
A Characterization of Processor Performance in the VAX-11/780

Joel S. Emer

Digital Equipment Corp.

77 Reed Road

Hudson, MA 01749

Douglas W. Clark

Digital Equipment Corp.

295 Foster Street

Littleton, MA 01460

ABSTRACT

This paper reports the results of a study of VAX-
11/780 processor performance using a novel hardware
moni tor ing technique. A micro-PC h i s tog ram
monitor was built for these measurements. It keeps a
count of the number of microcode cycles executed at
each microcode location. Measurement experiments
were performed on live t imesharing workloads as
well as on synthetic workloads of several types. The
his togram counts al low the ca lcu la t ion of the
frequency of various architectural events, such as the
frequency of different types of opcodes and operand
specif iers , as well as the f r e q u e n c y of some
implementation-specific events, such as translation
buffer misses. The measurement technique also
yields the amount of processing time spent in various
activities, such as ordinary microcode computation,
memory m a n a g e m e n t , and processor s t a l l s of
different kinds. This, paper reports in detail the
amount of time the ' average ' fVAX ins t ruct ion
spends in these activities.

1. INTRODUCTION

Processor performance is often assessed by
benchmark speed, and sometimes by trace-driven
studies of instruction execution; neither method can

Ve the details of instruction timing, and neither can
applied to operating systems or to multiprocessing

workloads. From the hardware designer's or the
computer architect's point of view, these are serious
limitations. A lack of detailed timing information
impairs efforts to improve processor performance, and
a dependence on user program behavior ignores the
substantial contribution to system performance made
by operating systems and by multi-processing effects.

In th is paper we use a novel me thod to
characterize VAX-11/780 processor performance
under real timesharing workloads [13]. Our main
goal is to at tr ibute the time spent in instruction
execution to the various activities a VAX instruction
may engage in, such as operand fetching, waiting for
cache and translation buffer misses, and unimpeded
microcode execution. Another goal is to establish the
frequency of occurrence of events impor t an t to
p e r f o r m a n c e , such as cache mi s se s , b r a n c h
i n s t ruc t i on success, and m e m o r y ope ra t ions .
Throughout this paper we will report most results in
frequency or time per VAX instruction. This provides
a good characterization of the overall performance

effect of many architectural and implementat ion
features.

Prior related work includes studies of opcode
f requency and o the r f e a t u r e s of i n s t r u c t i o n -
processing [10, 11, 15, 16]; some studies report timing
information as well [1, 4, 12].

After describing our methods and workloads in
Section 2, we will report the frequencies of various
processor events in Sections 3 and 4. Section 5

resents the complete, detailed timing results, and
ection 6 concludes the paper.

2. DEFINITIONS AND METHODS

2.1 VAX-ll/780 S t ruc ture

The 11/780 processor is composed of two major
subsystems: the CPU pipeline, and the memory
subsystem. These subsystems and their constituent
components are illustrated in Figure 1. The CPU
pipeline is responsible for most of the ac tua l
instruction execution, and as is shown, consists of
three stages. The operation of the CPU pipeline may
be most easi ly understood by not ing tha t VAX
instructions are composed of an opcode followed by
zero to six operand specifiers, which describe the data
operands required by the instruction. The 11/780
implementation of the VAX architecture breaks the
execution of an ins t ruct ion into a sequence of
operations that correspond to the accessing of the
da ta operands of the i n s t ruc t ion and then its
execution. In general these operations correspond to
the tasks that flow down the CPU pipeline.

The individual stages of the CPU pipeline are:
the I-Fetch stage, which sequential ly fetches the
instruction stream into the Instruction Buffer or IB;
the I-Decode stage, which takes instruction bytes
from the IB and decodes an opcode and/or specifier,
determines a microcode dispatch address for the
EBOX, and extracts additional specifier information
that is used by the EBOX; and the EBOX stage,
which is a microcoded function unit that does most of
the actual work associated with fetching operands
and executing instructions. In fact, the EBOX and
the I-Decode stages are very tightly coupled, so that I-
Decode operations only take place under specific
control of the EBOX. The first I-Decode for an
i n s t r u c t i o n c a n n o t occur u n t i l the p r e v i o u s
i n s t ruc t ion has been competed, so the EBOX

0194-7111/84/0000/0301501.00© 1984 IEEE
301

FIGURE I

VAX-11/780 Block Diagram

.... U

I I V~ EBOX
Fetch D e c o d e

Ak IB Read Data
J

Address

Memory]

T

Write Data

TB

Cach~

A d d r e s s ~

~ r

i

Read/Write
Data

Write
Buffer

. , q r

SB!

expe r i e nc e s a s ingle n o n - o v e r l a p p e d I-Decode
operation cycle for each instruction.

The EBOX can perform a number of autonomous
operations, such as arithmetic and boolean
computations; it can command the I-Fetch unit to
start fetching at the target of a branch instruction; it
can command reads and writes of memory data; and
as a stage of the CPU pipeline, it can branch to a
microinstruction location determined by the I-Decode
stage. In this final instance it may have to wait as a
result of a pipeline delay if the I-Decode stage has not
yet been able to compute the desired location. We
will call this delay an IB stall.

