5

Shared Memory Multiprocessors

The most prevalent form of parallel architecture is the multiprocessor of small to
maoderate scale that provides a global physical address space and symmetric access to
all of main memory from any processor, often called a symmetric multiprocessor or
SME Every processor has its own cache, and all the processors and memory modules
attach to the same interconnect, which is usually a shared bus, SMPs dominate the
server market and are becoming more common on the desktop. They are also impor-
tant building blocks for larger-scale systems. The efficient sharing of resources, such
as memory and processors, makes these machines attractive as “throughput
engines” for multiple sequential jobs with varying memory and CPU requirements.
The ability to access all shared data efficiently from any of the processors using ordi-
nary loads and stores, together with the automatic movement and replication of
shared data in the local caches, makes them attractive for parallel programming.
These features are also very useful {or the operating system, whose dilferent pro-
cesses share data structures and can easily run on different processors.

From the viewpoint of the layers of the communication architecture in
Figure 5.1, the shared address space programming model is supported directly by
hardware. User processes can read and write shared virtual addresses, and these
operations are realized by individual loads and stores of shared physical addresses.
In [act, the relationship between the programming model and the hardware opera-
tion is so close that they both are olten referred to simply as “shared memory.” A
message-passing programming model can be supported by an intervening software
layer—typically a run-time library—that treats large portions of the shared address
space as private to each process and manages some portions explicitly as per-process
message buffers. A send/receive operation pair is realized by copying data between
these buffers. The operating system need not be involved since address translation
and protection on the shared bullers is provided by the hardware. For portability,
mosl message-passing programming interfaces have indeed been implemented on
popular SMPs. In fact, such implementations often deliver higher message-passing
performance than traditional, distributed-memory message-passing systems—as
long as contention for the shared bus and memory does not become a bottleneck—
largely because of the lack of operating system involvement in communication. The
operating system is still used for input/output and multiprogramming support,

Since all communication and local computation generates memory accesses in a
shared address space, from a system architect’s perspective the key high-level design

270 cHAPTER 5 Shared Memory Multiprocessors

Message passing Programming models
C ilaticn Multiprogrammin NEL .
Eﬂﬁ;;ﬁ e "™ communication abstraction
Sy . > . User/system boundary
Shared address space Operating systems support

Hardware/software boundary

Communication hardware

Physical communication medium

FIGURE 5.1 Layers of abstraction of the communication architecture for bus-based SMPs. A
shared address space is supported directly in hardware, while message passing is supported in software.

issue is the organization of the extended memory hierarchy In general, memory
hierarchies in multiprocessors fall primarily into four categories, as shown in
Figure 5.2, which correspond loosely to the scale of the multiprocessor being con-
sidered. The frst three are symmetric multiprocessors (all of main memory is
equally far away from all processors), while the fourth is not.

In the shared cache approach (Figure 5.2[a]), the interconnect is located between
the processors and a shared first-level cache, which in turn connects to a shared
main memory subsystem. Both the cache and the main memory system may be
interleaved to increase available bandwidth. This approach has been used for con-
necting very small numbers of processors (2-8). In the mid-1980s, it was a common
technique for connecting a couple of processors on a board; today, it is a possible
strategy lor a multiprocessor-on-a-chip, where a small number of processors on the
same chip share an on-chip first-level cache. However, it applies only at a very small
scale, both because the interconnect between the processors and the shared first-
level cache is on the critical path that determines the latency of cache access and
because the shared cache must deliver tremendous bandwidth to the muldiple pro-
cessors accessing it simultaneously,

In the bus-based shared memory appreach (Figure 5.2[b]), the interconnect is a
shared bus located between the processors private caches (or cache hierarchies) and
the shared main memory subsystem. This approach has been widely used for small-
to medium-scale multiprocessors consisting of up to 20 or 30 processors. It is the
dominant form of parallel machine sold today, and considerable design effort has
been invested in essentially all modern microprocessors to support “cache-coherent”
shared memory configurations. For example, the Intel Pentium Pro processor can
attach to a coherent shared bus without any glue logic, and low-cost bus-based
machines that use these processors have greatly increased the popularity of this
approach. The scaling limit for these machines comes primarily due to bandwidth
limitations ol the shared bus and memory system.

The last two approaches are intended to be scalable to many processing nodes.
The dancehall approach also places the interconnect hetween the caches and main
memory, but the interconnect is now a scalable point-ta-point network rather than a
bus, and memory is divided into many logical modules that connect to logically dif-

Shared Memory Multiprocessors 2771

e @ @
Switch
I |
| | |
Ipterl av ”5'
irst-leve
| | = | g ® © @ g
Bus
(Interleaved)
hain memary
Mem D devices
{2} Shared cache (b Bus-based shared memorny
b ® ¢ @ %
b3
| fern | e & o fiem ;
Interconnection network [—I

I Interconnection natwork
harn kA

(c) Dancehall () Distributed-memaory

FIGURE 5.2 Common extended memory hierarchies found in multiprocessors

ferent points in the interconnect (Figure 5.2]c]}. This approach is symmetric—all of
main memory is uniformly far away from all processors—but its limitation is that all
of memory 1s indeed far away from all processors, Especially in large systems, sev-
eral “hops” or switches in the interconnect must be traversed to reach any memory
module from any processor. The fourth approach, distributed-memory, is not sym-
metric. A scalable interconnect is located between processing nodes, but each node
has its own local portion of the global main memory 1o which it has faster access
(Figure 3.2[d]). By exploiting locality in the distribution of data, most cache misses
may be satisfied in the local memory and may not have 1o traverse the network. This
design is most attractive for scalable multiprocessors, and several chapters are
devoted to the topic later in the book. Of course, it is also possible to combine mul-
tiple approaches into a single machine design—for example, a disributed-memory
machine whose individual nodes are bus-based SMPs or a machine in which proces-
sors share a cache at a level of the hierarchy other than the first level,

In all cases, caches play an essential role in reducing the average data access time
as seen by the processor and in reducing the bandwidth requirement each processor

272

CHAPTER 5 Shared Memory Multiprocessors

places on the shared interconnect and memory system. The bandwidth requirement
is reduced because the data accesses issued by a processor that are satisfied in the
cache do not have to appear on the interconnect. In all but the shared cache
approach, each processor has at least one level ol its cache hierarchy that is private.
This raises a critical challenge—namely, that of cache coherence. The problem arises
when copies of the same memory block are present in the caches of one or more pro-
cessors; if a processor writes to and hence modifies that memory block, then, unless
special action is taken, the other processors will continue to access the old, stale
copy of the block that is in their caches.

Currently, most small-scale multiprocessors use a shared bus interconnect with
per-processor caches and a centralized main memory, whereas scalable systems use
physically distributed main memory. The dancehall and shared cache approaches are
employed in relatively specific settings. Specific organizations may change as technol-
ogy evolves. However, besides being the most popular, the bus-based and distributed-
memory organizations also illustrate the two fundamental approaches to solving the
cache coherence problem, depending on the nature of the interconnect: one for the
case where any transaction placed on the interconnect is visible to all processors (like
a bus) and the other where the interconnect is decentralized and a point-to-point
transaction is visible only to the processors at its endpoints. This chapter focuses on
the logical design of protocols that exploit the fundamental properties of a bus to
solve the cache coherence problem. The next chapter expands on the design issues
associated with realizing these cache coherence techniques in hardware, The basic
design of scalable distributed-memory nmltiprocessors will be addressed in
Chapter 7, followed by coverage of the issues specific to scalable cache coherence in
Chapters 8 and 9.

Section 5.1 describes the cache coherence problem for shared memory architec-
tures in detail and deseribes the simplest example of what are called snooping cache
coherence protocols. Coherence is not only a key hardware design concept but is a
necessary part of our intuitive notion of the abstraction of memory. However, paral-
lel software often makes stronger assumptions than coherence about how memory
behaves. Section 5.2 extends the discussion of ordering begun in Chapter 1 and
introduces the concept of memory consistency, which defines the semantics of
shared address space. This issue has become increasingly important in computer
architecture and compiler design; a large [raction of the reference manuals for most
recent instruction set architectures is devoted to the memory consistency model.
Once the abstractions and concepts are defined, Section 5.3 presents the design
space [or more realistic snooping protocols and shows how they satisfy the condi-
tions [or coherence as well as for a useful consistency model. It describes the opera-
tion of commonly used protocols at the logical state transition level. The techniques
used for the quantitative evaluation of several design trade-offs at this level are illus-
trated in Section 5.4, using aspects of the methodology for workload-driven evalua-
lion from Chapter 4.

The latter portions of the chapter examine the implications that cache-coherent
shared memory architectures have for the software that runs on them. Section 3.5
examines how the low-level synchronization operations make use of the available

5.1

51.1

5.1 Cache Coherence 273

hardware primitives on cache-coherent multiprocessors and how algorithms for
locks and barriers can be tailored to use the machine efficiently. Section 5.6 dis-
cusses the implications for parallel programming in general, and in particular, it
discusses how temporal and spatial data locality may be exploited to reduce cache
misses and traffic on the shared bus.

