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2.1 Introduction

This chapter is not about computer architecture, per se,
but about the methods used to evaluate alternative
architectures. We include this introduction to methods
because disciplined methods are essential for the
advancement of computer architecture, as they are for
all branches of science and engineering.

The chapter begins with a review of the scientific
method and calls for its increased use in practice. It
then discusses the three major classes of methods that
computer architects use: analytic modeling, simulation,
and system monitoring. Each section includes case
studies to illustrate concepts. The chapter concludes
with a discussion comparing methods and introductions
to the included papers.

2.2 The Scientific Method

One model of innovation is that a person should come
up with an idea (inspiration) and then argue orally or in
writing for the idea. This approach works well in some
fields, for example, philosophy and literary criticism.
However, it works less well in science and engineering.
In science and engineering, more progress has been
made by subjecting new ideas to reality to see if they are
better than existing ideas.

Francis Bacon crystallized this approach as the
two-part scientific method in Novum Organum (1620).
In the first part, the scientist comes up with a wild new
idea with a flash of inspiration after years of delving
into a problem. This idea is called a hypothesis. In the
second part, the scientist puts the new idea to
experimental tests to see whether it is actually better
than existing alternatives. A hypothesis that has

withstood the scrutiny of many experiments is called a
theory. It is this second part that separates the scientific
method from other methods of inquiry.

Applying the scientific method to engineering
problems, such as in computer architecture, involves
an additional degree of freedom. Principally, scientists
seek to discover the phenomenon that is “out there,”
while engineers design new phenomenon. Technologies
change, workloads change, and architectural ideas
change. Thus, we can never do experiments to identify
the best cache ever.

Nevertheless, architects are often lax in applying
the scientific method. All too often, people develop an
idea and then write some simulations to support the
idea in one or more papers.

A more proactive application of the scientific
method was presented by Platt [14]. Consider Platt’s
method applied to the problem of determining why a
multiprocessor program runs so slowly:

8 Develop alternative hypotheses. Hypothesis 1:
The program has synchronization bottlenecks.
Hypothesis 2: The program is taking too many
cache misses. Having multiple hypotheses gives
parallelism to the following steps and helps keep
us from getting too attached to one hypothesis.

B Develop one or more experiments that can exclude
or corroborate an alternative hypothesis. Experiment
1: Add code in every critical section that stalls for
time 7 and counts how often it is executed. Can you
develop experiments for Hypothesis 2?

B Predict experimental results before running the
experiment. If Hypothesis 1 is true, a P-processor
program that executes S stalls should slow by much
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more than T X S/P. If not, Hypothesis 1 is excluded.
B Run experiments. If the program runs only

T X S/P slower, then Hypothesis 1 is excluded.

We can continue with experiments for our

alternatives or return to the first step and develop

new hypotheses. If the program does run much
more slowly, then Hypothesis 1 is corroborated.

We should develop refined hypotheses (e.g., the

synchronization bottleneck is for data structure

A or B) and return to the first step.

Most computer architects agree in principle that
using the scientific method is a good idea. Nevertheless,
the literature is replete with examples in which
authors see an effect, speculate about its cause, and
move on without conducting an experiment to
corroborate their speculation.

2.3 Analytic Modeling

Computer architects study computer systems with
three basic methods: analytic models, simulation, and
system monitoring. We now discuss each in turn.

Analytic models are an important—and currently
underutilized—tool for understanding computer
systems (and avoiding being drowned in data).
Analytical models are mathematical expressions that
approximate some behaviors of a system by capturing
some system features and omitting others [10-12]. An
accurate model predicts system behavior close to actual
behavior. An insightful model omits irrelevant system
aspects so that what remains captures the essence of
what is important. Ideally, one prefers accurate,
insightful models, but it is often worth trading some
accuracy for much greater simplicity.

The rest of this subsection seeks to whet your
appetite for analytic models by introducing some simple
ones, hinting at more powerful techniques, and give
three cache modeling case studies.

2.3.1 Three Simple but Useful Models

Analytic models vary from simple to complex. Three
useful simple ones are Little’s Law, simple queues, and
Amdahl’s Law.

Little’s Law. This law applies to any stable (i.e.,
the number customers in the system does not go to
infinity) system that can be modeled as a queue (i.e.,
customers arrive, wait for service, are serviced, and

leave) [10, 12]. Little’s Law says:

Average number of customers in the system =
Average rate customers leave X

Average time a customer spends in the system.