As the EBOX contains the microcode and does
the majority of the instruction computation, we will
be focusing mainly on its activity. We use the EBOX
microinstruct ion time of 200 nanoseconds as the
definition of a cycle.

In the process of instruct ion execution by the
CPU pipeline, both the I-Fetch and EBOX stages may
make references to memory. In order to support the
virtual memory of the VAX these references must
first pass through a translation buffer, or TB, where
the v i r t u a l address g e n e r a t e d by the CPU is
t rans la ted into a physical address. A successful
translation is called a TB hit, and conversly a failed
translation is called a TB miss. In the event of a TB
miss for an EBOX reference, a microcode interrupt is
asserted and a microcode routine is invoked which
inserts the desired translation into the TB. In the
event of a TB miss for an I-Fetch reference, a flag is

set; when the EBOX finds insufficient data bytes in
the IB to do a desired decode, it recognizes tha t the
flag is set and again goes about the task of putt ing the
appropriate translation into the TB.

After successful translation by the TB, the
physical address that was generated is used to access
the data cache. Just as with the TB, we can have
cache hits and misses. In the case of a read hit, data
is simply passed back to the requesting unit. In the
case of a read miss, a reference is made over the
backplane bus, called the SBI for Synchronous
Backplane Interconnect, to fetch the data from
memory into the cache and to forward it to the
requesting unit. During the time the data is being
read from memory on behalf of an EBOX request the
EBOX itself is read stalled waiting for the data, while
during I-Fetch requests the EBOX is free to run
unimpeded unless it too needs data from memory. A
read operation which results in a hit in both the TB
and cache consumes one cycle.

Only the EBOX is capable of doing data writes,
and the 11/780 implements a write-through memory
scheme in which all data writes are passed through to
the memory via the SBI. Jus t as with reads, the TB is
used to generate a physical address for the reference.
In order to avoid waiting for the write to complete in
memory the 11/780 provides a 4-byte write buffer.
Thus it takes one cycle for the EBOX to init iate a
write and then it continues microcode execution,
which will be held up in the future only if another
write request is made before the last one completed.
The delay caused when a write encounters another
write in progress is called a write stall. In addition,
during a data write, the cache is accessed to update
its contents with the data be ing wr i t t en . Note,
however, tha t if the write access misses, the cache is
not updated.

2.2 Methods: Micro-PC Histogram Technique

Our measurements were collected with a special
purpose hardware monitor that enabled us to create
histograms of microcode execution in the 11/780
processor. This uPC monitor consists of a general
purpose histogram count board, which has 16,000
addressable count locations (or histogram buckets),
and is capable of incrementing the count in a selected
location at the rnicrocode execution rate of the 780. A
processor-specific interface board was also required.
It provided the address of a histogram count bucket
and control lines to signal when a count should be
made. For these experiments the interface board
addressed a distinct histogram bucket for each
microcode location in the processor's control store,
and a count was taken for each microinstruction
executed.

The histogram collection board was designed as a
Unibus device, and Unibus commands can be used to
start and stop data collection, as well as to clear and
read the histogram count buckets. Coincidentally,
since the 11/780 has a Unibus, the histogram
collection monitor could be installed directly on the
system being measured, obviating the cost and
nuisance of using a second machine for the hardware
monitor. This was a further convenience as the data

302

collected was immediately available on a machine of
sufficient capacity to do the data reduction. Note,
however, that while actually monitoring microcode
execution, the data collection hardware is totally
passive, causing no Unibus activity and having no
effect on the execution of programs on the system.
Thus this technique yields measurements of all
system activity at full speed.

The capacity of the counters on the histogram
collection board were sufficient to collect data for 1 to
2 hours of heavy processing on the CPU.

Since much of the activity in the ll/780processor
is under the direct command of microcode functions,
the frequency of many events can be determined
through examination of the relative execution counts
of various microinstructions.The uPC histogram data
is especially useful, since it forms a general resource
from which the a n s w e r s to m a n y q u e s t i o n s
concerning the operation of the 11/780 running the
same workload can be obtained simply by doing
additional interpretation of the raw histogram data.

One disadvantage of this method of hardware
monitoring lies in the fact tha t certain hardware
events are not visible to the microcode. For example,
the counts of instruction stream memory references
are not available, because they are made by a distinct
portion of the processor not under direct control of the
microcode. Another is that to save microcode space,
the m i c r o p r o g r a m m e r s f r e q u e n t l y s h a r e d
microinstructions; in such cases we cannot usually
distinguish the sharers. A third disadvantage of this
measurement technique is that the analysis produces
only average behavior charac ter iza t ions of the
processor over the measurement interval, since no
measures of the variation of the statistics during the
measurement are collected.

The uPC histogram measurements were taken in
two different experimental settings: live timesharing,
and synthetic workloads. The live t imeshar ing
m e a s u r e m e n t s were t aken from two d i f f e r en t
machines within Digital engineering. The f irst
machine belonged to the research group, and was
used for general t imesharing and some performance
data analysis. Its workload consisted of such things
as text-editing, program development, and electronic
mail. It was relatively l ightly loaded during the
measurement interval, with approximately 15 users
logged in.