CACHE COHERENCE

Think for a moment about your intuitive model of what a memory should do. Tt
should provide a set of locations that hold values, and when a location is read it
should return the latest value written to that location. This is the lundamental prop-
erty of the memory abstraction that we rely on in sequential programs, in which we
use memory (o communicate a value from a point in a program where it is computed
to other points where it is used. We rely on the same property of a memory system
when using a shared address space to communicate data between threads or
processes running on one processor. A read returns the latest value written to the
location regardless of which process wrote it. Caching does not interfere because all
processes see the memory through the same cache hierarchy. We would like to rely
on the same property when the two processes run on different processors that share
a memory. That is, we would like the results of a program that uses multiple pro-
cesses to be no different when the processes run on different physical processors
than when they run (interleaved or multiprogrammed) on the same physical proces-
sor. However, when two processes see the shared memory through dillerent caches,
a danger exists that one may see the new value in its cache while the other still sees
the old value.

The Cache Coherence Problem

The cache coherence problem in multiprocessors is both pervasive and performance
critical. It is illustrated in Example 5.1.

EXAMPLE 5.1 Figure 5.3 shows three processors with caches connected via a bus to

shared main memory. A sequence of accesses to location u is made by the proces-
sors. First, processor Py reads u from main memory, bringing a copy into its cache.
Then processor Py reads u from main memory, bringing a copy into its cache. Then
processor Py writes location u, changing its value from 5 to 7. With a write-through
cache, this will cause the main memory location to be updated; however, when
processor Py reads location u again (action 4), it will unfortunately read the stale
value 5 from its own cache instead of the correct value 7 from main memory. This is
a cache coherence problem. What happens if the caches are write back instead of
write through?

Answer The situation is even worse with write-back caches. Py’s write would merely

set the dirty (or modified) bit associated with the cache block holding location u
and would not update main memory right away. Only when this cache block is
subsequently replaced from P3's cache would its contents be written back to main
memory. Thus, not only will P, read the stale value, but when processor P; reads

274

CHAPTER 5 Shared Memory Multiprocessors

Vgp=T
LY
<30, L
»
Tz
ra
S|
Wy ~
-~
| -
% s
L% ___.r
- e O devices
3 bt
i B @
Memaory

FIGURE 5.2 Example cache coherence problem. The figure shows three processors
with caches connected by a bus to main memaory. u is a location in memory whase contents
are being read and written by the processors. The sequence in which reads and writes are
done is indicated by the number listed inside the circles placed next to the arc. It is easy to
see that unless special action is taken when P3 updates the value of u to 7, Py will subse-
guently continue to read the stale value out of its cache, and Py will also read a stale value
out of main memory.

location u {action 5), it will miss in its cache and read the stale value of 5 from main
memary instead of 7. Finally, if multiple processors write distinct values to location
u in their write-back caches, the final value that will reach main memory will be
determined by the order in which the cache blocks containing u are replaced and
will have nothing to do with the order in which the writes to v occur. B

Clearly, the behavior described in Example 5.1 violates our intuitive notion of
what a memaory should do. In fact, cache coherence problems arise even n uni-
processors when /0 operations occur. Most /O translers are performed by direct
memory access (DMA) devices that move data between memory and the peripheral
component without involving the processor. When the DMA device writes to a
location in main memaory, unless special action is taken, the processor may continue
to see the old value il that location was previously present in its cache. With write-
hack caches, a DMA device may read a stale value for a location from main memory
because the latest value for that location is in the processors cache. Since /O
operations are much less [requent than memory operations, several coarse solutions
have heen adopted in uniprocessors. For example, segments of memory space used
for /O may be marked as “uncacheable” (i.e., they do net enter the processor
cache), or the processor may always use uncached load and store operations for
lacations used to communicate with I/O devices. For /O devices that transfer large
blocks of data at a time, such as disks, operating system support is often enlisted to
ensure coherence. [n many systems, the pages of memory from/to which the data is

5.1 Cache Coherence 275

to be transferred are Hushed by the operating system from the processors cache
before the /O is allowed to proceed. In still other systems, all /O traffic is made to
flow through the processor cache hierarchy, thus maintaining coherence. This, of
course, pollutes the cache hierarchy with data that may not be of immediate interest
to the processor. Fortunately, the techniques and support used to solve the multi-
processor cache coherence problem also solve the 1/0 coherence problem. Essen-
tially all microprocessors today provide suppoert [or multiprocessor cache coherence.

In multiprocessors, reading and writing ol shared variables by different proces-
sors is expected to be a frequent event since it is the way that multiple processes
belonging to a parallel application communicate with each other. Therelore, we do
not want to disallow caching of shared data or 10 invoke the operating system on all
shared relerences. Rather, cache coherence needs to be addressed as a basic hardware
design issue; lor example, stale cached copies of a shared location (like the copy ofu
in Pys cache in Example 5.1) must be eliminated when the location is modified,
either by invalidating them or updating them with the new value. In fact, the operat-
ing system itsell benelits greatly lrom transparent, hardware-supported coherence of
s data structures.

Before we explore techniques to provide coherence, it is useful o define the
coherence property more precisely. Our intuitive notion that “each read should
return the last value written to that location™ is problematic [or parallel architecture
because “last” may not be well defined. Two different processors might write to the
same location at the same instant, or one processor may read so soon alter another
writes that, due to the speed of light and other factors, there isn't time to propagate
the invalidation or update to the reader. Even in the sequential case, “last” is not a
chronelogical or physical notion but relers to latest in program order. For now, we
can think of program order within a process as the order in which memaory opera-
tions occur in the machine language program. The subtleties of program order are
elaborated Turther in Section 5.2, The challenge in the parallel case is that, while
program order is defined for the operations within each individual process, in order
to dehne the semantics ol a coherent memory system we need to make sense of the
collection ol program orders.

Let us hrst review the delinitions of some terms in the context of uniprocessor
memory systems so that we can extend the dehnitions for multiprocessors. By
memory operation, we mean a single read (load), write (store), or read-modily-write
access to a memory location. Instructions that perform multiple reads and writes,
such as those that appear in many complex instruction sets, can be viewed as broken
down into multiple memory operations, and the order in which these memory oper-
ations are executed is specilied by the instruction. These memory operations within
an instruction are assumed o execute atomically with respect to each other in the
specified order; that is, all aspecis of one appear (o execute belore any aspect of the
next. A memory operation issues when it leaves the processor’s internal environment
and is presented to the memory system, which includes the caches, write bullers,
bus, and memory modules. A very important point [or ordering is that the only way
the processor observes the state of the memory system is by issuing memaory opera-
tions (e.g., reads); thus, for a memory operation 1o be performed with respect to the

276 CHAPTER 5 Shared Memory Multiprocessors

processor means that it appears to have taken place, as far as the processor can tell
from the memory operations it issues. In particular, a write operation is said to per-
form with respect to the processor when a subsequent read by the processor returns
the value produced by either that write or a later write. A read operation is said to
perform with respect to the processor when subsequent writes issued by the proces-
sor cannot affect the value returned by the read. Notice that in neither case do we
specify that the physical location in the memory chip has been accessed or that spe-
cific bits of hardware have changed their values. Also, “subsequent” is well defined
in the sequential case since reads and writes are ordered by the program order.

The same definitions for memory operations issuing and performing with respect
to a processor apply in the parallel case; we can simply replace “the processor” with
“a processor” in the definitions. The problem is that *subsequent”™ and “last™ are not
vet well defined since we do not have one program order; rather, we have separate
program orders for every process, and these program orders interact when accessing
the memaory system. One way to sharpen our idea of a coherent memory system is to
picture whart would happen if there were a single shared memory and no caches.
Every write and every read to a memory location would access the physical location
at main memory. The operation would be performed with respect to all processors at
this point and would therefore be said to complete. Thus, the memory would impose
a serial order on all the read and write operations from all processors Lo the location,
Moreover, the reads and writes to the location from any individual processor should
be in program order within this overall serial order. In this case, then, the main
memory location provides a natural peint in the hardware to determine the order
acrass processes of operations to that location. We have no reason to believe that the
memory system should interleave accesses from dilferent processors in a particular
way, s0 any interleaving that preserves the individual program orders is reasonable.
We do assume some basic fairness; eventually, the operations from each processor
should be performed. Our intuitive notion of “last™ can be viewed as most recent in
a hypothetical serial order that maintains these properties, and “subsequent” can be
defined similarly. Since this serial order must be consistent, it is important that all
processors see the writes to a location in the same order (if they bother to look, i.e.,
to read the location),

The appearance of such a total, serial order on operations to a location is what we
expect from any coherent memory system. Of course, the total order need not actu-
ally be constructed at any given point in the machine while executing the program.
Particularly in a system with caches, we do not want main memory to see all the
memory operations, and we want to aveid serialization whenever possible. We just
need to make sure that the program behaves as if some serial order was enforced.

