CHAPTER 6

Memory Systems

Slave Memories and Dynamic Storage Allocation ottt 371
M. V. Wilkes

Structural Aspects of the System/360 Model 85, Part II: The Cache 373
J. 8. Liptay

Lockup-Free Instruction Fetch/Prefetch Cache Organization 380
D. Kroft

Using Cache Memory to Reduce Processor-Memory Traffic 387
J. R. Goodman

Improving Direct-Mapped Cache Performance by the Addition of a

Small Fully-Associative Cache and Prefetch Buffers 395
N. P. Jouppi

One-Level Storage Systemttt ittt ettt rneecaanrananeee e eannn 405
T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner

Performance of the VAX-11/780 Translation Buffer: Simulation and Measurement 418
D. W. Clark and J. S. Emer

Organization and Performance of a Two-Level Virtual-Real Cache Hierarchy 434

W.-H. Wang, J.-L. Baer, and H. M. Levy

6.1 Introduction

The function of a computer’s memory system is simple—
writing, storing, and reading data stored at addressable
locations in electronic, magnetic, or other media.
Nevertheless, in modern practice, the implementation
complexity of memory systems rivals that of processing.
Furthermore, the resources devoted to memory systems
dwarfs those spent on processing. Even most of the
transistors used in modern microprocessors are memory
system components: registers, translation lookaside
buffers (TLBs), one or two level-one caches and, increas-
ingly, level-two cache tags and/or data. Burks, Goldstein,
and von Neumann foresaw this trend in 1946 [2]:

Ideally one would desire an indefinitely large
memory such that any particular . . . word would
be immediately available—t.e., in a time which is
somewhat or considerably shorter than the operation
time of a fast electronic multiplier. This may be

assumed to be practical at the level of about 100
psec. Hence the availability time for a word in
memory should be 5 to 50 psec. It is equally
desirable that words may be replaced with new
words at about the same rate. It does not seem
possible physically to achieve such capacity. We
are therefore forced to recognize the possibility
of constructing a hierarchy of memories, each of
which has greater capacity than the preceding but
which is less quickly accessible.

These words remain prophetic half a century later
as gigahertz superscalar processors read and write
words at a rate seven orders of magnitude faster than
Burks et al. considered. What has changed is our under-
standing of how to engineer memory hierarchies.

In theory, memory hierarchies can be characterized
by Hennessy and Patterson’s [7] four questions that
assume the “upper” level is caching the “lower” level

364 Chapter 6/ Memory Systems

and data are moved between them in “blocks™:

® Where can a block be placed in the upper level?
(Block placement)

® How is a block found if it is in the upper level?
{Block identification)

B Which blocks should be replaced on a miss?
(Block replacement)

B What happens on a write? (Write strategy)

In practice, memory hierarchy design bifurcates
into design issues for hardware caches and virtual
memory. Other examples of what could be considered
memory hierarchy design, such as register allocation,
file /O, tape archiving, and proxy server URL caching
are, in practice, not considered part of the memory system.

For these reasons, this chapter will concentrate on
the development of hardware caches, virtual memory,
and then some interactions between them. We assume
that readers are familiar with caches and virtual memory
through the reading of textbooks such as Hennessy and
Patterson [7, ch. 5]. Therefore, we will not devote
space to introducing the basic concepts. Some readers
many also notice that our selection of readings does
not include some of the great survey articles that
taught many people about caches and virtual memory.
Notable among these are Smith’s 1982 cache survey
[17] and Denning’s 1970 virtual memory survey [5].
We instead concentrate on the primary sources that
have developed the field. Nevertheless, Smith and
Denning’s surveys are good reading for those interested
in seeing historical snapshots of the state of the art.

