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The controversy surrounding single number performance reduction is 
examined and solutions are suggested through a comparison of measures. 

ClfARACTERlZMlG COMPUTER PERFORIUANCE 
WITH A SINGLE hlUM3ER 

JAMES E. SMITH 

Reducing computer performance to a single number 
has become one of the more controversial (and confus- 
ing) subjects in performance evaluation. At best, the 
need for a single performance number is seen as a nec- 
essary evil; many argue that performance is multidi- 
mensional and can only be accurately represented with 
a series of performance numbers. Despite any such ar- 
guments, the fact remains that single numbers will be 
used for performance comparisons. This being the case, 
it is important that the best singIe-number measure be 
used. Properties of good measures are proposed in this 
article, and commonly used measures are studied and 
compared to determine which have the desired proper- 
ties. 

An area where performance is of considerable inter- 
est and the temptation to use a single performance 
number seems greatest is in scientific (floating point 
intensive) applications. Indeed, this is one of the earli- 
est computer application areas, and is often used as a 
yardstick for measuring overall progress in the art of 
computer design. Consequently, discussion and exam- 
ples in this article are drawn from the context of cen- 
tral processor performance on scientific (floating point 
intensive) applications. For example, units of millions 
of floating point operations per second (mflops) are 
used. The central idea, however, is the reduction of 
performance data as measured for a series of programs 
to a single number. Hence, extensions to other perfor- 
mance environments are straightforward; for example, 
one could consider transactions or logical inferences 
per second just as easily. 
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Many of the problems of reducing performance to a 
single number, at least in scientific computing, have 
become apparent with the introduction of vector com- 
puters. The problem will be exacerbated as highly par- 
allel computers come into widespread use. As will be 
made clear in this article, the problem results from the 
considerable disparity between performance on fast and 
slow programs. This difference can be two or more or- 
ders of magnitude, and not all single-numbe.r measures 
are well suited for dealing with differences of this scale. 
We will focus on how the wide variance in performance 
over individual programs distorts commonly used 
aggregate measures. 

The use of peak performance as a single-number 
performance measure is an extreme example of the 
problems that can occur. The peak performance is the 
performance that can be achieved under absolutely op- 
timum conditions, and then perhaps only for a brief 
period of time. With vector and parallel processing, ex- 
tremely high peak performance numbers are possible. 
Peak performance, however, is generally recognized as 
being of no value for predicting actual performance on 
the variety of real programs that are actually used. In 
fact, the fallacies of using peak performance are so 
widely recognized that we will not deal with it any 
further. Rather, we will concentrate on attempts to 
summarize the typical performance that will be ob- 
served on real programs. Problems with single-number 
measures are more subtle here than with peak perfor- 
mance, yet they can result in gross distortions of actual 
performance. 

We consider benchmarking the preferred method for 
determining typical performance. Our goal is not to 
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provide means for accurate benchmarking, but to study and the mean performance measures as expressed by 
ways of reducing benchmark performance results to a the arithmetic, geometric, and harmonic means. 
single number that maintains the accuracy of the origi- First consider the total times from Table I. Computer 
nal benchmarks. In situations where the workload is 3 is almost three times faster than Computer 2, and 25 
clearly understood, both in terms of the actual pro- times faster than Computer 1. Using arithmetic mean 
grams to be run and their relative usage, benchmark mflops, Computer 1 is roughly 10 times faster than 
results summarized by a single performance number Computers 2 and 3; Computer 2 is slightly faster than 
can actually be a very accurate predictor of perfor- Computer 3. Using geometric mean, Computer 3 is 
mance. 

A fundamental premise of this article is that the time 
required to perform a specified amount of computation is the 
ultimate measure of computer performance. When a set of 
programs is actually run on a specific computer, each 
will execute for a certain amount of time, and the com- 
puter will be busy for the total time consumed by the 
programs. If the same set of programs is run on several 
computers, the computer that finishes the set of pro- 
grams first (the one consuming the less total time) is 
available to do more work. Simply put, we consider one 
computer to be faster than another if it executes the 
same set of programs in less time. 

Example 
Let us consider a simple example. Say that a typical 
workload to be evaluated consists of two component 
programs, so two benchmarks are used to model the 
workload. Further assume that we have successfully 
run the two benchmarks on each of three computers. 
The results are summarized in Table I. 

TABLE I. Performance of Three Computers on Two 
Benchmarks 

Benchmark 

Millions of 
floating Computer 1 Computer 2 Computer 3 
pt. ops. time (sew.) time (sew) time (sees.) 