More formally, we say that a multiprocessor memory system is coherent il the
results of any execution of a program are such that, for each location, it is possible to
construct a hypothetical serial order of all operations to the location (ie., put all
reads/writes issued by all processes into a total order) that is consistent with the
results of the execution and in which

1. operations issued by any particular process occur in the order in which they
were issued to the memory system by that process, and

5.1.2

3.1 <Cache Coherence 277

2. the value returned by each read operation is the value written by the last write
to that location in the serial order,

Two properties are implicit in the definition ol coherence: write propagation
means that writes hecome visible o other processes; write serialization means that
all writes to a location ([rom the same or dillerent processes) are seen in the same
order by all processes. For example, write serialization means that if read operations
by process Pj to a location see the value produced by write wl ([rom P,, say) before
the value produced by write w2 ({rom P4, say), then reads by another process P, (or
Py or P3) also should not be able to see w2 before wl. There is no need for an analo-
gous concept of read serialization since the ellects el reads are not visible to any pro-
cess but the one issuing the read.

The results of a program can be viewed as the values returned by the read opera-
tions in it, perhaps augmented with an implicit set of reads w all locations at the end
of the program. From the results, we cannot determine the order in which opera-
tions were actually executed by the machine or exactly when bits changed, only the
order in which they appear to execule. Fortunately, this is all that matters sinee this
iz all that processors can detect. This concept will become even more important
when we discuss memory consistency models.

Cache Coherence through Bus Snooping

Having defined the memory coherence property, let us examine techniques to solve
the cache coherence problem. For instance, in Figure 5.3, how do we ensure that Py
and P; see the value that Py wrote? In fact, a simple and elegant solution to cache
coherence arises from the very nature of a bus, The bus is a single set of wires con-
necting several devices, each of which can observe every bus transaction, for exam-
ple, every read or write on the shared bus. When a processor issues a request to its
cache, the cache controller examines the state of the cache and takes suitable action,
which may include generating bus transactions to access memory. Coherence is
maintained by having all cache controllers “snoop” on the bus and monitor the
transactions, as illustrated in Figure 3.4 (Goodman 1983). A sneoping cache con-
troller may take action if a bus transaction is relevant to it—that is, if it involves a
memory block of which it has a copy in its cache. Thus, Py may take an action, such
as invalidating or updating its copy of the location, il it sees the write from Py, In
fact, since the allocation and replacement of data in caches is managed at the granu-
larity of a cache block (usually several words long) and cache misses [etch a block of
data, most often coherence is maintained at the granularity of a cache block as well.
In other words, either an entire cache block is in valid state in the cache or none of it
is. Thus, a cache block is the granularity of allocation in the cache, ol data transier
between caches, and of coherence,

The key properties of a bus that support coherence are the following. First, all
transactions that appear on the bus are visible o all cache controllers. Second, they
are visible to all controllers in the same order (the order in which they appear on the
bus). A coherence protocol must guarantee that all the "necessary” transactions in

278 CHAPTER 5 Shared Memory Multiprocessors

Bus snoop
£
¢
!
- J F e @ @ 1
4 1
{ 2 J-
D% i
7 Cache-memory
Mem * L devices transaction

FIGURE 5.4 A snooping cache-coherent multiprocessor. Multiple processors with
private caches are placed on a shared bus. Each processor’s cache controller continuously
“snoaps” on the bus watching for relevant transaction and updates its state suitably 1o
keep its local cache coherent. The gray arrows show the transaction being placed on the
bus and accepted by main memaory, as in a uniprocessar system, The black arrow indicates
the snoop.

fact appear on the bus, in response to memory operations, and that the controllers
take the appropriate actions when they see a relevant transaction.

The simplest illustration of maintaining coherence is a system that has single-
level write-through caches. It is basically the approach followed by the first commer-
cial bus-based SMPs in the mid-1980s, In this case, every write operation causes a
write transaction to appear on the bus, so every cache controller observes every
write (thus providing write propagation). If a snooping cache has a copy of the
block, it either invalidates or updates its copy. Protocols that invalidate cached cop-
ies (other than the writer's copy) on a write are called invalidation-based protocols,
whereas those that update other cached copies are called update-based protocols. In
either case, the next time the processor with the copy accesses the block, it will see
the most recent value, either through a miss or because the updated value is in its
cache. Main memory always has valid data, so the cache need not take any action
when it observes a read on the bus, Example 5.2 illustrates how the coherence prob-
lem in Figure 5.3 is solved with write-through caches,

EXAMPLE 5.2 Consider the scenario presented in Figure 5.3, Assuming write-through
caches, show how the bus may be used to provide coherence using an invalidation-
based protocol.

Answer When processor P3 writes 7 to location u, Py's cache controller generates a
bus transaction to update memaory. Observing this bus transaction as relevant and
as a write transaction, Py's cache controller invalidates its own copy of the block
containing . The main memory controller will update the value it has stored for
location v to 7. Subsequent reads to u from processors Py and P, (actions 4 and 5)
will both miss in their private caches and get the correct value of 7 from the main
memory. B

5.1 Cache Coherence 279

The check to determine if a bus transaction is relevant w a cache is essentially the
same tag match that is performed for a request [rom the processor. The action taken
may involve invalidating or updating the contents or state of that cache block and/or
supplving the latest value lor that block [rom the cache to the bus.

A snoopy cache coherence protocol ties together two basic lacets ol computer
architecture that are alse found in uniprocessors: bus transactions and the state tran-
sition diagram associated with a cache block. Recall that the first component—ihe
bus transaction—consists of three phases: arbitration, command/address, and data.
In the arbitration phase, devices that desire to initiate a transaction assert their bus
request, and the bus arbiter selects one of these and responds by asserting its grant
signal. Upon grant, the selected device places the command, for example, read or
write, and the associated address on the bus command and address lines. All devices
ohserve the address and, in a uniprocessor, one of them recognizes that it is respon-
sible for the particular address. For a read transaction, the address phase is lollowed
by data transfer, Write transactions vary from bus to bus according to whether the
data is transferred during or after the address phase. For most buses, a responding
device can assert a wait signal to hold off the data transfer until it is ready. This wait
signal is different from the other bus signals because 1t is a wired-OR across all the
processors; that is, it is a logical 1 il any device asserts it. The initiator does not need
to know which responding device is participating in the transfer, only that there is
one and whether it is ready.

The second basic [acet of computer architecture leveraged by a cache coherence
protocol is that each block in a uniprocessor cache has a state associated with it,
along with the tag and data, which indicates the disposition of the block, (e.g..
invalid, valid, dirty). The cache policy is defined by the cache block state transition
diagram, which is a finite state machine specilying how the disposition of a block
changes. Transitions lor a cache block oceur upon aceess to that block or to an
address that maps to the same cache line as that block. (We refer to a cache block as
the actual data, and a line as the fixed storage in the hardware cache, in exact anal-
ogy with a page and a page rame in main memory.) While only blocks that are actu-
ally in cache lines have hardware state information, logically, all bloclks that are not
resident in the cache can be viewed as being in either a special "not present” state or
in the “invalid” state. In a uniprocessor system, for a write-through, write-no-
allocate cache (Hennessy and Patterson 1996), only two states are required: valid
and invalid. Initially, all the blocks are invalid. When a processor read operation
misses, a bus transaction is generated to load the block from memory and the block
is marked valid. Writes generate a bus transaction to update memory, and they also
update the cache block if it is present in the valid state. Writes do not change the
state of the bloclk. 1f a block is replaced, it may be marked invalid until the memory
provides the new block, whereupon it becomes valid. A write-back cache requires an
additional state per cache line, indicating a “dirty”™ or modihed block.

In a multiprocessor system, a block has a state in each cache, and these cache
stales change according to the state transition diagram. Thus, we can think of a
block’s cache state as being a vector ol p states instead ol a single state, where p is the
number of caches. The cache state is manipulated by a set of p distributed fnite state

280

CHAPTER 5 Shared Memory Multiprocessors

machines, implemented by the cache controllers. The state machine or state transi-
tion diagram that governs the state changes is the same for all blocks and all caches,
but the current state of a block in different caches is different. As before, il a block is
not present in a cache we can assume it to be in a special “not present” state or even
in the invalid state.