The second t imeshar ing measurements were
taken from a machine being used by a group in the
initial stages of development of a VAX CPU. The
load on this machine consisted of the same type of
gene ra l purpose t i m e s h a r i n g as in the f i r s t
experiment , wi th the add i t ion of some c i rcui t
s imu la t ion and microcode development . This
machine had a heavier load with approximately 30
users logged in during the measurement interval.

Al though real is t ic , these live t i m e s h a r i n g
workloads are difficult to characterize and are not
repeatable, since the computat ional load varies
greatly over time. A second experimental sett ing
addressed this problem. In it, a Remote Terminal
Emula to r or RTE [7, 14] provided a rea l - t ime

s imu la t i on of a n u m b e r of t i m e s h a r i n g users
connected to the VAX. The RTE is a PDP-11 with
many asynchronous te rmina l interfaces; output
characters generated by the RTE from canned user
scripts are seen as terminal input characters by the
VAX, and vice versa . Three R T E - g e n e r a t e d
w o r k l o a d s were m e a s u r e d : an e d u c a t i o n a l
environment, with 40 simulated users doing program
development in various languages and some file
manipulation; a scientific/engineering environment,
with 40 simulated users doing scientific computation
and program development ; and a commerc ia l
t r a n s a c t i o n - p r o c e s s i n g e n v i r o n m e n t , wi th 32
s i m u l a t e d users doing t r a n s a c t i o n a l d a t ab ase
inquiries and updates.

All five experiments lasted about one hour. In
this paper we will report results for the composite of
all five, that is, the sum of the five uPC histograms.

The VMS operating system (version 2) [5, 9] was
used in all our experiments. The VMS Null process,
which runs when the system is idle, was excluded
from measurement because its trivial code structure
(branch to self, awaiting an interrupt) would bias all
per-instruction statistics in proportion to the idleness
of the system.

Al l of t he VAXes h a d F l o a t i n g P o i n t
Accelerators, and all had 8 Megabytes of memory.

3. ARCHITECTURAL EVENTS

An architectural event is an event that would
occur in a n y i m p l e m e n t a t i o n of t h e VAX
architecture; an implementation event is one whose
occurrence depends on the particular implementation
of tha t architecture. Thus, for example, a data-
stream memory read is usual ly an archi tec tura l
e v e n t , b u t a c o n s e q u e n t cache mi s s is an
implementation event. We discuss the former here,
and the latter in Section 4.

We will need to make certain assumptions about
all VAX implementations for this distinction to be
valid. We assume, for the purposes of our discussion,
that:

All VAX implementations have 32-bit data paths
to the closest level of the memory h ie ra rchy
(usually the cache). Since the VAX is a 32-bit
architecture, this is a very minor restriction.
This allows us to count architectural memory
references by measuring hardware references in
the 11/780 implementation.

All VAX implementations experience the same
rate of operating system events. This allows us
to treat instruction frequency as an architectural
concern, ignoring the fact that an increased rate
of, say, page faults would increase the frequency
of instructions in the page fault routine.

3 . 1 0 p c o d e s

VAX opcode frequency has been reported and
discussed in other papers [4, 15]. The uPC method

303

cannot distinguish all opcodes in the 11/780. The
redominant reason for this is that hardware is used
r the implementa t ion of some opcode-specific

functions. For example, integer add and subtract
instructions use the same microcode, with the ALU
control field determined by hardware that looks at
the opcode.

We can, however, report the frequency of groups
of opcodes. Table 1 shows this for our composite
workload. The following observation about this table
is by now almost a clichd: moves, branches, and
simple instructions account for most ins t ruct ion
executions. It will turn out, however, that some of the
rarer, more complex instructions are responsible for a
great deal of the memory references and processing
time; this point has also been made before [12]. Note
t ha t VAX subrout ine l i nkage is qui te s imple,
involving only a push or pop of the PC together with a
jump; procedure linkage ,s more complex, involving
considerable state saving and restoring on the stack
[6, 131.

A p a r t i c u l a r l y i n t e r e s t i n g opcode-oriented
performance measu re is the f requency of PC-
chang ing i n s t r u c t i o n s and the p ropor t ion of
conditional branches tha t actually do branch. In
Table 2 below we show these figures for the composite
workload. The upper section of the table consists of
members of the SIMPLE group of Table 1. Because of
microcode-sharing, two uncondi t ional branches
(BRB and BRW) are grouped with simple conditional
branches. We believe from other measurements that
these are about 2 percent of all instructions, leaving
about 17 percent due to true conditional branches.
The r e m a i n i n g rows are t he P C - c h a n g i n g
in s t ruc t ions from the FIELD, CALL/RET and
SYSTEM instruction groups.