Program 1 100 1 10 20 
Program 2 100 1000 100 20 

Total Time 1001 110 40 

The columns in the table represent the number of 
floating point operations in each benchmark and the 
time required for each. For simplicity, we have chosen 
example programs that do the same amount of work 
(floating point operations). For now, we will use ver- 
sions of performance measures that give all the pro- 
grams equal weight. More general, weighted perfor- 
mance measures will be discussed later. 

faster than Computers 1 and 2; Computers 1 and 2 have 
the same performance. Finally, with harmonic mean. 
relative performance is similar to that achieved with 
total time. The three mean mflops measures are in total 
disagreement with one another, not just in terms of 
absolute performance but in relative performance as 
well. The only agreement between any of the measures 
is between total time and the harmonic mean. 

TABLE II. Performance of Benchmarks in Mflops 

Benchmark Computer 1 Computer 2 Computer 3 

Program 1 
Program 2 
Arith. Mean 
Geom. Mean 
Harm. Mean 

100.0 mflops 10.0 mflops 5.0 mflops 
.l mflops 1 .O mflops 5.0 mflops 

50.1 mflops 5.5 mflops 5.0 mflops 
3.2 mflops 3.2 mflops 5.0 mflops 

.2 mflops 1 Xi mflops 5.0 mflops 

Properties of Good Performance Measures 
The principle behind benchmarking is to model a real 
job mix with a smaller set of representative programs. If 
a set of benchmarks is chosen well, each program in 
the real job mix has the same performance characteris- 
tics as one or more of the benchmark programs. In 
addition, weights can be used to proportion each 
benchmark type with similar types of computation in 
the underlying workload. In this way, a weighted per- 
formance measure can be used for the benchmarks 
such that the performance measure is directly propor- 
tional to performance on the mix of real programs. 

As stated earlier, we consider the ultimate perfor- 
mance measure to be the actual time needed to per- 
form a specific amount of work. If we use time as the 
unit of performance, we arrive at the following prop- 
erty. 

Now we are faced with the problem of summarizing 
the performance of each computer with a single num- 
ber. One way to do this is to simply add the individual 
benchmark times to arrive at the total time. The total 
times are given at the bottom of Table I. Another com- 
monly used way to summarize performance is to first 
express performance as a rate (mflops), and then reduce 
the rates for the individual benchmarks to a single 
number. The arithmetic mean, geometric mean, and 
harmonic mean are commonly used. Details on calcu- 
lating each are given in later sections. Table II contains 
the performance data from Table I converted to mflops 

Property 1. A single-number performance measure for 
a set of benchmarks expressed in units of time should 
be directly proportional to the total (weighted) time 
consumed by the benchmarks. 

Even though time is a good unit for performance 
measurement, it is common in practice to measure per- 
formance as operations per unit time rather than time 
itself. In scientific computing, performance is often ex- 
pressed in millions of floating point operations per 
second (mflops). 

When benchmarks are run and performance is calcu- 
lated in mflops, performance should be highly corre- 
lated with the time measure. That is, if computer 1 is 
t times faster than computer 2 when time is used, then 
computer 1 should also be t times faster than computer 
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2 when rate (mflops) is used. Since rate is inversely 
proportional to time for a given amount of computation, 
this gives us 

Property 2. A single-number performance measure for 
benchmarks expressed as a rate should be inversely 
proportional to the total (weighted) time consumed by 
the benchmarks. 

SINGLE-NUMBER PERFORMANCE MEASURES 
In light of the preceding discussion, the most obvious 
single-number performance measure is total time. This 
measure is not only accurate, but has considerable in- 
tuitive appeal. 

Using time as a benchmark measure has another, less 
obvious, advantage. If one were to quote the perfor- 
mance of a computer as 10 seconds, the obvious ques- 
tion is: For what program(s)? That is, it forces a clear 
explanation of the benchmark used to arrive at the 
performance figure. On the other hand, if we use a 
rate measure like mflops and quote performance as 
10 mflops, the same question does not seem to come as 
easily, although it is equally important as when time is 
used as a measure. 

When performance is measured as a rate, single- 
number performance measures can become quite mis- 
leading, as our earlier example showed. It is common 
practice to measure mflops for each component pro- 
gram in a benchmark suite, then use these numbers to 
calculate an aggregate performance number. This is exz 
actly what is done in Table II for arithmetic, geometric, 
and harmonic means. We will now define and discuss 
the properties of each of these means to see how well 
they isatisfy Property 2. 