In a snooping cache coherence scheme, each cache controller receives two sets of
impults: the processor issues memory requests, and the bus snooper informs about
bus transactions from other eaches. In response to either, the controller may update
the state of the appropriate block in the cache according to the current state and the
state transition diagram. It may also take an action. For example, it responds to the
processor with the requested data, potentially generating new bus transactiens to
obtain the data, 1t responds to bus transactions by updating its state and sometimes
intervenes in completing the transaction. Thus, a snooping protocol is a distributed
algorithm represented by a collection of cooperating finite state machines. It is spec-
ified by the lollowing components:

m the set of states associated with memory blocks in the local caches

m the state transition diagram, which takes as inputs the current state and the
processor request or observed bus transaction and produces as output the next
state for the cache block

m the actions associated with each state transition, which are determined in part
by the set of feasible actions defined by the bus, the cache, and the processor
design

The different state machines for a block are coordinated by bus transactions.

A simple invalidation-based protocel for a coherent write-through, write-no-
allocate cache is described by the state transition diagram in Figure 3.5. As in the
uniprocessor case, each cache block has only two states: invalid (1) and valid (V)
(the “not present” state is assumed to be the same as invalid). The transitions are
marked with the input that causes the transition and the output that is generated
with the transition. For example, when a controller sees a read [rom its processor
miss in the cache, a BusRd transaction is generated, and upon completion of this
transaction the block transitions up to the valid state. Whenever the controller sees a
processor write to a location, a bus transaction is generated that updates that loca-
tion in main memory with no change of state. The key enhancement to the unipro-
cessor state diagram is that when the bus snooper sees a write transaction on the bus
for a memory block that is cached locally, the controller sets the cache state for that
block to invalid, therehy elfectively discarding its copy. (Figure 5.5 shows this bus-
induced transition with a dashed arc.) By extension, if any processor generates a
write for a block that is cached by any of the others, all of the others will invalidate
their copies. Thus, multiple simultancous readers of a block may coexist without
generating bus transactions or invalidations, but a write will eliminate all other
cached copies,

To see how this simple write-through invalidation protocol provides coherence,
we need to show that for any execution under the protocol a total order on the mem-

5.1 Cache Coherence 281

Predi— FridfrBus\r

PrRd/Busid I Busvir/—

PrABLET —f= Processorinitiated transactions

- — - = Bus-snooper-initiated transactions

FIGURE 5.5 Snoopy coherence for a multiprocessor with write-through, write-
no-allocate caches. There are two states, valid (V) and invalid (1), with intuitive semantics.
The notation A/8 (e.q,, PrRd/BusRd) means if A is observed, then transaction £ is generated.
Fram the processor side, the requests can be read (PrRd) or write {PrWwr). From the bus side,
the cache controller may observe/generate transactions bus read (BusRd) or bus write
(Bus\Wr).

ory operations for a location can be constructed that satisfies the program order and
write serialization conditions. Let us assume lor the present discussion that both bus
transactions and the memory operations are atomic. That is, only one transaction is
in progress on the bus at a time: once a request is placed on the bus, all phases of the
transaction, including the data response, complete before any other request from any
processor is allowed access to the bus (such a bus with atomic transactions is called
an atomic bus). Also, a processor waits until ils previous memory operation is com-
plete before issuing another memory operation. With single-level caches, it is also
natural to assume that invalidations are applied to the caches, and hence the write
completes during the bus transaction itsell. (These assumptions will be continued
throughout this chapter and will be relaxed when we look at protocol implementa-
tions in more detail and study high-performance designs with greater concurrency in
Chapter 6.) Finally, we may assume that the memory handles writes and reads in the
order in which they are presented by the bus.

In the write-through protocol, all writes appear on the bus, Since only one bus
ransaction is in progress at a time, in any execution all writes to a location are seri-
alized (consistently) by the order in which they appear on the shared bus, called the
bus oxder. Since each snooping cache controller performs the invalidation during the
bus transaction, invalidations are perlormed by all cache controllers in bus order.

282

cuaAPTER 3 Shared Memory Multiprocessors

Processors “see” writes through tead operations, so [or wrile serialization we
must ensure that reads from all processors see the writes in the serialized bus order.
However, reads to a location are not completely serialized since read hits may be per-
formed independently and concurrently in their caches without generating bus
transactions. To see how reads may be inserted in the serial order of writes, consider
the following scenario. A read that goes on the bus (a read miss) is serialized by the
bus along with the writes; it will therefore obtain the value written by the most
recent write to the location in bus order. The only memory operations that do not go
on the bus are read hits, In this case, the value read was placed in the cache by either
the most recent write to that location by the same processor or by its most recent
read miss (in program order). Since both these sources of the value appear on the
bus, read hits also see the values produced in the consistent bus order, Thus, under
this protocol, bus order together with program order provide enough constraints to
satisfy the demands of coherence.

More generally, we can construct a (hypothetical) total order thart satisfies coher-
ence by observing the following partial orders imposed by the protocol:

B A memory operation M, is subsequent Lo a memery operation My if the opera-
tions are issued by the same processor and M; follows My in program order.

m A read operation is subsequent to a write operation W il the read generates a
bus transaction that follows that lor W

m A write operation is subsequent to a read or write operation M if M generates a
bus transaction and the bus transaction [or the write follows that [or M.

m A write operation is subsequent to a read operation if the read does not gener-
ate a bus transaction (is a hit) and is not already separated from the write by
another bus transaction.

Any serial order that preserves the resulting partial order is coherent. The “subse-
quent” ordering relationship is transitive. An illustration ol the resulting partial
order is depicted in Figure 5.6, where the bus transactions associated with writes
segment the individual program orders. The partial order does not constrain the
ordering of read bus transactions from different processors that occur between two
write transactions, though the bus will likely establish a particular order. In fact, any
interleaving of read operations in the segment between two writes is a valid serial
order, as long as it obeys program order.

Of course, the problem with this simple write-through approach is that every
store instruction goes to memory, which is why most modern microprocessors use
write-back caches (at least at the level closest to the bus). This problem is exacer-
bated in the multiprocessor setting, since every store from every processor consumes
precious bandwidth on the shared bus, resulting in poor scalability, as illustrated by
Example 5.5.

EXAMPLE 5.3 Consider a superscalar RISC processor issuing two instructions per cycle

running at 200 MHz. Suppose the average CPl (clocks per instruction) for this pro-
cessor is 1, 15% of all instructions are stores, and each store writes 8 bytes of data.
How many processors will a 1-GB/s bus be able to suppeort without becoming satu-
rated?

5.2

5.2 Memory Consistency 283

b — @D E W= ® ®
b — @ —=® O—-O>®

Py ®*=®—=®) E=® ®

FIGURE 5.6 Partial order of memory operations for an execution with the write-
through invalidation protocol. Write bus transactions define a global sequence of
events between which individual processors read locatiens in program order. The execution
is consistent with any total order obtained by interleaving the processor orders within each
segment.

Answer A single processor will generate 30 million stores per second (0.15 stores per

instruction = 1 instruction per cycle = 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240 MB of data per second per processor. Even ig-
noring address and other information and ignoring read misses, a 1-GB/s bus will
therefore support only about four processors. B

For most applications, a write-back cache would absorb the vast majority of the
writes. However, if writes do not go to memory, they do not generate bus transac-
tions, and it is no longer clear how the other caches will observe these modifications
and ensure write propagation. Also, when writes to different caches are allowed Lo
occur concurrently, no obvious ordering mechanism exists to sequence the writes.
We will need somewhat more sophisticated cache coherence protocols to make the
“critical” events visible to the other caches and to ensure write serialization.

The space of protocols for write-back caches is quite large. Belore we examine it,
let us step back Lo the more general ordering issue alluded to in the introduction to
this chapter and examine the semantics of a shared address space as determined by
the memory consistency model.

MEMORY CONSISTENCY

Coherence, on which we have focused so far, is essential if information is to be
transferred between processors by one writing to a location that the other reads.
Eventually, the value written will become visible to the reader—indeed to all read-
ers. However, coherence says nothing about when the write will become visible.
Often in writing a parallel program, we want to ensure that a read returns the value
ol a particular write; that is, we want to establish an order between a write and a
read. Typically, we use some form of event synchronization to convey this depen-
dence, and we use more than one memory location.

284 cHAPTER 5 Shared Memory Multiprocessors

Consider, for example, the code fragments executed by processors Py and P, in
Figure 5.7, which we saw when discussing point-to-point event synchronization in a
shared address space in Chapter 2. It is clear that the programmer intends for pro-
cess P o spin idly until the value of the shared variable £ lag changes to 1 and then
to- print the value of variable & as 1, since the value of & was updated before that of
£lag by process Py. In this case, we use accesses to another location (£1ag) to pre-
serve a desired order of different processes’ accesses to the same location (2). In par-
ticular, we assume that the write of & becomes visible to P; before the write to £1ag
and that the read of £1ag by P, that breaks it out of its while loop completes belore
its read ol & (a print operation is essentially a read). These program orders within
Py and P4 accesses to different locations are not implied by coherence, which, lor
example, only requires that the new value for & eventually become visible to process
P, not necessarily before the new value of f1ag is observed.