PC-changing instructions are quite common,
accounting for almost 40 percent of all instructions
executed in the composite workload. Furthermore,
the proportion of these that actually change the PC is
also quite high. Both properties are in line with other
measurements of such instructions, both in the VAX
and other architectures. Note that about 9 out of 10
loop branches actually branched. Therefore the
average number of iterations of all loops that used
these instructions was about 10.

3 . 2 0 p e r a n d Specifiers

VAX instructions specify the location of their
data through one or more encoded operand specifiers
t ha t follow the opcode in the I-s t ream. These
indicate, for example, whether a read operand is to be
found in a register, or in memory addressed by a
register, or with a variety of other addressing modes
[6, 13]. The data type (byte, longword, floating-point,
etc.) and access mode (read, modify, write, etc.) of an
operand specifier are defined by the instruction that
uses it. Branch d i sp lacements are considered
separately.

In the 11/780 microcode, all access to scalar data,
and to the addresses of non-scalar data, are done by
specifier microcode. We thus consider the reading
and wr i t i ng of s ca l a r da t a , and the add re s s

TABLE 1

Opcode Group F r e q u e n c y

Group Frequency
name Constituents (Percent)
...

SIMPLE Move instructions 83.60
Simple arith, operations
Boolean operations
Simple and loop branches
Subroutine calland return

FIELD

FLOAT

Bit field operations 6.92

Floating point 3.62
Integer multiply/divide

CALL/RET Procedure call and return 3.22
Multi-register push and pop

SYSTEM Privileged operations 2.11
Context switch instructions
Sys. serv. requests and return
Queue manipulation
Protection probe instructions

CHARACTER

DECIMAL

Char. string instructions 0.43

Decimal instructions 0.03

TABLE 2

PC-Changing Instructions

Percent Act. branch
Branch Percent that as percent
Type of Inst. branch of all inst.
..

Simple cond., 19.3 56 10.9
plus BRB, BRW

Loop branches 4.1 91 3.7

Low-bit tests 2.0 41 0.8

Subroutine 4.5 100 4.5
call and return

Unconditional 0.3 100 0.3
(JMP)

Case branch 0.9 100 0.9
(CASEx)
...

Bit branches 4.3 44 1.9

Procedure 2.4 100 2.4
call and return

System branches 0.4 100 0.4
(CHMx, REI)
.

TOTAL 38.5 67 25.7

304

calculation of non-scalar data, to be associated with
operand specifier process ing and not wi th the
ins t ruct ion itself. A simple in t ege r Move, for
example, is accomplished e n t i r e l y by specif ier
microcode: first a read, then a write.

The 11/780 specifier-processing microcode allows
us to distinguish first specifiers, called SPEC1 (those
that direct ly follow the opcode) from all o ther
specifiers, called SPEC2-6. It also lets us count PC-
relative branch displacements, which appear in the
last specif ier posi t ion of ce r ta in PC-chang ing
instructions. Not all PC-changing instructions use
branch displacements: some determine their targets
with ordinary operand specifiers (e.g., JMP, CALLS),
while others determine their targets implicitly (e.g.,
RSB, RET, REI).

Table 3 shows the number of specifiers and
branch displacements per average VAX instruction.

Table 4 shows the frequency of operand specifier
types. Because of microcode-sharing, we are able to
report the individual frequencies of the various types
of memory-referencing specifiers only in the total
co lumn. M e m o r y - r e f e r e n c i n g spec i f i e r s can
optionally be indexed: the percentage of all specifiers
that are indexed is shown in the bottom line of the
table.

Register mode is the most common addressing
mode, especially in specifiers after the first. Since the
last specifier is general ly the des t inat ion of the
instruction's result (if not a branch), this probably
reflects a tendency to store results in registers. The
encoded short l i teral , in which a single byte is
expanded to one of a small number of values whose
data type is instruction-dependent, is also quite
common, particularly as the first specifier. We note
the scarcity of immediate data ((PC)+), the other
method of supplying I-s t ream cons tan ts to the
instruction. Short literals apparently do this job
fairly well.

The mos t c o m m o n m e m o r y s p e c i f i e r is
d isplacement off a register . Other resul ts [15]
suggest that the displacement is most often a byte,
less often a 4-byte longword, and least often a word.
Index mode is surprisingly common; 6.3 percent of all
specifiers were indexed.

The average number of specifiers per instruction
in the composite workload is 1.48 (remember that this
does not include branch displacements).

3.3 M e m o r y Opera t ions

3.3.1 Data

Operand-specif ier processing accounts for a
ma jo r i ty of the D-s t ream m e m o r y ope r a t i ons
performed on the VAX. Most other reads and writes
are due to the manipulation of non-scalar data such

TABLE 3

Specifiers and Branch Displacements
per Average Instruction

First specifiers 0.726
Other specifiers 0.758
Branch displacements 0.312

TABLE 4

Operand specifier distribution (percent)

SPEC1 SPEC2-6 Total
.