Consider an application of Little’s Law to a
nonblocking cache. How many outstanding requests K
should be supported to process a miss every 50 ns to a
memory whose average latency (with contention) is
200 ns? The answer given by Little’s Law is four
requests = (one request/50 ns) X (200 ns). In many
cases, however, one would want more than four to
handle “bursts” of requests. Simple queues provide a
way to model burstiness.

Simple queues. Consider a model of a queue to a
single server, where the queue size does not grow to
infinity (i.e., the queue is stable) and customers arrive at
a time independent of the current time (stationary) as
well as independent of the number of customers
already enqueued (open) [10, 12). Let throughput be
the rate customers leave this queue and utilization the
fraction of time the server is busy. Then, for this
so-called G/G/1 queue:

Throughput = 1
Average time between customer arrivals

Utilization = Average time to service a customer
Average time between customer arrivals.

\

Often, we can further assume that customers
arrive at a time independent of past arrivals (Poisson or
Markovian arrivals) and service times are distributed
exponentially (Markovian service times).! These
additional assumptions create an M/M/1 queue and
allow us to estimate average latency—the time from
when a customer arrives to when it leaves—with a
simple equation:

Average latency = Average time to service a customer
1-Utilization.

To see the utility of an M/M/1 queue, consider
designing a simple nonpipelined bus where requests
will arrive “at random” about every 50 ns, and you are
supposed to service them with a latency of no more than
55 ns. If you pretend that requests come in at precisely

1 An exponential service time distribution means that the probability that a particular service time is less than x is 1 - e*“s, where s is the
average service time. In practice it is not critical that service times be distributed exactly exponentially. It is only important that many service
times are not much larger than others. In particular, the following result is only slightly pessimistic approximation of a system where all

service times are exactly equal (deterministic).



50-ns intervals, designing a bus with a service time of
49 ns seems sufficient. If you do this and requests come
in at random, bursts will cause the actual latency to be
about 2450 ns (49/[1 - 49/50]). To handle bursts, the
M/M/1 queue predicts you should instead “over”-design
the bus by a factor of two, because a service time of 25
ns yields an average latency of 50 ns (25/[1 - 25/50]).

An important corollary of M/M/1 queues is that
one can design for high utilization or low latency but
not both, as long as arrivals come at random. A queue
with 90% utilization has a latency 10X worse than the
average time to service a customer, whereas a queue
whose latency is 10% worse than the average time to
service a customer has a utilization of 9%. Improving
utilization and latency together requires that arrivals
not be random (e.g., by using schedules).

Amdahl’s Law. Amdahl’s Law is so well known
that people sometimes forget how widely applicable it
is [2]. Consider a system that originally spends F fraction
of time, 0 < F < 1, doing function X. Consider an
enhancement that speeds up function X by:

Sy = Time to do X originally
Time to do X with enhancement

If the new system performs X at the same
frequency, then Amdahl’s Law predicts:

Overall speedup = 1
([1-F) + F/Sy).

For example, let’s calculate the overall speedups
for (1) a factor of ten improvement in a function used
5% of the original time and (2) a 10% improvement of
something that operates 95% of the time. Plugging values
into Amdahl’s Law reveals speedups of 1.047 for (1) and
1.094 for (2). Therefore, attack the common case first.
Furthermore, by taking the limit as Sy goes to infinity,
we get:

Overall speedup < 1
1-F

Thus, the improvement because of (a) is bounded
by 1.052.

2.3.2 More Powerful Modeling Techniques

The academic literature is replete with examples of
more powerful modeling techniques. These techniques
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can model effects that are very subtle but that often
require more mathematical sophistication to develop
and use. If you are a student, you may benefit from
taking a few courses in probability, statistics, renewal
theory, Markov chains, and queuing theory.

We do not have the space here to introduce complex
modeling techniques at a level of detail that would allow
the reader to use them. Instead, we will whet your
appetite for two modeling techniques, Markov chains
and queueing networks, and one solution technique,
customized mean value analysis.