Even though this chapter focus on architectural
issues, it is important to remember the fundamental
role of the technologies of memory. Modern computers
are not possible without economical large memories.
The first technology to meet the challenge was the
ferrite core memory developed in the late 1940s by
MIT’s Project Whirlwind. Core used a two-dimensional
array of magnetic donuts with row and column control
signals that constructively interacted only at the
addressed bit. Core was eventually supplanted by a
second memory technology still in unchallenged
dominance today: semiconductor memory. Furthermore,
the characteristics of semiconductor memories deployed
continues to change rapidly as packages and protocols
evolve (e.g., SDRAMs, Rambus, and integrated circuits
that combine logic and dynamic RAM [16]). These
economical memory technologies—together with non-

volatile magnetic storage (e.g., disks)}—are arguably
more critical to economical computers than the com-
paratively few transistors used for processing.

6.2 Cache Origins

A hardware cache is an application of memory hierarchy
principles yielding a hardware upper level that caches
information from main memory (or a lower level
cache) in a manner functionally transparent to software.
Block placement, block identification, block replacement,
and write strategy are handled by hardware. Block
placement is usually limited to much less than the whole
cache (direct-mapped or set-associative) to ease the
implementation of associative block identification.
Blocks are identified by explicitly storing either a main
memory address (physical address) or a program address
(virtual address). Block replacement uses simple hard-
ware algorithms, such as least-recently used (LRU),
pseudo-LRU, or random. Writes either update memory on
replacements (write-back) or on all writes (write-through).
Write misses may or may not allocate new cache blocks.

6.2.1 Wilkes’s “Slave Memories and Dynamic
Storage Allocation” [23]

Maurice Wilkes invented the cache with the seminal
observation that Gordon Scarrott’s instruction buffering
ideas could be applied to data as well as instructions.!
Wilkes presents his ideas for data caches (“slave memory™)
in a 1.5-page 1965 paper. The paper includes three direct-
mapped cache designs that are not important in and of
themselves. What is important is that the paper brought
out the potential of caching to the world, in general, and
the IBM System/360 Mode! 85 designers, in particular.

6.2.2 Liptay’s “Structural Aspects of the
System/360 Model 85, Part II: The Cache” [12]

The first commercial realization of the cache concept
came just 3 years later in the IBM System/360 Model
85 {12]. The Model 85’s cache was so effective that it
derailed interest in the much more complex out-of-
order microarchitectural techniques of the cache-less
Model 91 (e.g., Tomasulo’s Algorithm) [1].

Liptay’s paper is important, because it describes
the first commercial cache and the first cache performance
studies. In modern terms, the Model 85’s 16 Kbyte cache
is divided into 16 fully associative 1 Kbyte blocks (called
“sectors” in the paper). Large blocks reduce the
amount of expensive tag logic. Each block is further

Ipersonal communication with Maurice V. Wilkes on 10 August 1¢93. Gordon Scarrott was with International Computers and Tabulators,

the major British computer company of the period.

subdivided into sixteen 64-byte subblocks (called
“blocks” in the paper) with per-subblock valid bits. A
block hit and subblock miss loads a 64-byte subblock
and sets its valid bit. A block miss replaces the LRU
block and performs a subblock miss. The cache uses
write-through with no write allocation, so block
replacement is trivial.

Performance evaluations used trace-driven
simulation to find an average hit ratio of 96.8% and
mean performance relative to an ideal system of 81%.
Also studied were alternative caches of larger size,
larger block size, more limited associativity, and a
pseudo-LRU replacement algorithm. This work was
very impressive for appearing only 3 years after the
first cache paper.

6.3 Cache Advances

Of the hundreds of memory system papers that have
been written, it is hard to select just a few. These next
three represent key qualitative advances in different
dimensions. Kroft introduces lockup-free or non-blocking
caches. Goodman outlines a snooping cache coherence
protocol. Jouppi gives some techniques made practical
as custom VLSI replaces discrete RAM chips at the
fast end of the memory hierarchy.