Register R 28.7 52.6 41.0

Short Literal #n 21.1 10.8 15.8
Immediate (PC) + 3.2 1.7 2.4

Displacement I 1 f 3 9 t 25.0 ,e e re 9.2
Auto-inc. (R) + | / 2.1
Disp. Deferred @D(R) ~47.0~ 4. 2.7
Absolute @(PC) + 1 / 0.6
Auto-inc.def. @(R)+ | | 0.3
Auto-dec. -(R) L . J 0.9

Percent Indexed [R] 8.5 4.2 6.3

as character strings and stack frames. Table 5
reports the frequency of read and write operations per
average instruction, broken down by the source of the
operation. After specifiers, procedure call and return
instructions, which push and pop registers on and off
the stack, account lbr the greatest portion of reads
and writes.

Because the results are in terms of events per
average instruction, the number of reads reported for
the CALL/RET group, for example, is not the average
number of reads executed by the average CALL/RET
instruction. Rather, it is the number of CALL/RET
reads averaged over all instruction executions. Put
another way, it is the number of CALL/RET reads
w e i g h t e d by the f r e q u e n c y of o c c u r e n c e of
instructions in the CALL/RET group. This way of
l ook ing a t the d a t a d i r e c t l y m e a s u r e s t he
contribution of the various instruction groups to
overall performance.

Overall, the ratio of reads to writes is about two
to one. Some of these references are to 32-bit
longwords that are unaligned with respect to the
physical organization of the cache, and that therefore
require two physical references. The frequency of

305

TABLE 5

D-stream Reads and Writes
per Average Instruction

Reads Writes
.

Specl .306 .000
Spec2-6 .148 .161

Simple .029 .033
Field .049 .007
Float .000 .008
Call/Ret .133 .130
S~stem .015 .014

aracter .039 .046
Decimal .002 .001

Other .062 .008
.

TOTAL .783 .409

unaligned D-stream references is very low: 0.016 per
instruction in the composite workload.

3.3.2 Ins t ruc t ions

Many memory reads are due to ins t ruc t ion
fetching, but it is difficult to characterize this in a
strictly architectural way. Different organizations of
the I-stream prefetching hardware can have very
different streams of references to memory. The only
truly architectural feature of the I-stream references
is the size of the instructions. The average size of an
operand specifier can be calculated from Table 3,
together with displacement f igures (byte, word,
longword) from [15], and is 1.68 bytes. The average
instruction has one byte of opcode, some number of
specifiers, and some fractional number of branch
displacements. Table 6 puts all of this together to
show that the average size of a VAX instruction in
our workload was 3.8 bytes.

3.4 Other Events

Two other interesting architectural events are
interrupts and context switches. The la t te r are
accomplished by the save-process-context and load-
p r o c e s s - c o n t e x t i n s t r u c t i o n s (SVPCTX a n d
LDPCTX). In VMS these are used only for a switch
from one user process to another; in ter rupts , in

ar t icular , do not cause context switches. The
equency of these events is shown in Table 7. For

ease of understanding we invert our usual metric and
report these in terms of the average ins t ruct ion
headway between events. VMS sometimes services
hardware interrupts by chaining together several
successively lower-priori ty software i n t e r rup t s .
Table 7 includes the headway between requests for
software interrupts.

The context-switch figure is useful in setting the
"flush" interval in cache and t rans la t ion buffer

TABLE 6

Estimated Size of Average Instruction

Number Est. Size
Object per inst Est. Size per inst.
.

Opcode 1.00 1.00 1.00
Specifiers 1.48 1.68 2.49
Branch disp. 0.31 1.00 0.31
.

TOTAL 3.8

TABLE 7

Interrupt and Context-Switch H e a d w a y

Event Instruction
headway

.

Software Interrupt Requests 2539

Hardware and Software Interrupts 637

Context Switches 6418

simulations. The impact of context switching on
VAX Translation Buffer performance is discussed in
[3].

4. IMPLEMENTATION EVENTS

By an implementation event we mean an event
whose occurrence depends on the particular
implementation of the VAX architecture. A cache
miss is an example; whether a memory reference hits
or misses in the cache depends on the size and
configuration--indeed, even the presence--of the cache
in a particular implementation of the architecture.

4.1 I -s t ream References

The II/780's Instruction Buffer or IB makes its I-
stream referencing behavior implementation-
specific. The 8-byte IB makes a cache reference
whenever one or more bytes are empty. When the
requested longword arrives possibly much later, if
there was a cache miss the IB accepts as many bytes
as it has room for then. Thus the IB can make
repeated references (as many as four) to the same
long~v, ord, but this is clearly not a requirement of the
architecture.

Because the IB is controlled by hardware, the
uPC histogram technique cannot count IB references.
But in our earlier cache study [2] we found that the
average number of cache references by the IB per
VAX instruction was around 2.2, for three day-long
measurements of live timesharing workloads.

306

Since the average VAX instruction is 3.8 bytes
long (Table 6), we conclude that those 2.2 references
yielded on average 3.8 bytes, for an average delivery
per reference of 1.7 bytes.