A Markov chain describes a system with n states
where the probability that the next state is j given that
the current state is i is pij regardless of all previous
states [10-12]. Markov chains permit simple analysis:
for example, to determine the steady-state probability
of being in state i. Consider a cache coherence protocol
(with states invalid, shared, and exclusive) where we
have measured the state transition frequencies. If we
further assume that one spends about the same amount
of time in each state, a Markov chain can be used to
determine the steady-state probability of being in
each state.

Queuing networks are a very powerful model tech-
nique [10-12]. They are constructed by interconnecting
service centers. Each service center has one or more
servers (one, k, infinite) that serve customers with some
time distribution (exponential, deterministic) after
some queuing discipline (first-come-first-serve, last-
come-first-serve). A center with one server using expo-
nential service time after a first-come-first-serve queue,
for example, would be like the server in an M/M/1
queue. Unlike an M/M/1 queue, however, arrivals are
not likely to be Markovian but are instead determined
by the rest of the queuing network.Z One can use a
queuing network to model a symmetric multiprocessor
memory system as follows: Have a service center for
each processor, each cache, each snoop, the bus, and
the memory. Have cache misses leave the cache,
arbitrate for the bus, use snoops and memory, and so
forth. Probabilities can be assigned based on the type of
bus request and where it finds the data.

Once one has a queuing network, the next step is
to “solve” it to answer questions like, “What is the
average memory latency?” This can be done analytically
for a restricted class of networks called product-form or
separable networks. Alternatively, one can always
simulate the network. In many cases in computer

2There are, however, a useful class of quening networks—product form networks—whose structure lets one treat arrivals as Markovian to

greatly simplify solving for many important properties.
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architecture, customized mean value analysis provides
the most attractive solution method.

Customized mean value analysis (CMVA) works
for a large class of queuing networks but can only provide
mean values [12]. Thus, it can yield the average memory
latency, but not the distribution of memory latencies.
The basic idea is a write a set of custom equations that
describe what a customer must endure. A cache miss,
for example, must go to the bus and may go to other
processors and memory. At each center, the customer
endures some mean queuing delay and some mean service
latency. Mean service latency is easy to calculate. Mean
queuing delay is calculated by assuming customers
arrive “at random” when they are able to arrive.
Sometimes these equations can be solved in closed
form, even though most commonly simple iterative
methods suffice. CMVA has been successfully applied
to many systems. For a recent example, please see
Sorin et al. [20].

2.3.3 A Case Study: Three Cache Models

We next present three cache models to illustrate how
modeling can be productively employed at various
levels of detail to provide varying levels of insight
and accuracy.

Hill’s 3C model of cache behavior is an example
of a very simple model [6]. The 3C model partitions
cache misses into compulsory misses (that must occur
in any cache), capacity misses (because of a cache’s
finite size), and conflict misses (from restricted
associativity). The model defines miss type
operationally. The conflict miss ratio, for example, is
the miss ratio of a cache less the miss ratio of a cache
of the same size and block size that is fully associative
and uses least recently used (LRU) replacement.

The 3C model is simple. It provides some insight
even without numbers. Jouppi, for example, credits it
for helping him come up with victim caches and
stream buffers [8]. On the other hand, the 3C model
does not provide much accuracy or predictive power.
Measuring the 3Cs for a direct-mapped cache, for
example, will not let you predict the miss ratio for a
two-way set-associative cache.

Smith’s set-associative model is less simple but
has more predictive power than the 3C model [6,19].
This model asks:

Why do set-associative cache perform worse
than fully associative ones? Is it that real work-
loads have pathological conflicts? Or is it just

that if you uniformly distribute references
among C sets of small size A, by random chance
some sets will get too many references?

Smith’s model examines these hypotheses. He
uses Bayes’ rule to translate fully-associative miss
ratios for caches of every size into set-associative
miss ratios, assuming misses map independently
and uniformly to all sets. Fully associative simula-
tion data is fed into the model so that it can make
set-associative predictions. These predictions are then
compared with set-associative simulation data. The
results are an excellent fit. Thus, the experiment
corroborates the hypothesis that “random” behavior is
sufficient to explain the difference between set-associative
and fully associate miss ratios.