The programmer might try to avoid this issue by using a barrier or other explicit
event synchronization, as shown in Figure 5.8. We expect the value ol & 1o be
printed as 1 since & was set to 1 before the barrier. Even this approach has twe
potential problems, however. First, we are adding assumptions to the meaning of the
barrier: not only do processes wait at the barrier until all of them have arrived, they
alsp wait until all writes issued prior to the barrier have become visible o the other
processors, Second, a barrier is often built using reads and writes o erdinary shared
variables (e.g., bl in the figure) rather than with specialized hardware support. In
this case, as far as the machine is concerned, it sees only accesses to different shared
variables in the compiled code, not a special barrier operation. Coherence does not
say anything at all about the order among these accesses.

Clearly, we expect more from a memory system than to “return the last value
written” for each location. To establish order among accesses to the same location
(say,) by different processes, we sometimes expect a memory system to respect the
order of reads and writes to different locations (& and £1ag or A4 and k1) issued by
the same process. Coherence says nothing about the order in which writes to differ-
ent locations become visible. Similarly, it savs nothing about the order in which the
reads issued to different locations by P5 are perlormed with respect to Py. Thus,
coherence does not in itsell prevent an answer of 0 from being printed by either
example, which is certainly not what the programmer had in mind.

In other situations, the programmer’s intention may not be so clear. Consider the
example in Figure 3.9. The accesses made by process Py are ordinary writes, and A
and B are not used as flags or synchronization variables. Should we intuitively
expect that if the value printed for B is 2, then the value printed for & is 17 Whatever
the answer, the two print statements read different locations and coherence says
nothing about the order in which the writes by Py become visible to P3. This exam-
ple is in fact a fragment from Dekkers algorithm (Tanenbaum and Woodhull 1997)
to determine which of two processes arrives first at a critical point as a step in ensur-
ing mutual exclusion. The algorithm relies on writes to distinct locations by a pro-
cess becoming visible to other processes in the order in which they appear in the

5.2 Memory Consistency 285

P, P,

*Assume initial value of A and flag is 0/
e while (flag. == 0); Mspinidly*/
flag = 1: print A;

FIGURE 5.7 Requirements of event synchronization through flags. The figure
shows two processors concurrently executing twio distinct code fragments. For programs-
mer intuition to be maintained, it must be the case that the printed value of 2 i5 1. The
intuition is that because of program order, if flag =1 is visible to pracess P, then it must

also be the case that & = 1 is visible to P5.

P4 P2

FHAssume initial value of A is 0%/

=== WHARRTER fhl:) = = =St — S HERETER (= == f=ilia

print’ Aj;

FIGURE 5.8 Maintaining order among accesses to a location using explicit syn-
chronization through barriers. As in Figure 5.7, the programmer expects the value
printed for & to be 1 since passing the barrier should imply that the write of by Py has
already completed and is therefore visible to P,

Py P2
A Assume initial values of A and B are 0%/
(la) Ra= (Za) print B;
LE BiE= 2 (2b} print A;

FIGURE 5.9 Order among accesses without synchronization. Here it is less clear
what a programmer should expect since neither a flag nor any other explicit event synchro-
nization is used.

program. Clearly, we need something more than coherence to give a shared address
space a clear semantics, that is, an ordering model that programmers can use Lo rea-
son about the possible results and hence the correciness of their programs.

A memory consistency model for a shared address space specifies constraints on the
order in which memory operations must appear to be performed (i.e., to become vis-
ible to the processors) with respect to one another. This includes operations to the
same locations or to different locations and by the same process or different pro-
CESSES, 50 in this sense MEmory C-I.'.!l]'.IE'IIST.E]'.I.C‘I!P S-UL'!'SHHTES CGI'!-E‘:],'E:TLEE,

=

286 cHAPTER 5 Shared Memory Multiprocessors

5.2.1

Sequential Consistency

In the discussion in Chapter 1 of fundamental design issues [or a communication
architecture, Section 1.4 described informally a desirable ordering model lor a
shared address space: the reasoning that allows a multithreaded program to work
under any possible interleaving on a uniprocessor should hold when some of the
threads run in parallel on different processors. The ordering of data accesses within
a process was therefore the program order, and that across processes was some inter-
leaving of the program orders. That is, the multiprocessor case should not be able to
cause values to become visible to processes in the shared address space in a manner
that ne sequential interleaving ol accesses [rom different processes can generate.
This intuitive model was [ormalized by Lamport as sequential consistency (5C),
which is defined as follows (Lampaort 1979):!

A multiprocessor is sequentially consistent il the result of any execution is the same as if the
operations of all the processors were exccuted in some sequential order, and the oper-
ations of each individual processor occur in this sequence in the order specified by its
program.

Figure 5.10 depicts the abstraction of memory provided to programmers by a
sequentially consistent system (Adve and Gharachorloo 1996). Tt is similar to the
machine model we used to introduce coherence, though now it applies to multiple
memory locations. Multiple processes appear to share a single logical memory, even
though in the real machine main memory may be distributed across multiple proces-
sors, each with their own private caches and buffers, Every process appears to issue
and complete memory operations one at a time and atomically in program order;
that is, a memory operation does not appear to be issued until the previous one from
that process has completed. In addition, the common memory appears to service
these requests one at a time in an interleaved manner according to an arbitrary (but
hopefully [air) schedule. Memory operations appear atomic in this interleaved order;
that is, it should appear globally (1o all processes) as if one operation in the consis-
tent interleaved order executes and completes belore the next one begins.

As with coherence, it is not important in what order memory operations actually
issue or even complete. What matters [or sequential consistency is that they appear
to complete in a manner that satishes the constraints just described. In the example
in Figure 5.9, under SC the result (0, 2) lor (&, B} would not be allowed—preserv-
ing our intuition—since it would then appear that the writes of 2 and B by process
Py executed out ol program order. However, the memory operations may actually
execute and complete in the order 11, 12, 2b, 2a. It does not matter that they actu-
ally complete out of program order since the results of the execution (1, 2) are the
same as il the operations were executed and completed in program order. On the
other hand, the acwal execution order 1b, 2a, 21, 1a would not be sequentially
consistent since it would produce the result {0, 2), which is not allowed under SC.
Other examples illustrating the intuitiveness of sequential consistency ean be found

. Two closely related concepis in sofiware sysiems are serializability (Papadimitiouw 1979) for concurrem

updates 1o a database and linearizability {Herlihy and Wing 1987) for concurrent objects,

3.2 Memory Consistency 287

Processars
iSSUING mMemory @ @ o
references as
per program arder ff_,_f
.,-F""'-FF
,ﬂf
asase @

The "switch” is randomly
set after each memory
reference

Mermory

FIGURE 5.10 Programmer's abstraction of the memory subsystem under the
sequential consistency madel. The model completely hides the underlying cancurrency
in the memory system hardware {2.9., the possible existence of distributed main memaory,
the presence of caches and write buffers) frem the programmer.

in Exercise 5.6. Note that 5C does not obviate the need for synchronization. The rea-
son is that SC allows operations from different processes to be interleaved arbitrarily
and does so at the granularity of individual instructions. Synchronization is needed
if we want to preserve atomicity (mutual exclusion) across multiple memory opera-
tions from a process or il we want to enforce constraints on the interleaving across
ProCesses.

The term “program order” also bears some elaboration. Intuitively, program order
for a process is simply the order in which statements appear according to the source
code that the process executes; more specifically, it is the order in which memory
operations oceur in the assembly code that results from a straightforward translation
of source statements one by one to machine instructions. This is not necessarily the
order in which an optimizing compiler presents memory operations to the hardware
since the compiler may reorder memory operations (within certain constraints, such
as preserving dependences to the same location). The programmer has in mind the
order of statements in the source program, but the processor sees enly the order of
the machine instructions. In fact, there is a “program order” at each of the interfaces
in the parallel computer architecture—particularly the programming model inter-
face seen by the programmer and the hardware/software interface—and ordering
models may be defined at each. Since the programmer reasons with the source pro-
gram, it makes sense to use this to define program order when discussing memory
consistency models; that is, we will be concerned with the consistency model pre-
sented by the language and the underlying system to the programmer.

Implementing SC requires that the system (software and hardware) preserve the
intuitive constraints defined previously. There are really twa constraints. The first is
the program order requirement: memory operations ol a process must appear to

288

CHAPTER 3 Shared Memory Multiprocessors

become visible—to itself and others—in program order. The second constraint
guarantees that the total order or the interleaving across processes is consistent for
all processes by requiring that the operations appear atomic. That is, it should
appear that one operation is completed with respect to all processes belore the next
one in the total order is issued (regardless of which process issues it). The tricky
part of this second requirement is making writes appear atomic, especially in a sys-
tem with multiple copies of a memory word that need to be informed on a write.
The write atomicity requirement, included in the preceding definition of sequential
consistency, implies that the position in the total order at which a write appears o
perform should be the same with respect to all processors. It ensures that nothing a
processor does alter it has seen the new value produced by a write (e.g., another
write that it issues) becomes visible 1o other processes before they oo have seen the
new value for that write. In effect, the write atomicity required by 5C extends the
write serialization required by coherence: while write serialization says that writes
to the same location should appear to all processors to have occurred in the same
order, write atomicity says that all writes (1o any location) should appear to all pro-
cessors to have occurred in the same order. Example 5.4 shows why write atomicity
15 Important.