6.3.1 Kroft’s “Lockup-Free Instruction
Fetch/Prefetch Cache Organization’ [11]

Until the 1990s, a cache miss stalled the processor until
the miss was handled. This approach was so common it
was usually an unstated assumption. For two reasons,
handling one miss at time—called a blocking or lockup
cache—becomes problematic when cache miss
occurences become very large relative to the number
of cache hits. First, the processor and cache cannot
hide the latency of a cache miss by overlapping it with
other work. Second, the memory bandwidth available
is limited to the cache block size divided by the cache
miss latency [18]. On the other hand, building an
n-way non-blocking or lockup-free cache that allows
up to n outstanding misses provides both latency toler-
ance and memory bandwidth up to n times that of a
blocking cache. Of course, a nonblocking cache is useless
unless its processor is capable of doing useful work,
usually including memory references, while one or
more misses are outstanding.

Kroft presented the first design for a nonblocking
cache in 1981, a full decade before common commercial
use. The paper focuses on specific details of one design,
but this design has served as a basis for many commercial

Cache Advances 365

designs that followed. Key are n miss information/status
holding (MSHR) registers. Each MSHR register holds
information pertinent to one outstanding miss. On a
cache reference, MSHRs are searched concurrently
with the main cache to suppress a main memory reference
on a cache miss, but MSHR hit. Specific MSHR state is
needed to keep track of the block’s address, where the
block will go into the cache, how much of the block
has been returned from memory so far, which words
have outstanding reads (including transaction identi-
fiers), and which words have been (partially or totally)
overwritten by stores. Kroft reports, without analysis,
that four MSHR registers can be supported with a 10%
increase to overall cache cost. Today, most caches are
nonblocking, and we expect the trend toward non-
blocking to continue.

6.3.2 Goodman’s “Using Cache Memory to
Reduce Processor-Memory Traffic” [6]

Entering the 1980s, caches were prized for reducing
effective memory latency in uniprocessors. Caches were
also used in small-way multiprocessors {(e.g., two-way
systems from IBM) where coherence was maintained
by generating “cross invalidations” on every write.
There were also complex (in late 1970s technology)
schemes for using a centralized directory to reduce the
negative effects of frequent invalidations [21].

Goodman’s paper entered with two contributions.
First, he observed that caches can be used to reduce
bandwidth (as well as latency). This observation is
typical of influential ideas. It changed the way people
think sufficiently that it now seems too obvious to be a
contribution. Goodman noted that bandwidth is
reduced more by using write-back instead of write-
through. A write-back cache with B-word blocks, a
miss ratio m, a fraction d block dirty at replacement
time multiplies the bandwidth required from/to memory
by a factor of m X B X (1 + d). The factor is much less
than 1.0 for reasonable miss ratios. In addition,
Goodman advocated using subblocking so that small
subblocks could be transferred on misses (transfer
blocks), whereas address tags are asspciated with larger
blocks (address blocks).

Goodman’s caches could reduce bandwidth require-
ments enough that a multiprocessor could use a bus as
an interconnect, provided the cache coherence problem
could be simply solved for write-back caches.
Goodman'’s second contribution was to solve this problem
with the write-once protocol, the first snooping coherence
protocol. On the first write to a block, the write-once

366 Chapter 6 / Memory Systems

protocol performs a write-through that also invalidates
other cached copies. On subsequent writes, write-back
is used. Write-once spawned a series of alternative
snooping protocols that were then unified with
Sweazey and Smith’s MOESI framework [19]. Today,
snooping on a bus is considered a solved research
problem and is a solution used in all but the largest
commercial multiprocessors.

6.3.3 Jouppi’s “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers” [9]

Memory system performance is frequently improved
by devoting more resources to larger or more levels of
traditional caches. Alternatively, one could spend
some of those resources on special buffers and
additional logic to accelerate traditional caches. This
alternative does not work so well at the board level,
because the chips for small special buffers could use as
much board area as that of a traditional cache. The special
buffer alternative is much more viable in future systems,
where many caches are implemented in custom logic
on microprocessor chips. Here the die area of special
buffers is roughly proportion to special buffer capacity.
Thus, adding 1-Kbyte buffer (plus logic for using it)
next to a 64-Kbyte cache might increase die area only
1-3%. So what special buffers are useful? Jouppi gives
some initial answers, but, we believe, researchers of
the future will find many more.