Smith’s model has predictive power and can be
accurate, byt it is limited to matters of associativity. It
would be n‘t: to have a model that was comprehensive.
Arguably most successful comprehensive cache
model is by \Agarwal, Horowitz, and Hennessy [1].
This model has components for start-up effects, non-
stationary behavior, intraprogram iuteractions, and
interprogram interactions. Within these, intuitive
equations model such things as set-conflicts and spatial
locality. Parameters for the model are gathered from
simulation data. Then the model is validated against
other simulated configurations. The model achieves
good accuracy and excellent relative accuracy across
variations in cache size, associativity, block size, and
multiprogramming degree.

In our opinion, these results make this model the
most successful comprehensive cache model ever.
Why then isn’t every cache designer required to learn
it? The problem is that this model is too complex to
provide insight to a large audience, and it has too many
inputs to be practical for specific predictions. In
particular, gathering all the input parameter values
requires a simulation infrastructure capable of gathering
all the results. A lesson for model designers is that one
should consider both insight and accuracy.

2.4 Simulation

Simulation is arguably the preferred methodological
tool of computer architects. With simulation, a
computer program—<called the simulator—running on
a host computer is used to mimic the functionality, and
usually some performance metrics, of a target computer
system.



2.4.1 Alternative Levels of Abstraction

Simulations can be performed at many levels of abstrac-
tion. At a very high level, one can simulate an analytic
model to solve it. This level blurs the distinction between
analytic modeling and simulation and, perhaps, is best
considered a solution technique for analytic models.

Functional. A functional (or architectural) simulator
mimics at least the application binary interface (ABI) of
the target computer system. Complete functional simulators
will also mimic how the hardware appears to the target
operating system, whereas less-complete ones will
only approximate a subset of the ABI. In any case, the
goal is to be able to run target software correctly as it
reads target inputs and produces target outputs.
Functional simulators also often produce workload
metrics, such as number or instructions or floating-
point multiplies executed. Functional simulators operate
on a workload consisting of one or more target programs
with associated target inputs. This type of simulation is
called execution-driven, because the workload executes
during simulation and can be affected by simulation. In
a multiprocessor simulation, for example, changing the
cache size can affect which thread wins the race to a lock.

A simulator’s slowdown is the time is takes to
execute a simulation of some target software on a host
of comparable power to the target divided by the time
it would take to run the target software on the target.
Smaller slowdowns are good and a slowdown of 1 is
ideal. Functional simulators have slowdowns between
1 and 10.

Microarchitectural. The next level down in
simulation is microarchitectural simulation, the bread-
and-butter technique of computer architects. A
microarchitectural simulation mimics the behavior of
microarchitectural features, such as caches, memory
banks, branch prediction tables, pipeline bypass stalls,
and reservation stations. It produces performance metrics,
such as cycles to execute a program and cache miss ratio.
Microarchitectural simulations can be execution driven
(i.e., present an ABI to target software) or trace driven.
A trace is a log of relevant workload activity (e.g., a
series of dynamic memory references). Trace generation
is performed prior to simulation, for example: by system
monitoring. Trace-driven simulation consumes the
trace as it executes. Traces allow trace generation and
simulation to be decoupled but preclude the simulation
from affecting the traced workload.

Microarchitectural simulations may model aspects
of computer system microarchitecturally, functionally, or
not at all. An execution-driven simulation concentrating
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on cache behavior, for example, could accurately model
cache microarchitecture but just mimic the function of
the rest of the processor. A trace-driven cache simulator
might omit the rest of the processor altogether.
Depending on the level of detail, microarchitectural
simulators suffer slowdowns of 10-10,000.

Arguably, the most powerful current microarchi-
tectural simulator is Stanford’s SimOS [17]. SimOS
can simulate SGI Challenge-like multiprocessors with
functional fidelity sufficient to boot a commercial
operating system and run a commercial database.
SimOS supports alternative modules that enable
different aspects of a system to be modeled at different
levels of detail at different times. One can, for example,
use fast functional simulation to boot the operating
system and initialize applications.

Gate-level. A gate-level simulator is one that is
sufficiently detailed to model the actual structure of
hardware. Is a barrel shifter implemented with
multiplexors or pass transistors? How large are control
program logic arrays? Gate-level simulation of a complete
computer system for even a few cycles is very hard, and
operation on a sensible workload is usually impracti-
cal. Instead, architects and implementors use gate level
simulation for a few aspects of a system while modeling
other aspects functionally or not at all. When many
aspects of a system are not modeled, a challenge is
providing workload inputs to a gate-level simulation.
This problem is often called test vector generation.