4.2 C a c h e A n d T r a n s l a t i o n Buffer Mis se s

The 11/780 cache is controlled by hardware, so
the frequency of cache misses is not measurable with
the uPC technique . Our ea r l i e r cache s tudy,
however, found that in live timesharing workloads
the number of cache read misses per instruction was
0.28, with 0.18 due to the I-stream and 0.10 due to the
D-stream. The performance cost of these misses is
microcode stalls, which are discussed below.

The vir tual- to-physical address Trans la t ion
Buffer, on the other hand, is controlled by microcode,
and is therefore direct ly visible with the uPC
technique. A TB miss results in a microcode trap to a
miss service micro-routine. Entries to this routine
indicate occurrences of TB misses, and a count of all
cycles wi th in the rout ine yields the time spent
handling TB misses.

The TB miss rate for the composite workload was
0.029 misses per instruction, 0.020 from the D-stream
and 0.009 from the I-stream. The average number of
cycles used to service a miss was 21.6, of which 3.5
were read stalls due to the requested page-table
entry not being in the cache. See [3] for more
information on the performance of the VAX-11/780
TB.

4.3 Stalls

A stall occurs when a microcode request cannot
yet be satisfied by the hardware. The result is one or
more cycles of suspended execution until the reason
for the stall goes away. As described in Section 2.1,
there are three types of stall in the VAX-11/780: read
stall, write stall, and IB stall.

A read stall occurs when there is a cache miss on
a D-stream read. The requesting microinstruction
simply waits for the data to arrive. In the simplest
case (no concurrent memory activity of other types)
this takes 6 cycles on the 11/780. Cache hits cause no
stalls.

A write will stall if attempted less than 6 cycles
after the previous write (in the simplest case).VAX
instructions that do many writes, such as character-
string moves, are sometimes microprogrammed to
reduce write stalls by writing only in every sixth
cycle.

The last type of stall, IB stall, occurs when the IB
does not contain enough bytes to satisfy the
microcode's request. This can occur at any point in I-
stream processing, including the initial decode of the
opcode, specifier decodes, and requests for literal or
immediate data. Note that IB stall does not occur in
direct response to an IB cache miss; only when the
empty byte is actually needed by the microcode can
stall occur, and by then the cache miss may have
fin/shed.

The occurrence and duration of all three types of
stalls are implementation-specific characteristics of
the VAX-11/780. The duration, but not the frequency
of occurrence of all three can be measured with the
uPC technique. The h is togram board ac tua l ly
contains two sets of counts, one for non-stal led
microinstructions, and one for read- or write-stalled
microinstructions. If the microinstruction at address
X does a cache read, then the non-stalled count at
location X will conta in the ac tua l number of
successful reads done by that microinstruction, while
the stalled count at location X will contain the total
number of cycles in which that microinstruction was
stalled. Write stalls and read stalls are differentiated
by whether the microinstruction does a read or a
write (it cannot do both).

IB stalls are handled in a slightly different way.
Requests for bytes from the IB result in microcode
dispatches; decoding hardware maps the IB contents
into various dispatch microaddresses, one of which
indicates that there were insufficient bytes in the IB.
The number of executions of the microinstruction at
that microaddress is the number of cycles with IB
stall.

5. TIME: CYCLES PER INSTRUCTION

The great strength of the uPC histogram
technique is its ability to classify every processor
cycle and thus to establish the durations of processor
events. Table 8 shows the number of cycles per
average instruction, arranged in two orthogonal
dimensions. The first dimension (rows) represents
the stages of an instruction's execution: its initial
Decode; then its operand specifier and branch
displacement processing; then its execute phase; and
finally severaloverhead activities.

Instruction decode, as discussed in Section 2.1
above, takes exactly one EBOX cycle, but may stall if
there are insufficient bytes in the IB.

Operand specifier processing consists of address
calculation for memory specifiers, and the actual read
and/or write of data for both memory and register
specifiers, provided the da ta is scalar. Branch
displacement processing consists of the calculation of
the branch target address, which requires one cycle.
An additional cycle is consumed in the execute phase
of the instruction to redirect the IB to fetch down the
target stream.

The execute phase of an instruction consists of
those microcycles associated with an instruction's
actual computation. Table 8 reports these results by
opcode group as defined in Table 1.

The overhead activities are not associated with
any particular instruction. They include interrupts
and exceptions (Int/Except), memory management
and alignment microcode (Mem Mgmt), and abort
cycles (one for each microcode trap and one for each
microcode patch).

The second dimension of Table 8 (columns)
classifies microinstruction execution into one of six

307

T A B L E 8

Average VAX Instruction Timing (Cycles per Instruction)

Compute Read R-Stall Write W-Stall IB-Stall Total
.

Decode 1.000 0.613 1.613
Specl 0.895 0.306 0.364 1.565
Spec2-6 1.052 0.148 0.116 0.161 0.192 0.102 1.771
B-Disp 0.221 0.005 0.226

Simple 0.870 0.029 0.017 0.033 0.027 0.977
Field 0.482 0.049 0.058 0.007 0.002 0.600
Float 0.292 0.000 0.000 0.008 0.001 0.302
Call/Ret 0.937 0.133 0.074 0.130 0.184 1.458
System 0.434 0.015 0.031 0.014 0.028 0.522
Charac ter 0.318 0.039 0.099 0.046 0.004 0.506
Decimal 0.026 0.002 0.000 0.001 0.002 0.031

Int /Except 0.055 0.002 0.005 0.004 0.006 0.071
Mem Mngmt 0.555 0.061 0.200 0.004 0.003 0.824
Abort 0.127 0.127
. . : .