Specifically, Jouppi proposes two types of special
buffers: victim caches and stream buffers (and miss
caches that are obsoleted by victim caches). A victim
cache is a small, fully associative buffer behind a cache
that holds recently replaced blocks and can provide them
much faster than memory can (or the next level of
cache). A victim cache reduces the negative effect of
conflict misses by providing conflicting blocks faster
than misses to memory can. A stream buffer prefetches
blocks from memory into the stream buffer at addresses
sequentially after a miss. Blocks are moved from the
stream buffer into the cache only if they are actually
referenced. Multiple stream buffers can prefetch after
multiple misses. Stream buffers can be extended to
nonunit stride prefetching [13]. Thus, stream buffers
reduce both capacity and compulsory misses.

6.3.4 Cache Directions

Three other major cache trends are also apparent. First,
one level of cache is increasingly being replaced by
two levels. This change is occurring because memory

is getting much slower relative to processors, causing
caches to spend more time missing. One option was to
make caches larger so they would miss less often. Very
large caches, however, could slow down the common
case of a cache hit. Thus, designers searched for another
way to reduce the miss time. A solution was to add a
level-two cache to exploit locality in level-one cache
misses [14]. Multiple levels of caches. however, make
maintaining coherence more difficult, as we will see
for Wang, Baer, and Levy’s paper [22].

Second, instruction cache design is getting much
more complex, because modern superscalar processors
can require many instructions per cycle. Furthermore,
increased issues widths and branch speculation make it
possible that instructions fetched in a given cycle must
come from two or more basic blocks. This forced
researchers toward multiported caches [24] and trace
caches that contiguously cache dynamically contiguous
instructions that may not be contiguous in memory [15].

Third, multiprocessor cache issues are moving
well beyond simple snooping, as discussed in the
shared-memory multiprocessor papers of Chapter 9.

6.4 Virtual Memory

Virtual memory is an application of memory hierarchy
principles that allows main memory to cache information
from magnetic disks or other secondary storage media.
Virtual memory systems use a combination of operating
system and hardware support to move and cache data in
blocks called pages. Page placement is done by the
operating system, usually by considering all free page
frames as equivalent. Page identification begins by
placing all code and data in a virtual address space that
is unconcerned with the level (memory or disk) or
location (physical address or disk address) at which the
information actually resides. Virtwal memory systems
could follow caches and do page identification by
explicitly storing virtual addresses with each page
frame. Instead, most modern virtual memory systems
use a level of indirection through a page table to translate
a virtual address into main memory’s physical addresses.
Page tables are large and must be stored in memory. To
avoid doing one (or more) extra memory references
per memory reference, recent translations are cached
in a special hardware cache called a translation
lookaside buffer (TLB). Thus, the common case of
page identification is performed completely in hardware
by the TLB. Page replacement is handled by the operat-
ing system, usually using some approximation to LRU.
Write strategy is always write-back with write-allocation.

We have sclected two papers pertinent to virtual
memory. Kilburn et al. describe the first implementation of
virtual memory in the Manchester Atlas. Clark and Emer
describe the virtual memory state of the art circa 1980.

6.4.1 Kilburn et al’s “One-Level Storage System’ [10]
Virtual memory was both first proposed and first
implemented in the Manchester Altas. Kilbumn et al.
describe the Atlas in general and its virtual memory
system in particular. Even though the general description
provides a history lesson, we will concentrate on the vir-
tual memory aspects described mostly in sections 3 and
5. What is most important is that the Altas introduced
many seminal concepts: address translation, demand
paging, page-fauit interrupts, reference bits, and multi-
programming made more transparent by virtval memory.