Circuit simulation and below. Even lower down
are analog circuit simulations, such as SPICE. These
simulators are typically applied to isolated aspects of
computer systems, such as adder carry chains, register
cells, and long-line drivers. At an even lower level, one
can simulate based on device physics, which is becoming
increasingly necessary for dynamic memory design.

Summary. In practice, many simulations combine
components from different levels. High-level components
are used when simulation speed is important, detailed
aspects have not yet been designed, or this aspect of
the design is not the current focus of activity. Low-
level components are used otherwise. Multiple level of
the same component can also be run in parallel to provide
evidence that the lower level implementation matches the
higher level specification.

2.4.2 Case Study: Microarchitectural Simulation
of Memory Hierarchies

Memory systems have long been the focus of microar-
chitectural simulations, because those simulations have
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been so effective at improving memory hierarchies. We
can learn about simulation challenges by considering
how memory system simulation has evolved from the
first cache paper by Wilkes [22] that had no numbers to
recent multiprogramming multiprocessor memory
system evaluations {16, 17].

Trace-driven memory system simulation was the
method of choice through at least Smith’s classic
survey [18]. These simulations omit all aspects of a
computer system but its cache. They model the workload
as a trace that exists prior to simulation. A trace is a long
sequence of tuples (e.g., a million or more) representing
the dynamic memory references of a workload. Each
tuple contained an address (virtual or physical), type
(read, write, instruction fetch), and sometimes length
(e.g., 4 bytes). Traces are large and stored on tape or disk.
Trace-driven cache simulators model the state and tags
of a cache and nothing else. In particular, the processor,
cache data, or memory does not have to be modeled.

Nevertheless, trace-driven cache simulations are
exceedingly time consuming, especially because one
typically wants to evaluate the performance of many
alternative caches. Mattson et al. [13] attack this problem
in a seminal paper that finds ways to evaluate multiple
alternative caches in one pass through an address trace.
This work is summarized in this reader in Hill and
Smith [6] in a way we think is more accessible than the
original work. The basic idea can be illustrated by
considering alternative fully associative caches that
use LRU replacement (and have the same block size
and do no prefetching). The state of all the alternative
caches can be modeled with a single linked list, where
the head points to most recently used (MRU) block
and the i MRU block points to the i + 1 MRU block.
For example (from Fig. 6 [6]):

6 >5—+3+4>0—>7—>2 8.

If the next reference is to block 2, this technique—
called stack simulation—finds the block at distance 7
and updates the list to make 2 most recently used:

2+6—+5—+3—>4->0—>7—+38.

Caches of size 7 and larger hit, whereas caches
smaller than 7 miss.

Stack simulation can easily be extended to simul-
taneously simulate alternative caches with any fixed
number of sets and to so-called stack replacement
algorithms, which include random and Belady’s optimal,

but not first-come-first-serve. Hill and Smith extend
stack simulation with all-associativity simulation. A
single all-associativity simulation run can evaluate
alternative caches of all sizes and associativities with
LRU replacement, some restrictions on set-mapping
functions, and a fixed block size. Thus, a designer can
evaluate all caches about a design point with one
simulation per block size of interest!

At this point, it might look like memory hierarchy
simulation research could stop. But, as always, designs
move forward and whittle away at the effectiveness of
methods. First, single caches were replaced with two
levels of caches. Fortunately, Przybylski [15] showed
that caches whose size differs by a factor of eight or
more could be simulated independently. This result is
practical, because level-two caches are almost always
at least 8X larger than level-one caches. Second, level-
two caches becprne very large (e.g., 2 1 Mbytes) and
could be evaludted only with very large traces (e.g.,
giga-references per program). This has led researchers
to considered sampling in time and space (cache sets)
to reduce trace size [9]. Third, caches began to employ
more timing-dependent behavior, such as prefetching
and nonblocking support. Evaluating the effectiveness
of these features requires the modeling of timing both
in the incoming workload and in the memory system.
Fourth, caches are increasingly integrated with speculative
out-of-order processing engines, further obscuring the
relationship between miss ratio and program execution
time. These trends are encouraging the elimination of
traces in favor of execution-driven simulation that models
both the cache and processor. The desire for results of
higher and higher fidelity is forcing both the cache and
processor to be modeled at a detailed microarchitectural
level. Finally, increased interest in P-processor multi-
processors has multiplied simulation requirements by
P and added tricky interaction cases [17].