EXAMPLE 5.4 Consider the three processes in Figure 5.11. Show how not preserving

write atomicity violates sequential consistency.

Answer 5ince P; waits until ~ becomes 1 and then sets E to 1, and since P53 waits until

2 becomes 1 and only then reads the value of 2, from transitivity we would infer
that P5 should find the value of & to be 1. If P5 is allowed to go on past the read of
2 and write B before it is guaranteed that P; has seen the new value of 2, then Ps
may read the new value of B but read the old value of A (e.q., from its cache),
violating our sequentially consistent intuition. M

More formally, each processs program order imposes a partial order on the set of
all operations; that is, it imposes an ordering on the subset of the operations that are
issued by that process. An interleaving of the operations from different processes
defines a total order on the set of all operations. Since the exact interleaving is not
defined by SC, interleaving the partial (program) orders [or different processes may
yield a large number of possible total orders. The following definitions therefore

apply:

B Sequentially consistent execution, An execution ol a program is said to be se-
quentially consistent il the results it produces are the same as those produced
by any one of the possible total orders (interleavings) as defined earlier. That
is, a total order or interleaving of program orders from processes should exist
that yields the same result as the actual execution.

B Sequentially consistent system. A system is sequentially consistent if any possi-
ble execution on that system is sequentially consistent,

5.2.2

5.2 Memory Consistency 283

Py P5 Py
— - while [(A==0);
B=1; p while (B==0);

-
il
e

printi A

FIGURE 5.11 Example illustrating the importance of write atomicity for sequen-
tial consistency

Sufficient Conditions for Preserving Sequential Consistency

Having discussed the definitions and high-level requirements, let us see how a mul-
tiprocessor implementation can be made to satisfy SC. It is possible to define a set of
sufficient conditions that will guarantee sequential consistency in a multiproces-
sor—whether bus-based or distributed, cache-coherent or not. The following set,
adapted from its original form (Duhois, Scheurich, and Briggs 1986; Scheurich and
Dubois 1987), is relatively simple:

1. Every process issues memory operations in program order.

2. After a write operation is issued, the issuing process waits lor the write to
complete before issuing its next operation.

3. Alter a read operation is issued, the issuing process waits for the read to com-
plete, and [or the write whose value is being returned by the read to complete,
before issuing its next operation. That is, if the write whaose value is being
returned has performed with respect to this processor (as it must have if its
value is being returned), then the processor should wait until the write has
performed with respect to all processors.

The third condition is what ensures write atomicity and is quite demanding. 1t is
not a simple local constraint because the read must wait until the logically preceding
write has become globally visible. Note that these are sufficient, rather than neces-
sary, conditions. Sequential consistency can be preserved with less serialization in
many situations, as we shall see,

With program order defined in terms of the source program, it is important that
the compiler should not change the order of memory operations that it presents to
the hardware (processor). Otherwise, sequential consistency from the programmer’s
perspective may be compromised even before the hardware gets involved. Unfortu-
nately, many of the optimizations that are commonly employed in both compilers
and processors violate these sufficient conditions. For example, compilers routinely
reorder accesses to different locations within a process, so a processor may in fact
issue accesses out of the program order seen by the programmer. Explicitly parallel
programs use uniprocessor compilers, which are concerned only about preserving
dependences 1o the same location, Advanced compiler optimizations that greatly
improve pErfn:eram:f:—s-:-ut:h as common subexpressi:;-n elimination, constant

230

CHAPTER 5 Shared Memory Multiprocessors

propagation, register allocation, and loop transformartiens like loop splitting, loop
reversal, and blocking (Wolfe 1989)—can change the order in which different loca-
tions are accessed or can even eliminate memory operations® In practice, to con-
strain these compiler optimizations, multithreaded and parallel programs annotate
variables or memory references that are used to preserve orders. A particularly strin-
gent example is the use of the volatile qualifier in a variable declaration, which
prevents the variable [rom being register allocated or any memory operation on the
variable from being reordered with respect o operations before or after it in program
order. Example 5.5 illustrates these issues.

EXAMPLE 5.5 How would reordering the memory operations in Figure 5.7 affect

semantics in a sequential program (only one of the processes running), in a parallel
program running on a multiprocessor, and in a threaded program in which the two
processes are interleaved on the same processor? How would you solve the problem?

Answer The compiler may reorder the writes to 2 and flag with no impact on a

sequential program. However, this can violate our intuition for both parallel
programs and concurrent (or multithreaded) uniprocessor programs. In the latter
case, a context switch can happen between the two reordered writes, so the
process switched in may see the update to flag without seeing the update to 2.
Similar violations of intuition occur if the compiler reorders the reads of f1ag and
. For many compilers, we can avoid these reorderings by declaring the variable
£1zo to be of type volatile integer instead of just integer. Other solutions
are also possible and are discussed in Chapter 9. H

Even if the compiler preserves program order, modern processors use sophisti-
cated mechanisms like write buffers, interleaved memory, pipelining, and out-of-
order execution techniques (Hennessy and Patterson 1996). These allow memory
operations from a process 1o issue, execute, and/or complete out of program order.
Like compiler optimizations, these architectural optimizations work for sequential
programs because the appearance of program order in these programs requires that
dependences be preserved only among accesses to the same memory location, as
shown in Figure 5,12, The problem in parallel programs is that the out-of-order
processing of operations to different shared variables by a process can be detected by
other processes.

Preserving the sufficient conditions for 5C in multiprocessors is quite a strong
requirement since it limits compiler reordering and out-ol-order processing tech-
niques. Several weaker consistency models have been proposed and techniques have
been develaped to satisfy SC while relaxing the sufficient conditions. We will exam-
ine these approaches in the context of scalable shared address space machines in
Chapter 9. For the purposes of this chapter, we assume the compiler does not reor-
der memeory operations, so the program order that the processor sees is the same as

. Moete that register sllocation, pecformed by modern compilers ta eliminate memory operations, can affect

calierence itsell, not just memory consistency. For the [lag synchronization example in Figure 5.7, if the
compiler were 1o register-allocate the £lag variable [or process Py, the process could end up spinning
[orever: the cache coherence hardware updates or invalidates only the memory and the caches, not the
registers of the machine, so the write propagation property of coherence is violated.

5.3

5.3 Design Space for Snooping Protocols 291

Write &

Write B FIGURE 5.12 Preserving the orders in a sequential
program running on a uniprocessor. Only the orders

Read A corresponding to the two dependence arcs must be pre-

Read B served, The first two operations can be reordered with-
out a problem, as can the last two ar the middle twa,

that seen by the programmer. On the hardware side, we assume that the sufficient
conditions must be satisfied. To do this, we need mechanisms for a processor to
detect completion of its writes so it may proceed past them (completion of reads is
easy; a read completes when the data returns to the processor) and mechanisms to
satisfy the condition that preserves write atomicity. For all the protocols and systems
considered in this chapter, we see how they satisly coherence {including write serial-
ization), how they can satisfy sequential consistency (in particular, how write com-
pletion is detected and write atomicity is guaranteed), and what shorteuts can be
taken while still satislying the sulficient conditions.

For bus-based machines, the serialization imposed by transactions appearing on
the shared bus is very useful in ordering memory operations. It is easy to verily that
the two-state write-through invalidation protocol discussed previously actually pro-
vides sequential consistency—not just coherence—quite easily. The key observation
to extend the arguments made for coherence in that system is that writes and read
misses Lo all locations, not just to individual locations, are serialized in bus order.
When a read obtains the value of a write, the write is guaranteed to have completed
since it caused a previous bus ransaction, thus ensuring write atomicity. When a
write is performed with respect to any processor, all previous writes in bus order
have completed.

DESIGN SPACE FOR SNOOPING PROTOCOLS

The beauty of snooping-based cache coherence is that the entire machinery for sol-
ving a difficult problem boils down to applying a small amount of extra interpreta-
tion to events that naturally occur in the system. The processor is completely
unchanged. No explicit coherence operations must be inserted in the program. By
extending the requirements on the cache controller and exploiting the properties of
the bus, the reads and writes thart are inherent to the program are used implicitly to
keep the caches coherent, and the serialization provided by the bus maintains con-
sistency. Each cache controller observes and interprets the bus transactions gener-
ated by others to maintain its internal state. Our initial design point with write-
through caches is not very elficient, but we are now ready to study the design space
for snooping protocols that make efficient use of the limited bandwidth of the
shared bus. All of these use write-back caches, allowing processors to write to dil-
ferent blocks in their local caches concurrently without any bus transactions. Thus,

292

CHAPTER 5 Shared Memory Multiprocessors

extra care is required to ensure that enough information is transmitted over the bus
te maintain coherence.