We first define the means assuming equal weights; 
that is, each benchmark performs the same amount of 
work as measured by the number of floating point oper- 
ations. (Weighted means are discussed in a later sec- 
tion). We assume a total of n benchmarks. For bench- 
mark i, let M, be the performance measured in mflops. 
Although the individual benchmarks may perform dif- 
ferent numbers of floating point operations, using 
mflops has the effect of scaling out these differences. In 
general, we let F, be the number of floating point opera,. 
tions in benchmark i, but because we are weighting the 
benchmarks equally in this section, we can simply let 1: 
be a constant number of floating point operations, and 
use scaled benchmark times Ti SO that Mi = F/Ti. 

Arithmetic Mean 
Arithmetic mean mflops is defined in the following 
way: 

A-mean = i %. 
i=l tl 

If we substitute F/T; for Mi, we arrive at 

A-mean = i E 
,=I Tt / 

n. 

By inspecting this second equation, we see that arith- 
metic: mean expresses performance in a way that is 

directly proportional to the sum of the inverses of the 
times. It is not inversely proportional to the sum of the 
times. Consequently, the arithmetic mean fails Property 
2. The example in Section 1.1 clearly illustrates the 
inappropriateness of using arithmetic mean as applied 
to mflops. The arithmetic mean mflops bear no rela- 
tionship to the time consumed by the benchmarks 
when they are actually executed. 

The uselessness of arithmetic mean as a performance 
predictor cannot be emphasized enough. Giving addi- 
tional statistics such as standard deviation to supple- 
ment the arithmetic mean does not mitigate the situa- 
tion. Using arithmetic mean with a standard deviation 
is similar to saying: Here is a meaningless performance 
measure (i.e., arithmetic mean), and here is a measure 
(i.e., standard deviation) of just how meaningless it is. 

On the other hand, the arithmetic mean of bench- 
mark times does satisfy Property 1 since, for a given 
number of benchmarks, the arithmetic mean is total 
time divided by a constant. Hence, arithmetic mean 
time is an accurate performance measure, although it is 
not often used. 

Geometric Mean 
The unweighted geometric mean mflops is expressed as 

Again, performance is not accurately summarized since 
it does not have the correct inverse relationship with 
total time. Geometric mean has been advocated for use 
with performance numbers that are normalized with 
respect to one of the computers being compared [2]. 
The geometric mean has the property of performance 
relationships consistently maintained regardless of the 
computer that is used as the basis for norma.lization. 
The geometric mean does provide a consistent measure 
in this context, but it is consistently wrong. The solu- 
tion to the problem of normalizing with respect to a 
given computer is not to use geometric mean, as sug- 
gested in [2], but to always normalize results after the 
appropriate aggregate measure is calculated, not before. 
This last point can be illustrated by using an example 
from [2]. Table III is taken from Table IX in [Z]. 

The performance values are expressed in an unspeci- 
fied unit of time. Since time is used, calculating a 
weighted sum or arithmetic mean and then (optionally) 
normalizing the results is an accurate method for deter- 
mining aggregate performance. The authors make this 
same point (Rule 3) and use Table IX to illustrate it [2]. 
If we apply the (weighted) geometric mean as advo- 
cated in [2] (Rule 2.2), however, we get contradictory 
results. The geometric mean numbers have been added 
to the bottom of Table III. Using the arithmetic mean 
leads to the conclusion that Processor Y is slowest. 
Using geometric mean leads to the contradictory con- 
clusion that processor Y is fastest. Normalizing the 
benchmark results with respect to any of th’e processors 
and then finding the geometric mean will give the same 
relative results as taking the geometric mean of the raw 
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TABLE III. Example Taken From Table IX of Reference (21 

Benchmark Weight Processor X Processor Y Processor Z 

Program 1 0.6 20 10 40 
Program 2 0.4 40 80 20 
Weighted 28 38 32 

arithmetic mean 
Normalized to X 1 .oo 1.36 1.14 

Weighted 26.4 23.0 30.3 
geometric mean 
Normalized to X 1 .oo .87 1.15 

data. None of these geometric means, however, provide 
performance that is proportional to the actual time con- 
sumed when running the weighted benchmark mix. 
Only the arithmetic mean of the times has this desir- 
able property. 

Harmonic Mean 
Harmonic mean mflops are expressed as 

H-mean = n 
I ! 

;!I h, 

The formula for harmonic mean may appear at first 
to lack intuitive appeal, but it is equivalent to taking 
the total number of floating point operations and divid- 
ing by the total time. This can be illustrated in the 
following way. By substituting F/Ti for M;, 

H-mean = n 
I j, ;. 