In summary, new designs will require new methods.
Understanding how past methods have evolved in
present methods facilitates developing new methods
from existing ones.

2.5 System Monitoring

George Santayana said, “Those who cannot remember
the past are condemned to repeat it.” System monitoring
is the technique that computer architects use to learn
from the present (soon-to-be past). With system
monitoring (often called hardware monitoring), one
records information about the behavior of a running
system. Examples of system monitoring include using



an oscilloscope to record bus transactions, reading
hardware performance counters, and modifying an
executable to output information at procedure call sites.

Even though system monitoring can take many
forms, its practice shares several unifying features.
Most important is that the system to be monitored must
exist. Thus, system monitoring can give us incredible
detail about current hardware and software, but extrap-
olation to systems must be done with other methods.
Nevertheless, most new systems use evolutionary
hardware extensions to run evolutionarily new software.
In these situations, system monitoring can provide
valuable information on what to do. Equally importantly,
system monitoring can tell us what not to do. An
optimization may sound good, but system monitoring can
reveal that the optimized situation does not occur often
enough to be bothered with (remember Amdahl’s Law).

2.5.1 Monitoring Mechanisms

System monitoring requires monitoring mechanisms.
Monitoring mechanisms reveal system information to
the monitor. The classic monitoring mechanism is the
oscilloscope probe. In the days of medium-scale
integration, such probes could access most of a
system’s architectural and microarchitectural state.
Today, one can typically access only level-one cache
misses (with great difficulty because of high frequencies)
and system bus transactions. Tomorrow, probe access
will likely be even more limited. Recognizing these
limitations, hardware designers are now adding explicit
monitoring mechanisms. Current examples include
register- and memory-mapped cycle counters, cache
miss counters, and bus-transactions-of-type-X counters.
Future machines are likely to include an even richer
array of monitoring mechanisms as performance
optimization becomes more important and die area
less precious. Finally, system monitoring mechanisms
can be software only. On one hand, this can take the
form of small changes to existing software to record
activity (e.g., augmenting a software TLB handler to
log TLB misses). On the other hand, it can mean a
wholesale rewriting of executables to augment them
with monitoring functions (e.g., as can be done with
ATOM [21)).

2.5.2 Perturbation, Repeatability,
Representativeness, and Sampling
Three important concerns of system monitoring are
perturbation, repeatability, and representativeness.
Perturbation occurs whenever the behavior of the
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system being monitored is not statically identical to an
unmonitored system. A program-counter trace of an
executable augmented by ATOM, for example, is not
the same as the program-counter trace from an
unmodified executable. On the other hand, reading a
cycle-count register before and after a long-running
application will cause negligible perturbation. In many
cases, one can mitigate the effects of perturbation by
compensating. The augmented executable, for example,
can easily be modified to emit the program counters of
the unmodified executable. Other cases are not as trivial.
If executable editing slows applications by a factor of
two, for example, then disk accesses and clock interrupts
will appear twice as fast. One can compensate by delaying
disk accesses and clock interrupts, but is this enough? The
bottom line is that the careful system monitor hypoth-
esizes that he or she is perturbing the system and tries
to gather evidence to contradict this hypothesis.

System monitors must also be concerned with
repeatability. Real systems may not run the same way
twice because of different initial conditions or different
concurrent activity. The number of conflict misses an
application suffers in a physically-index level-two
cache, for example, can be affected by what physical
page frames are on the free list. There are two tools for
dealing with repeatability. First, one can minimize
potential causes of variation. Most commonly, this is
done by rebooting the system and disallowing concurrent
activity. Second, one can perform multiple runs of the
“same” case. In some cases, one can informally verify
that the variation between runs of the “same” case are
much smaller than the variation between runs of
different cases. In other cases, one should turn to the
statistical technique developed for this issue: analysis
of variance [7]. The careful system monitor hypothesizes
that the effects he or she is measuring result from random
variation and then tries to gather evidence that they are
instead due to systematic effects.