TOTAL 7.267 0.783 0.964 0.409 0.450 0.720 10.593

ca tegor ies . The " C o m p u t e " c a t ego ry r e p r e s e n t s
a u t o n o m o u s E B O X o p e r a t i o n s , t h a t i s ,
microins t ruct ions tha t do no memory references. The
o the r ca tegor ies are m e m o r y r e f e r e n c e s and the
v a r i o u s t ypes of s ta l l . On t he 11/780 t he s ix
categories are mutua l ly exclusive, so t imes in the
individual categories can be summed, y i e ld ing the
TOTAL column of Table 8.

Wi th some minor exceptionst every microcycle in
11/780 execut ion fa l l s in to e x a c t l y one row and
exact ly one column. The numbers repor ted in Table 8
are the numbers of cycles spent a t each row/column
i n t e r s e c t i o n , d i v i d e d by t h e n u m b e r o f V A X
i n s t r u c t i o n s execu ted . T h e y a r e t h e r e f o r e t h e
numbers of cycles per average ins t ruct ion for each
category. The row and column totals allow analysis
of a single dimension: for example, in the ave rage
instruct ion of 10.6 cycles, a (column) to ta l of 0.96
cycles were lost in read stall, and a (row) total of 0.30
cycles were spent in f loating-point execution.

Table 8 shows where 11/780 performance may be
improved, and where i t may not be improved. For
example, s av ing the non-over lapped Decode cycle
could save one cycle on each n o n - P C - c h a n g i n g
instruct ion. (The la te r VAX model 11/750 did this.)
.

tTwo remarks on the operand-specifier portion of Table 8
are necessary. First, the 11/780 has special hardware to
optimize the execution of certain instructions with literal or
register oporands. In these cases the first cycle of execution is
combined with the last cycle of specifier processing. We report
such cycles in the specifier rows of Table 8; they amounted to
0.15 cycles per instruction for the SIMPLE group and 0.01 cycles
per instruction for the FIELD group. The second remark
concerns the treatment of first specifiers that are indexed.
Microcode sharing forces use to report the calculation of the base
address in the SPEC2-6 category. We extimate that this causes
about 0.06 cycles per instruction belonging to SPEC1 to be
reported in SPEC2-6.

On the o ther hand, optimizing FIELD memory writes
wil l h a v e a payo f f of a t mos t 0.007 cyc les pe r
i n s t r u c t i o n , or on ly a b o u t 0.07 p e r c e n t of t o t a l
performance.

A number of o the r observa t ions can be made
based on Table 8:

o The average VAX inst ruct ion in this composite
workload takes a l i t t le more than 10 cycles. This
m a k e s t h e n u m b e r s i n T a b l e 8 e a s i l y
in tepre table as percentages of the total t ime per
instruct ion.

o The TOTAL column shows tha t almost ha l f of all
t h e t i m e w e n t i n t o d e c o d e a n d s p e c i f i e r
processing, count ing the i r stalls.

o The opcode group with the greates t contr ibut ion
is t h e C A L L / R E T g r o u p , d e s p i t e i t s low
f requency (see Table 1).

o The execut ion phase of the SIMPLE instructions,
which cons t i tu te 84 pe rcen t of all i n s t ruc t ion
executions (Table 1), accounts for only about 10
percent of the t ime in the composite workload.

o Sys tem and Charac te r instructions, though rare
(Table 1), also make noticeable contr ibut ions to
performance.

o Most IB s ta l ls occur on the i n i t i a l spec i f i e r
decode, r a t h e r t h a n on s u b s e q u e n t spec i f i e r
decodes. Al though there are more bytes in the
ini t ial decode then the subsequent decodes, we
i n t e r p r e t th is to m e a n t h a t most IB s ta l l is
incurred on cache misses a t the t a rge t reference
of a branch.

o We note tha t there are fewer cycles of compute in
B-DISP than there are branch displacements (see
Table 3), because the branch displacement need

308

TABLE 9

Cycles per ins t ruct ion Within Each Group

Compute Read R-Stall Write W-Stall Total
.

Simple 1.04 0.03 0.02 0.04 0.03 1.17
Field 6.97 0.71 0.85 0.11 0.04 8.67
Float 8.07 0.00 0.00 0.23 0.03 8.33
Call/Ret 29.08 4.14 2.29 4.03 5.71 45.25
System 20.59 0.71 1.47 0.67 1.30 24.74
Character 73.51 8.97 22.83 10.76 0.97 117.04
Decimal 84.37 5.64 1.59 3.94 5.24 100.77
. .

not be computed when the instruction does not
branch.