Specifically, programs running on the Atlas use
virtual addresses to transparently access 50-bit (four
character) words actually stored in a 16-K-word main
memory (ferrite core “central store”) or on a 96-K-
word magnetic drum. Main memory held 32 512-word
pages. The virtual address for each page was stored in
a “page address register” (PAR). The 32 PARs can be
thought of as “cache tags” for memory’s 32 pages or as
32-entry fully associative TLB that maps all memory.
On a program memory reference, the 32 PARs are
associatively searched. On a match (“equivalence™),
memory data is returned. If there is not a match, an
interrupt is generated that context-switches the processor
to a page fault handler. If main memory has a free page,
the handler loads the page from drum and resumes the
program. Otherwise, it must first replace a page. The
Altas includes reference bits (use digits) to aid page
replacement but uses a replacement policy much more
complex that a modern approximations to LRU (the
learning program). It probably took experimental data
from actual operation to inform designers that a simpler
policy would suffice.

6.4.2 Clark and Emer’s “Performance of the
VAX-11/780 Translation Buffer: Simulation and
Measurement” [9}

Clark and Emer describe and evaluate a state-of-the-
art virtual memory system from the late-1970s: the
memory system of DEC VAX-11/780. The VAX-11
architecture was the first widely successful 32-bit
architecture designed specifically with virtual memory
in mind and represents the state of the art some twenty
years after the Atlas. Clark and Emer introduce how the
VAX-11 page tables translate 32-bit virtual addresses

Virtual Memory 367

without occupying too much physical memory, describe
how the VAX-11/780’s TLB operates, and present
influential performance results from system monitoring.

VAX-11 divided a 32-bit virtwal address space
into three 1-Gbyte regions: system space (S0), a process
space for program text and heap (P0), and process space
for stack (P1). Paging was done with 512-byte pages
(probably too small even for 1978). Translation infor-
mation for pages was stored in a page table entry
(PTE) in a linear page table. The index within a page
table for a page’s PTE could be obtained by selecting
high-order virtual address bits. The SO page table
resided at a well-known physical address. PO and P1
are process specific and reside at a well-known address
in SO virtual space. A context switch can change the
PO/P1 page tables but not the SO page table. PO/P1
page table overhead is reduced two ways. First, PO and
P1 grow toward each other and have limit registers to
avoid allocating PTEs for unallocated pages. Second,
PO/P1 PTEs reside in SO virtual space and can be
paged. This means, however, that a user reference can
suffer two page faults—one for the user page and one
for the comesponding PTE—but that the physical
memory devoted to page tables is dramatically reduced
from the naive 32 Mbytes (4 bytes/PTE X 4 Gbytes /
512 bytes/PTE).

All VAX-11 implementations accelerated address
translation with a TLB. The VAX-11/780’s TLB contained
128 translations. It was two-way set-associative with
random replacement. Half the sets were devoted to SO
translations and half to PO/P1 translations. The PO/P1 were
flushed on context switches. Data references access the
TLB before accessing the VAX-11/780’s cache.
Instruction references saved the translation of the current
instruction page and bypassed the TLB on sequential
instructions that did not cross a page boundary.

The paper used a combination of system monitoring
and trace-driven simulation to evaluate the VAX-
11/780’s TLB. Results were so influential that they are
now mostly well known: Operating system reference
miss ratios are much higher than user miss ratios, data
misses per instruction are consistently greater than
instruction misses per instruction, “double” TLB misses
were rare, and the VAX-11/780’s TLB was adequate
(adding only 0.7 cycles to the VAX-11/780’s 10 cycles
per instruction).

6.4.3 Virtual Memory Directions

We see three major trends in virtual memory systems.
First, some TLBs must translate enormous regions of

368 Chapter 6 / Memory Systems

memory; for example, to avoid TLB misses on accesses
to multiple-gigabyte database buffer pools. Moreover,
TLBs are now on microprocessor chips that must be
deployed in both personal computers and large servers.
A “one-size-fits-all” TLB is often overkill for a personal
computer and is still inadequate for a large server. One
answer is to augment the virtual memory system to also
support large, aligned superpages (e.g., 4 Mbytes).
Superpages, however, complicate the operating system
and the TLB and are not (yet) easy to use in general {20].

Second, commercial microprocessors are making
the transition from 32-bit to 64-bit virtual addresses.
Larger addresses make it more difficult to do translation
quickly. To make matters worse, many modern language
systems wish to do dynamic memory allocation sparsely
distributed about the virtual address space. These trends
make more desirable page table designs that perform
address translation via hashing physical addresses [3, 8].
This is because these inverted or hashed page tables
occupy memory in proportion to physical memory size,
not virtual address space size.