Finally, the data gathered with system monitoring
should be representative of the population of all possible
data. Because the full data is typically exceedingly large,
one is forced to collect some number of observations to
form a sample of the population. The process, called
sampling, can be implicit or explicit. When one selects
twelve programs to be monitored, one effectively takes
a sample from the population of relevant programs and
implicitly assumes that these programs are representative
of a much larger population of programs. Common sense
must be applied here. Is SPEC9S representative of the
population of programs my machine will run? If the
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answer is “no,” all the other wonderful work in a system
monitoring experiment is worthless.

On the other hand, sampling is explicit when we
repeatedly collect bursts of cache miss addresses.
Statistics allows us to make very powerful inferences
from unbiased random samples to the population in
general (e.g., the mean of a sample tends to the mean of
the population with some expected variation). An
observation within a sample is unbiased if it accurately
captures the system feature being measured. A snapshot
of consecutive level-one cache miss addresses, for
example, will not exactly yield the level-two cache
miss ratio for the snapshot, because the level-two cache
state at the beginning of the snapshot is unknown. This
effect is mitigated with a snapshot using set sampling
that takes the same number of cache misses from fewer
sets. Whereas care must be taken to corroborate that the
sampled sets are representative of all sets, set sampling
has proven very effective for studying large caches [9].

2.5.3 Analysis

The final step of system monitoring is analysis of the
data obtained from the monitoring mechanisms. This
data is often low level (e.g., program counter virtual
addresses) and voluminous. The goal of analysis is to
transform the data into insight. Analysis should make
data more high-level (e.g., by mapping program counters
to procedure names). It should also reduce volume by
transforming raw data into averages, histograms, or
distributions. Care must be taken to mitigate the chance
that analysis destroys evidence of effects. Procedure
names may obscure an effect related to an address
level-two cache set. Averaging can hide bimodal distribu-
tions. Once again, careful application of analysis requires
that one assume he or she might be obscuring effects and
that he or she gather evidence that this is not the case.

2.5.4 Case Study

For an excellent case study of system monitoring,
please see Emer and Clark’s “A characterization of
processor performance in the VAX-11/780" [4]. This
paper is included in this reader and introduced in
section 2.7.3.

2.6 Discussion

Next we compare methods and touch upon selected
areas not covered in this chapter.

2.6.1 A Comparison of Methods

Analytic modeling, simulation, and system monitoring

are complementary tools for computer architects.
Analytic models can provide insight long before a system
exists. Simple models are useful by anyone. More-complex
models require expertise to construct, but can be built and
solved rapidly. Analytic models, however, cannot
model all details of a system. Thus, other methods are
needed to examine more-detailed effects and verify
when analytic models are sufficiently accurate.

Simulation is the principal tool of computer architects.
Simulations can model any system to any required level
of detail. Simulators, however, require much more
work to construct than do analytic models. In our view,
computer architects currently put too much faith in
simulation. Simulations are believed without much
scrutiny as to whether the simulati\on code has bugs or
just plain assumes away important effects. Whereas
analytic models make assumptions\gxplicit, simulator
assumptions are often buried deep in proprietary code.
We recommend that computer architects put less faith
in simulators that have not survived the scrutiny of
some verification.

Finally, system monitoring is the backward-looking
method. It requires the system to exist, can rarely vary
the system in many ways, and is usually hard to do.
Nevertheless, it provides a wealth of data that is true for
at least one real system and is useful to similar systems.

2.6.2 Important Aspects Not Included

Any short introduction and three papers on methods
must omit important aspects. A few of these are
discussed here.

Experimental design. Designing an experiment
is harder than this chapter’s discussion implies. For
example, one must learn to control random error, make
sure all important factors are considered, and isolate
the effects and interactions of factors. We refer the
reader to Jain [7, pt. IV].

Benchmark selection. As eluded to earlier,
benchmark selection is critical to avoid “garbage-in-
garbage-out.” Good discussions of benchmark selection
can be found in Hennessy and Patterson [5] and Culler,
Singh, and Gupta [3].

Sizing and scaling. What do results mean if an
application’s input size is scaled down to permit simu-
lation to complete in reasonable time? Can we scale
down cache sizes to compensate? If this program were
run on really fast systems, would users want the same
answer faster or a more detailed answer in similar
time? To answer these and related questions, we direct
the reader to Culler, Singh, and Gupta [3].