This is equivalent to n/[(l/F) EyeI T,]. This, in turn, The weighted versions of the means have properties 
is equivalent to rzF/Cr=~ T,. Now, since nF is the total similar to the unweighted ones. Specifically, the har- 
number of floating point operations, and &I T, is the monic mean is the only one that provides an accurate 
total time, we have just shown that the harmonic mean relationship to the actual time required to execute the 
is the total number of operations divided by total time. benchmark programs. 

2.0 

1.8 

1 

Using the second of the above expressions for harmonic 
mean, we see that it is inversely proportional to the 
sum of the benchmark times, and thus satisfies Prop- 
erty 2. In the example in Section 1.1, the harmonic 
mean performance numbers are entirely consistent 
with the total time performance measures. 

When we run a single program and calculate its per- 
formance as a rate, we determine the total number of 
operations, then divide by the total time. Why should it 
be any different when the workload is divided into two 
different programs? If we take the total number of oper- 
ations over both programs and divide by the total time, 
we get the actual performance for the work done. 

Weighted Means 
The arithmetic, geometric, and harmonic means were 
discussed earlier using equal weightings to clearly 
show their properties. To properly weight the means, 
we assign a weight wi to each of the benchmarks. The 
weights add to I and represent the fraction of the work- 
load done by benchmark i. Weighted versions of each 
of the means are as follows: 

A-mean = i w,M, 
i=l 

G-mean = i (M,)“l 
,=l 

H-mean = 1 

1.2 1.4 1.6 1.8 

Benchmark 2 performance 
in mflops 

1 10 100 1000 

Benchmark 2-performance 
in mflops 

(a) (W 

FIGURE 1. Mean Performance on Two Benchmarks When Benchmark 1 is a Constant 1.0 mflops. 
(a) Benchmark 2 varies from 1.0 to 2.0 mflops. (b) Benchmark 2 varies from 1 to 1000 mflops. 
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DISCUSSION AND CONCLZJSIONS 
Initially, this article claimed that problems with some 
of the single-number performance measures have be- 
come more evident with the introduction of vector and 
parallel computers. We can now show this graphically. 
Let us assume two benchmarks are run, and bench- 
mark 1 always performs at a constant rate of 1.0 mflops. 
We vary the performance of benchmark 2 and plot the 
arithmetic, geometric, and harmonic means of the two 
benchmarks. First, in Figure la, we let the performance 
of benchmark 2 vary from 1.0 to 2.0 mflops. That is, 
performance on the two programs is approximately 
equal. We see that there is relatively little difference 
between the three means. They are equal when the 
performance of benchmark 2 is 1.0; otherwise, the 
arithmetic mean is slightly higher than the geometric 
mean, which is slightly higher than the harmonic 
mean.. In Figure lb, the performance of benchmark z is 
varied from 1 to 1000 mflops. We now see substantial 
differences in the three means, literally orders of mag- 
nitude. Note that Figure lb uses logarithmic axes. The 
arithmetic mean increases linearly with the perfor- 
mance of benchmark 2. The geometric mean increases 
as the square root of the performance of benchmark 2, 
and the harmonic mean asymptotically approaches the 
constant 2.0 mflops. The harmonic mean is in accord 
with Amdahl’s law, which, when applied to this exam- 
ple, asserts that making the second program infinitely 
fast will only have the total time used by both pro- 
grams. (An interesting discussion of Amdahl’s law and 
several related issues can be found in [3].) We see that 
geometric mean does not overstate true performance as 
much as arithmetic mean, but still can overstate per- 
formance substantially, especially as the performance 
difference between fast and slow programs becomes 
large. 

In this article we have reached the following conclu- 
sions: 

(1) 

(2) 

(31 

‘4rithmetic mean can be used as an accurate mea- 
sure of performance expressed as time. On the 
other hand, it should not be used for summarizing 
performance expressed as a rate such as mflops. 
Geometric mean should not be used for summariz,- 
ing performance expressed as a rate or as a time. 
Harmonic mean should be used for summarizing 
performance expressed as a rate. It corresponds ac- 
curately with computation time that will actually 
be consumed by running real programs. Harmonic 

mean, when applied to a rate, is equivalent to cal- 
culating the total number of operations divided by 
the total time. 

(4) If performance is to be normalized with respect to 
a specific machine, an aggregate performance mea- 
sure such as total time or harmonic me;sn rate 
should be calculated before any normalizing is 
done. That is, benchmarks should not be individ- 
ually normalized first. 

This article has only examined the problem of reduc- 
ing data to a single number that accurately character- 
izes performance. Issues related to acquiring the bench- 
mark data are, at least, as important, and are much 
more difficult. In the realm of scientific computing, 
[I, 41 ‘contain excellent discussions of the entire bench- 
marking process. 
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