Recall that with a write-back cache on a uniprocessor, a processor write miss
causes the cache to read the entire block from memory, update a word, and retain the
block in modified (or dirty) state so it may be written back Lo memory on replace-
ment. In a multiprocessor, this madified state is also used by the protocols to indi-
cate exclusive ownership of the block by a cache. In general, a cache is said to be the
owner of a block if it must supply the data upon a request for that block (Sweazey
and Smith 1986). A cache is said to have an exclusive copy of a black if it is the only
cache with a valid copy of the block (main memory may or may not have a valid
copy). Exclusivity implies that the cache may modify the block without notifying
anvone else. If a cache does not have exclusivity, then it cannot write a new value
into the block before first putting a transaction on the bus to communicate with
others. The writer may have the block in its cache in a valid state, but since a trans-
action must be generated, it is called a write miss just like a write to a block that is
not present or is invalid in the cache, If a cache has the block in modihed state, then
clearly it is the owner and it has exclusivity. (The need to distinguish ownership
from exclusivity will become clear soon.)

On a wrile miss in an invalidation protocol, a special form of transaction called a
read exelusive is used to tell other caches about the impending write and to acquire a
copy of the block with exclusive ownership. This places the block in the cache in
modified state, where it may now be written, Multiple processors cannot write the
same block concurrently since this would lead to inconsistent values. The read-
exclusive bus transactions generated by their writes will be serialized by the bus, so
only one of them can have exclusive ownership of the block at a time. The cache
coherence actions are driven by these two types of transactions: read and read exclu-
sive. Eventually, when a modified block is replaced from the cache, the data is writ-
ten back to memory, but this event is not caused by a memory operation to that
block and is almaost incidental to the protocol. A block that is not in modified state
need not be written back upon replacement and can simply be dropped since mem-
ory has the latest copy. Many protocals have been devised for write-back caches, and
we examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols,
whenever a shared location is written to by a processor, its value is updated in the
caches of all other processors holding that memory block . Thus, when these pro-
cessors subsequently access that block, they can do so from their caches with low
latency, The caches ol all other processors are updated with a single bus transac-
tion, thus conserving bandwidth when there are multiple sharers. In contrast, with
invalidation-based protocols, on a write operation the cache state of that memory
block in all other processors' caches is set to invalid, so those processors will have to
obtain the block through a miss and hence a bus transaction on their next read.

3. This is a write-broadcast scenario. Read-broadeast designs have also been investigated, in which the

cache containing the madified copy flushes it to the bus when it sees a read on the bus, at which point all
other copies are updated too.

5.3.1

5.3 Design Space for Snooping Protocols 293

However, subsequent writes to that block by the same processor do not create fur-
ther traffic on the bus (as they do with an update protocol) until the block is
accessed by another processor. This is attractive when a single processor performs
multiple writes to the same memory block belore other processors access the con-
tents of that memory block. The detailed trade-olls are more complex, and they
depend on the workload offered to the machine; they will be illustrated quantita-
tively in Section 5.4. In general, invalidation-based strategies have been found to be
more tobust and are therefore provided as the default protocol by most vendors.
Some vendors provide an update protocol as an option to be used for blocks corre-
sponding to selected data structures or pages.

The choices made for the protocol (update versus invalidate) and the caching
strategies directly affect the choice ol states, the state transition diagram, and the
associated actions. Substantial flexibility is available to the computer architect in the
design task at this level. Instead of listing all possible choices, let us consider three
commaon coherence protocols that will illustrate the design options.

A Three-State (MSI) Write-Back Invalidation Protocol

The first protocel we consider is a basic invalidation-based protocol for write-back
caches. [t is very similar to the protocol that was used in the Silicon Graphics 4D
series multiprocessor machines (Baskett, Jermoluk, and Solomon 1988). The proto-
col uses the three states required for any write-back cache in order to distinguish
valid blocks that are unmodified (clean) from those that are modified (dirty). Specif-
ically, the states are modified (M), shared (S), and invalid (1). Invalid has the obvious
meaning. Shared means the block is present in an unmodified state in this cache,
main memory is up-to-date, and zero or more other caches may also have an up-to-
date (shared) copy. Modified, also called dirty, means that only this cache has a valid
copy of the block, and the copy in main memory is stale. Belore a shared or invalid
block can be written and placed in the modified state, all the other potential copies
must be invalidated via a read-exclusive bus transaction. This transaction serves to
order the write as well as cause the invalidations and hence ensure that the write
becomes visible to others (write propagation).

The processor issues two types of requests: reads (PrRd) and writes (Privr). The
read ar write could be to a memory block that exists in the cache or to one that does
not. In the latter case, a block currently in the cache will have to be replaced by the
newly requested block, and if the existing block is in the modified state, its contents
will have to be written back to main memory.

We assume that the bus allows the [ollowing transactions:

B Bus Read (BusRd): This transaction is generated by a PrRd that misses in the
cache, and the processor expects a data response as a result. The cache con-
troller puts the address on the bus and asks for a copy that it does not intend
to modify. The memory system (possibly another cache) supplies the data.

m Bus Read Exclusive (BusRdX): This transaction is generated by a Prwr to a
block that is either not in the cache or is in the cache but not in the modified

294

CHAPTER 3 Shared Memory Multiprocessors

state. The cache controller puts the address on the bus and asks for an exclu-
sive copy that it intends to modify. The memory system (possibly another
cache) supplies the data. All other caches are invalidated. Once the cache
abtains the exclusive copy, the write can be performed in the cache. The pro-
cessor may require an acknowledgment as a result of this transaction.

®m Bus Write Back (BusWB): This transaction is generated by a cache controller
on a write back; the processor does not know about it and does not expect a
response, The cache controller puts the address and the contents for the mem-
ory block on the bus. The main memory is updated with the latest contents.

The bus read exclusive (sometimes called read-to-own) is the only new transac-
tion that would not exist except for cache coherence. The new action needed to sup-
port write-back protocols is that, in addition to changing the state of cached blocks,
a cache controller can intervene in an ohserved bus transaction and flush the con-
tents of the referenced block from its cache onto the bus rather than allowing the
memory to supply the data, Of course, the cache controller can also initiate bus
transactions as described above, supply data for write backs, or pick up data sup-
plied by the memory system.

State Transitions

The state transition diagram that governs a block in each cache in this snooping pro-
tocol is as shown in Figure 5.13, The states are organized so that the closer the state
is to the top, the more tightly the block is bound to that processor. A processor read
to a block that is invalid (or not present) causes a BusRd transaction to service the
miss. The newly loaded block is promoted, moved up in the state diagram, lrom
invalid to the shared state in the requesting cache, whether or not any other cache
holds a copy. Any other caches with the block in the shared state observe the BusRd
but take no special action, allowing main memory to respond with the data. How-
ever, il a cache has the block in the madified state (there can only be one} and it
observes a BusRd transaction on the bus, then it must get involved in the transaction
since the copy in main memory is stale. This cache flushes the data ento the bus. in
lieu of memory, and demotes its copy of the block to the shared state (see
Figure 5.13), The memory and the requesting cache both pick up the block. This
can be accomplished either by a direct cache-to-cache transler across the bus during
this BusRd transaction or by signaling an error on the BusRd transaction and gener-
ating a write transaction to update memory. In the latter case, the original cache will
eventually retry its request and obtain the block from memory. (It is also possible to
have the flushed data picked up only by the requesting cache but not by memory,
leaving memory still out-of-date, but this requires more states [Sweazey and Smith
1986].)

Writing into an invalid block is a write miss, which is serviced by first loading the
entire block and then modilving the desired bytes within it. The write miss generates
a read-exclusive bus transaction, which causes all other cached copies of the block
to be invalidated, thereby granting the requesting cache exclusive ownership of the

5.3 Design Space for Snooping Protocols 295

Prvr/BusRdx

|
BusRdx/Flush

\ I

BusRdx— |

| !