Third, the interactions between caches and TLBs
is becoming more difficult as we discuss next.

6.5 Cache and Virtual Memory Interactions

Conventionally, address translation is performed
before cache access, making the cache a physical
cache. Even so, address translation can be implemented
in parallel with the first part of a cache access if the
cache can be indexed with bits within the page offset
(that do not change in translation). This requires that
the cache size not exceed the page size times the
cache’s associativity. Today, however, we often want
tevel-one caches that are larger than a typical page size
(4 Kbytes or 8 Kbytes) times the associativity (1-4).
These physical caches require address translation to
complete before the cache access begins.

Alternatively, researchers have long argued for
virtual caches that are indexed and tagged with virtual
addresses [17]. Virtual caches do not require address
translation on cache hits. Virtual caches, however,
have not been widely deployed because of issues of
synonyms and context switch requirements. Synonyms
are two different virtual pages that map to the same
physical page. Context switches force a virtual cache to
deal with the same virtual page (from different contexts)
mapping to different physical pages.

In our view, virtual caches may become more

important in future systems. Solutions exist to the synonym
and context switching problems (e.g., as discussed next by
Wang et al. [22]). Today’s superscalar processors can
perform many instructions per cycle. Tomorrow’s will do
many memory references per cycle. Performing muitiple
address translations per cycle may prove complex
enough to make virtual cache more attractive.

6.5.1 Put It All Together: Wang, Baer, and Levy’s
“Organization and Performance of a Two-Level
Virtual-Real Cache Hierarchy” [22]

Wang, Baer, and Levy present a case study that nicely
incorporates (1) multiple levels of cache, (2) virtual
caches, and (3) cache coherence. Level-one (L1)
caches are virtual to ease address translation concerns.
Level-two (L2) caches are physical and always contain
a superset of the blocks in the L1 caches, called mulrilevel
inclusion. Cache coherence is done on physical addresses
by the L2 caches. L2 cache blocks maintain pointers to
L1 cache blocks to solve the synonym problem and
forward pertinent coherence traffic.

The specifics of Wang et al.’s solution are as follows.
Each L2 cache block includes some extra state and a
pointer, the vpointer, indicating where the block is in
the level one (if it is). (Multiple pointers are needed
when the L1 block size is smaller than the L2 block
size.) The pointer size is usually small, because it is
log, of the number of L1 cache block less the number
of index bits that do not change in address translation.
Coherence requests only go to the L1 cache for valid
vpointers. Furthermore, an L1 miss that finds a vpointer
to another L1 block knows it has encountered an active
synonym, which it remaps or moves. L1 blocks contain
a second valid bit, sv, which is reset on a context
switch. Blocks with valid set and sv reset have valid
data whose mapping needs to be reverified with the L2
cache. Thus, Wang et al.’s solution maintains three
invariants: (1) An L1 block always has a corresponding
L2 block that points back to it; (2) a block is present in
the L1 cache at (at most) one virtual address even if
synonyms exist; and (3) an L1 virtual tag is valid for
this context if sv is set.

The inclusion of Wang et al.’s design cache study
should not be construed as a prediction that most
future memory hierarchies will follow their design. In
particular, many current systems use physical level-one
caches and do not maintain inclusion, especially for
instruction caches.

6.6 References

t1]

(21

31

(4]

(5]

(6]

71

(8]

9

[10]

(]

(12]

(13]

D. W. Anderson, F. J. Sparacio, and R. M.
Tomasulo, “The IBM System/360 Model 91:
Machine philosophy and instruction-handling” IBM
Journal, 11(1):8-24, Jan, 1967.

A. W. Burks, H. H. Goldstine, and J. von Neumann
“Preliminary discussion of the logical design of an
electronic computing instrument,” Tech. rep., U.S.
Army Ordinance Department, 1946.

