEE Computer Society Press, June, 1988, pp. 73-80.

2. Borg, Anita, Kessler, Rick E., Lazana, Georgia, and
Wall, David W. Long Address Traces from RISC
Machines: Generation and Analysis. Tech. Rept. 89114,
Digital Equipment Corporation Western Research
Laboratory, September, 1989.

3. Digital Equipment Corporation, Inc. VAX Hardware
Handbook, volume I - 1984. Maynard, Massachusetts,
1984.

4. Emer, Joel S., and Clark, Douglas W. A Charac-
terization of Processor Performance in the VAX-l lflS0.
The 1 lth Annual Symposium on Computer Architecture,
IEEE Computer Society Press, June, 1984, pp. 301-310.

5. Eustace, Alan. Private communication.

6. Farrens, Matthew K., and Pleszkun, Andrew R. Im-
proving Performance of Small On-Chip Instruction
Caches. The 16th Annual Symposium on Computer
Architecture, lEEE Computer Society Press, May, 1989,
pp. 234-241.

7. Hill, Mark D. Aspects of Cache Memory and Instruc-
tion Buffer Performance. Ph.D. Th., University of Cali-
fornia, Berkeley, 1987.

8. Jouppi, Norman P., and Wall, David W. Available
Instruction-Level Parallelism For Superpipelined and Su-
perscalar Machines. Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, IEEE Computer Society Press, April,
1989, pp. 272-282.

9. Jouppi, Norman P. Architectural and Organizational
Tradeoffs in the Design of the MultiTitan CPU. The
16th Annual Symposium on Computer Architecture,
IEEE Computer Society Press, May, 1989, pp. 281-289.

10. Nielsen, Michael J. K. Titan System Manual. Tech.
Rept. 86/l, Digital Equipment Corporation Western
Research Laboratory, September, 1986.

11. Ousterhout, John. Why Aren’t Operating Systems
Getting Faster As Fast As Hardware? Tech. Rept. Tech-
note 11, Digital Equipment Corporation Western
Research Laboratory, October, 1989.

12. Smith, Alan J. ‘ ‘Sequential program prefetching in
memory hierarchies. ” IEEE Computer 11, 12
(December 1978), 7-21.

13. Smith, Alan J. “Cache Memories.” Computing
Surveys (September 1982), 473-530.

313