A comparison of the Read and Read-S ta l l
columns of Table 8 yields another set of observations:

o Stalled cycles are half the number of operation
cycles in the CALL/RET group, but more than
twice the number of operat ion cycles in the
Character group. This is presumably due to the
good cache locality of the stack and the relatively
poor locality of character strings.

o Memory management has more than 3 times as
many read-stalled cycles as reads. This largely
reflects the tendency of references to Page Table
Entries to miss in the cache.

Comparing Write and Write-stall columns yields
several more observations:

o The CALL/RETgroup generates a large amount
of write stalls. This is due to the write-through
cache and the one-longword write butter, which
force the CALL instruction to stall while pushing
the caller's state onto the stack.

o Character instructions have little write stall,
because as mentioned earlier, the microcode was
explictly written to avoid write stalls.

Table 9 shows the number of cycles per average
instruction within each group, exclusive of specifier
decode and processing, and not weighted by frequency
ofoccurence. For example, the average instruction in
the Decimal group did 84 cycles of Compute and took
101 cycles overall.

Table 9 i l lus t ra tes a number of in teres t ing
properties:

o The computation associated with the average
simple instruction is quite simple: a little over
one cycle is all that it needs.

o However, the range of cycle time requirements of
average representatives of these groups covers
two orders of magnitude.

o With around 4 reads and writes per average
CALL/RET or PUSHR/POPR instruction we
conclude that about 8 registers are being pushed
and popped.

o The average character instruction reads and
writes 9 to 11 longwords, so the average size of a
character string is 36-44 characters.

6. CONCLUSION

We have presented detailed instruction timing
resul ts for the VAX-11/780, eva lua ted under a
timesharing workload. These results are, of course,
dependent on the characteristics of that workload.

The uPC histogram method has provided a great
deal of useful data, showing precisely the impact o f
architectural and implementation characteristics on
average processor performance. The generation of a
uPC histogram provides the analyst with a database
from which many performance characteristics can be
determined. These analyses are particularly useful
because they are all derived from the same workload.

ACKNOWLEDGME NTS

We would like to thank Garth Wiebe and Jean
Hsiao for their assistance with the uPC histogram
monitor development.

309

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

[I0]

[11]

[121

[13]

[141

[151

[16]

R E F E R E N C E S

Alpert, D. Carberry, D., Yamamura, M.,Chow, Y., and
Mak, P32-bit Processor Chip Integrates Major System
Functions. Electronics 56, 14 (July 14, 1983), pp. 113-
119.

Clark, D.W. Cache Performance in the VAX-II/780.
ACM TOCS 1, 1 (Feb. 1983), pp. 24-37.

Clark, D.W. and Emer, J.S. Performance of the VAX-
11/780 Translation Buffer: Simulation and
Measurement. Submitted for publication, Nov. 1983.

Clark, D.W. and Levy, H.M., Measurement and Analysis
of Instruction Use in the VAX-11/780. Proc. 9th Annual
Syrup. on Comp. Arch., Austin, April 1982, pp. 9-17.

Digital Equipment Corp. VAX/VMS Internals and Data
Structures. Document No. AA-K785A-TE, Digital
Equipment Corp., Maynard, MA.

Digital Equipment Corp. VAX-11 Architecture Reference
Manual. Document No. EK-VAXAR-RM-001, Digital
Euipment Corp., Maynard, MA, May 1982.

Greenbaum, H.J. A Simulator of Multiple Interactive
Users to Drive a Time-Shared Computer System. M.S.
Thesis, MIT Project MAC report MAR-TR-54, Oct.1968.

Huck, J.C. Comparative Analysis of Computer
Architectures. Ph.D. thesis, TR No. 83-243, Computer
Systems Lab., Stanford, May 1983.

Levy, H.M., and Eckhouse, R.H. Computer Programming
and Architecture: The VAX-11. Digital Press, Bedford,
MA, 1980.

Lunde, A. Empirical Evaluation of Some Features of
Instruction Set Processor Architectures. CACM 20, 3
(March 1977), 143-153.

McDaniel, G. An Analysis of a Mesa Instruction Set
Using Dynamic Instruction Frequencies. Symposium on
Architectural Support for Programming Languages and
Operating Systems, Palo Alto, CA, March 1982, pp. 167-
176.

Peuto, B.L., and Shustek, L.J. An Instruction Timing
Model of CPU Performance. Proc. 4th Annual Syrup. on
Computer Architecture, 1977, pp. 165-178.

Strecker, W.D., VAX-11/780--A Virtual Address
Extension for the PDP-11 Family Computers. Proc. NCC,
AFIPS Press, Montvale, N.J., 1978.

Watkins, S.W., and Abrams, M.D. Survey of Remote
Terminal Emulators. NBS Special Publication 500-4,
April 1977.

Wiecek, C.A. A Case Study of VAX-11 Instruction Set
Usage for Compiler Execution. Symposium on
Architectural Support for Programming Languages and
Operating Systems, Palo Alto, CA, March 1982, pp. 177-
184.

Winder,. R.O. A Data Base for Computer Performance
Evaluation. IEEE Computer 6, 3. (March 1973), pp. 25-
29.

310