A. Chang and M. F. Mergen, “801 storage:
Architecture and programming,” ACM Transactions
on Computer Systems, 6(1):28-50, Feb. 1988.

D. W. Clark and J. S. Emer, “Performance of the
VAX-11/780 translation buffer: Simulation and
measurement,” ACM Transactions on Computer
Systems, 3(1):31-62, Feb. 1985.

P. J. Denning, “Virtual memory,” ACM Computing
Surveys, 2(3):153-189, Sept. 1970.

J. R. Goodman, “Using cache memory to reduce
processor-memory traffic,” Proceedings of the 10th
Annual International Symposium on Computer
Architecture, pp. 124-131, 1983.

J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, 2nd ed. San
Francisco, CA: Morgan Kaufmann, 1996.

J. Huck and J. Hays, “Architectural support for
translation tables management in large address space
machines,” Proceedings of the 20th Annual
International Symposium on Computer Architecture,
pp. 39-50, May 1993.

N. P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers,” The 17th
Annual International Symposium on Computer
Architecture, pp. 364373, May 1990.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and
F. H. Sumner, “One-level storage system,” IRE
Transactions, EC-11(2):223-235, 1962.

D. Kroft, “Lockup-free instruction fetch/prefetch
cache organization,” Proceedings of the 8th Annual
Symposium on Computer Architecture, pp. 81-87,
May 1981.

1. S. Liptay, “Structural aspects of the system/360
Model 85, part II: The cache,” IBM Systems
Journal, 7(1):15-21, 1968.

S. Palacharla and R. E. Kessler, “Evaluating stream
buffers as a secondary cache replacement,”
Proceedings of the 21st Annual International
Symposium on Computer Architecture, pp. 24-33,
Apr. 1994,

[14]

{15]

[t6]

17

(18]

[19]

[20]

[21]

22

(23]

[24]

References 369

S. Przybylski, M. Horowitz, and J. Hennessy,
“Characteristics of performance-optimal multi-level
cache hierarchies,” Proceedings of the 16th Annual
International Symposium on Computer Architecture,
pp. 114-121, June 1989.

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace
cache: A low latency approach to high bandwidth
instruction fetching,” Proceedings of the

International Symposium on Microarchitecture,
pp- 24-34, Dec. 1996.

K. Sakamura, “Special issue on advanced DRAM
technology,” IEEE Micro, 17(6), 1997.

A. J. Smith, “Cache memories,” ACM Computing
Surveys, 14(3):473-530, 1982.

G. Sohi and M. Franklin, “High-bandwidth data
memory systems for superscalar processors,”
Proceedings of the Fourth International Conference
on Architectural Support for Programming
Languages and Operating Systems, pp. 53-62,
Santa Clara, CA, 1991.

P. Sweazey and A. J. Smith, “A class of compatible
cache consistency protocols and their support by the
IEEE futurebus,” Proceedings of the 13th Annual
International Symposium on Computer Architecture,
pp- 414423, June 1986.

M. Talluri and M. D. Hill, “Surpassing the TLB
performance of superpages with less operating
system support,” Proceedings of the Sixth
International Conference on Architectural Support
Jor Programming Languages and Operating
Systems, pp. 171-182, San Jose, CA, 1994.

C. K. Tang, “Cache system design in the tightly
compled multiprocessor system,” Proceedings of the
AFIPS National Computing Conference, pp. .
749753, June 1976.

W.-H. Wang, J.-L. Baer, and H. M. Levy,
“QOrganization and performance of a two-level
virtual-real cache hierarchy,” Proceedings of the
16th Annual International Symposium on Computer
Architecture, pp. 140-148, June 1989.

M. V. Wilkes, “Slave memories and dynamic storage
allocation,” IEEE Transactions on Electronic
Computers, EC-14(2).270-271, 1965.

T.-Y. Yeh, D. Marr, and Y. N. Patt, “Increasing the
instruction fetch rate via multiple branch prediction
and branch address cache,” Proceedings of the 1993

ACM International Conference on Supercomputing,
pp- 51-61, July 1993.