Computer-aided design (CAD) and testing/ver-
ification. Finally, this chapter ignores the many issues
that surround the design, verification, and testing of
computer systems.

2.7 Discussion of Included Papers

We have selected three sample papers to illustrate
models, simulation, and monitoring.

2.7.1 Amdahl’s “Validity of the Single-Processor
Approach to Achieving Large Scale Computing
Capabilities” [2]

Amdahl’s three-page paper presents what is now
called “Amdahl’s Law.” Amdahl’s Law appears in the
prose and not as an explicit equation. It is part of an
argument defending why uniprocessors will survive
the current (in 1967) threat from multiprocessors.
Amdahl was right—uniprocessors did survive.

2.7.2 Hill and Smith’s “Evaluating Associativity in
CPU Caches” [6]

This paper includes ideas for modeling caches and
evaluating them with trace-driven simulation. Some of
the important ideas (as viewed from 1998) are as follows:
Section IIA reviews Mattson’s stack simulation, which
allows the simultaneous trace-driven simulation of
alternative caches with the same number of sets.
Section IVA formally presents inclusion and set-
refinement, two useful properties for simultaneously
simulating alternative caches. Section IVC presents
all-associativity simulation, which enables the simul-
taneous simulation of alternative caches of all sizes
and associativities (provided they use LRU replacement,
have the same block size, and do no prefetching).
Section VA presents the 3C model and gives example
data from an all-associativity simulation. Finally,
Section VB reviews Smith’s set-associative model and
provides simulation data to support the hypothesis that
set-associative caches miss more often than do fully
associative ones because, due to random chance, some
sets receive more active blocks than others.

2.7.3 Emer and Clark’s “A Characterization of
Processor Performance in the VAX-11/780" [4]

Even though the VAX-11/780 and the associated data
are not current, Emer and Clark’s paper illustrates an
excellent example of how to perform system monitoring
experiments and how the data obtained can be surprising
and valuable. The VAX-11 architecture is a complex
instruction set computer (CISC) with 32-bit virtual
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addresses, 16 general-purpose registers, no separate
floating-point registers, and variable-length memory-
to-memory instructions. Each instruction consists of a
1-byte opcode (that specifies the operation and number
of operands) followed by 0-6 operand specifiers. Each
specifier uses one of twenty-six methods to specify
how to obtain an operand (e.g., register, various sizes
of immediates, base plus displacement, indexed, and
several more complex memory-referencing schemes).
Specifiers also are of variable size with the i + I-st
specifier beginning after the i-th specifier ends. Thus,
VAX-11 decoding is logically sequential both within
and between instructions.

The paper begins by summarizing the VAX-11/780’s
implementation of the VAX-11 architecture (see Fig. 1).
Control is specified with a microprogram and the micro-
program program counter (uPC) that is exposed. The
system monitoring data presented in this paper is
obtained by attaching a probe to the uPC that records the
number of times each uPC value was visited for up to 2
hours of execution time. The authors then use knowledge
of the microprogram to translate uPCs into architectural
events (that would happen on any VAX-11) and imple-
mentation events (VAX-11/780-specific). Experiments
are run with two live nonrepeatable workloads (in vivo)
and three synthetic repeatable ones (in vitro).

Architectural results show many things that are
now widely known, in part, because of this paper.
Simple instructions are common (84% of dynamic
instructions). Branches are common (19%). Loop
branches are usually taken (91%), whereas other
conditional branches are less predictable (41% taken).
Register operands are most common (41% of specifiers),
whereas complex memory addressing modes are rare
(7%). Average instruction size is 3.8 bytes.
Instructions do 0.8 data reads and 0.4 data writes.
(RISCs do fewer data memory operations because of
more registers and better register allocation.)

Implementation also provided a wealth of informa-
tion. The biggest surprise was that the VAX-11/780,
widely known as a 1-million-instruction-per-second
(MIPS) machine took 10.6 200-ns cycles to execute an
average instruction. Thus, it was actually a 0.5 MIPS
machine. Other data show that one half of execution
time is spent decoding instructions, simple instructions
use 10% of execution time (remember they are 84% of
all instructions), and memory stalls waste 2.1 cycles per
instruction (a small fraction of the VAX-11/780’s 10.6
cycles per instruction, but a big deal for future RISCs
that eliminated much of the VAX-11 decode overhead).
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