/

PrRd/BusRd | I

Prigi— ;
BusRdi— R
Pryr/BusRdX, ;
£

FIGURE 5.13 Basic three-state invalidation protocol. I, 8, and | stand for medified,
shared, and invalid states, respectively. The notation A/8 means that if the controller
observes the event A from the processor side or the bus side, then in addition to the state
change, it generates the bus transaction or action 8. "—" means null action. Transitions
due to observed bus transactions are shown in dashed arcs, while those due to local pro-
cessar actions are shown in bold arcs. If multiple A/B pairs are assaciated with an arc, it sim-
ply means that multiple inputs can cause the same state transition. For completeness, we
should specify actions from each state corresponding to each observable event. If such
transitions are not shown, it means that they are uninteresting and no action needs to be
taken. Replacements and the write backs they may cause are not shown in the diagram for
simplicity.

block. The block of data returned by the read exclusive is promoted to the modified
state, and the desired bytes are then written into it. If another cache later requests
exclusive access, then in response to its BusRdX transaction this block will be inval-
idated (demoted to the invalid state) after flushing the exclusive copy to the bus.
The most interesting transition occurs when writing into a shared block. As dis-
cussed earlier, this is treated essentially like a write miss, using a read-exclusive bus
transaction to acquire exclusive ownership; we refer to it as a write miss throughout
the book. The data that comes back in the read exclusive can be ignored in this case,
unlike when writing to an invalid or not present block, since it is already in the
cache, In lact, a common optimization to reduce data traffic in bus protocols is to
introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr obtains exclusive ownership just like a BusRdX, by causing other copies to
be invalidated, but it does not cause main memory or any cther device to respond
with the data lor the block. Regardless of whether a BusUpgr or a BusRdX is used

296

CHAPTER 3 Shared Memory Multiprocessors

(let us continue to assume BusRdX), the block in the requesting cache transitions to
the maodified state. Additional writes to the block while it is in the modified state
generate no additional bus transactions.

A replacement of a block from a cache logically demotes the block to invalid (not
present) by removing it from the cache. A replacement therefore causes the state
machines for two blocks to change states in that cache; the one heing replaced
changes from its current state to invalid, and the one being brought in changes from
invalid (not present) to its new state. The latter state change cannot take place
helore the former, which requires some care in implementation. 1f the block heing
replaced was in modified state, the replacement transition from M to [generates a
write-back transaction. No special action is taken by the other caches on this trans-
action, If the block being replaced was in shared or invalid state, then it itself does
not cause any transaction on the bus. Replacements are not shown in the state dia-
gram [or simplicity.

Note that to specify the protocol completely, for each state we must have oul-
going arcs with labels corresponding to all observable events (the inputs from the
processor and bus sides) and must show the actions corresponding to them. Ol
course, the actions and state transitions can be null sometimes, and in that case we
may either explicitly specily null actions (see states 5 and M in Figure 5.13), or we
may simply omit those arcs from the diagram (see state I}, Also, since we treat the
nat-present state as invalid, when a new block is brought into the cache on a miss,
the state transitions are performed as if the previous state of the block was invalid.
Example 5.6 illustrates how the state transition diagram is interpreted.

EXAMPLE 5.6 Using the M5l protocol, show the state transitions and bus transactions

for the scenario depicted in Figure 5.3.

Answer The results are shown in Figure 5.14. W

With write-back protocels, a block can be written many times before the memaory
is actually updated, A read may obtain data not from memory but rather from a
writer's cache, and in fact it may be this read rather than a replacement that causes
memory to be updated. In addition, write hits do not appear on the bus, so the con-
cept of a write being performed with respect to other processors is a little different.
In fact, to say that a write is being performed means that the write is being “made
visible." A write to a shared or invalid block is made visible by the bus read-exclu-
sive transaction it triggers. The writer will “observe” the data in its cache after this
transaction. The write will be made visible to other processors by the invalidations
that the read exclusive generates, and those processors will experience a cache miss
helore actually observing the value written. Write hits to a modified block are visible
to other processors but again are observed by them only after a miss through a bus
transaction. Thus, in the MSI protocol, the write to a nonmodified block is per-
formed or made visible when the BusRdX transaction occurs, and the write to a
maodified block is made visible when the block is updated in the writer’s cache.

5.3 Design Space for Snooping Frotocols 297

Processor Action Statein Py Statein P, 5State in Py Bus Action Data Supplied By

1. B, reads u 5 = T Bushd Memory
2. P2 reads u 5 — = BusRd Memory
3. P; writes u I = M BusHdX Memory
i Py reads u g — g BuzhRd P4 cacha
5. P; reads u 5 S 3 BusRd Memoxry

FIGURE 5.14 The three-state invalidation protocol in action for processor transactions
shown in Figure 5.3. The figure shows the state of the relevant memaory block at the end of 2ach pro-
cessor action, the bus transaction generated {if any), and the entity supplying the data.

Satisfying Coherence

Since both reads and writes can take place withour generating bus transactions in a
write-back protocol, it is not obvious that it satisfies the conditions for coherence,
much less sequential consistency. Let’s examine coherence first. Write propagation is
clear from the preceding discussion, so let us focus on write serialization. The read-
exclusive transaction ensures that the writing cache has the only valid copy when
the block is actually written in the cache, just like a write transaction in the write-
through protocol. It is followed immediately by the corresponding write being per-
[ormed in the cache before any other hus transactions are handled by that cache
controller, so it is ordered in the same way for all processors (including the writer)
with respect to other bus transactions. The only difference from a write-through pro-
tocol, with regard to ordering operations to a location, is that not all writes generate
bus transactions. However, the key here is that between two transactions for that
block that do appear on the bus, only one processor can perform such write hits;
this is the processor (say, P} that performed the most recent read-exclusive bus
transaction w for the block. In the serialization, this sequence of write hits therelore
appears (in program order) between w and the next bus transaction for that block.
Reads by processor P will clearly see them in this order with respect to other writes.
For a read by another processor, there is at least one bus transaction for that block
that separates the completion ol that read from the completion of these write hits.
That bus transaction ensures that that read also sees the writes in the consistent
serial order. Thus, reads by all processors see all writes in the same order.

Satislying Sequential Consistency

To see how SC is satisfied, let us first appeal to the definition itsell and see how a
consistent global interleaving of all memory operations may be constructed. As with
write-through caches, the serial arbitration lor the bus in fact defines a total order on
bus transactions for all blocks, not just those for a single block. All cache controllers
observe read and read-exclusive bus transactions in the same order and perform
invalidations in this order. Between consecutive bus transactions, each processor

298

CHAPTER 3 Shared Memory Multiprocessars

performs a sequence of memory operations (read and write hits) in program order.,
Thus, any execution of a program defines a natural partial order;

A memory operation M, is subsequent to operation M, it (1) the operations are issued by
the same processor and M; lollows M; in program order, or {2} M, generates a bus transac-
tion that [ollows the memory operation for M;.

This partial order looks graphically like that of Figure 5.6, except the local sequence
within a segment has writes as well as reads and both read-exclusive and read bus
transactions play important roles in establishing the orders. Between bus transac-
tions, any interleaving of the sequences of local operations (hits) from different pro-
cessors leads to a consistent total order. For writes that occur in the same segment
between bus transactions, a processor will observe the writes by other processors
ordered by bus transactions that it generates, and its own writes ordered by program
order.

We can also see how SC is satisfied in terms of the sufficient conditions, Write
completion is detected when the read-exclusive bus transaction occurs on the bus
and the write is performed in the cache. The read completion condition, which pro-
vicles write atomicity, is met because a read either (1) causes a bus transaction that
follows that of the write whose value is being returned, in which case the write must
have completed globally before the read; (2) follows such a read by the same proces-
sor in program order; or {3) follows in program order on the same processor that
performed the write, in which case the processor has already waited for the write to
complete (become visible} globally. Thus, all the sufficient conditions are easily
guaranteed. We return to this topic when we discuss implementing protocols in
Chapter 6.

Lower-Level Design Choices

To illustrate some of the implicit design choices that have been made in the protocol,
let us examine more closely the transition from the M state when a BusRd for that
block is ohserved. In Figure 5.13, we transition to state S and flush the contents of
the memory block to the bus. Although it is imperative that the contents are placed
on the bus, we could instead have transitioned to state 1, thus giving up the block
entirely. The choice of going to § versus 1 reflects the designers assertion that the
original processor is more likely to continue reading the block than the new proces-
sor is to write to the memory block. Intuitively, this assertion holds for mostly read
data, which is common in many programs. However, a common case where it does
not hold is for a flag or buffer that is used to transfer information back and forth
between processes: one processor writes it, the other reads it and modifies it, then
the first reads it and modibes it, and so on. Accumulations into a shared counter
exhibit similar migratory behavior across multiple processors. The problem with
betting on read sharing in these cases is that every write has to first generate an
invalidation, thereby increasing its latency. Indeed. the coherence protocol used in
the early Synapse multiprocessor made the alternate choice of going directly [rom M
1o I state on a BusRd, thus betting the migratory pattern would be more frequent.

5.3.2

5.3 Design Space [or Snooping Protocols 299

Some machines (Sequent Symmetry model B and the MIT Alewife) attempt to adapt
the protocol when such a migratory access pattern is observed (Cox and Fowler
1993: Dahlgren, Dubois, and Stenstrom 1994), These choices can allect the perlor-
mance ol the memory system, as we see later in the chapter.

A Four-State (MESI) Write-Back Invalidation Protocol

A concern arises with our MSI protocol if we consider a sequential application run-
ning on a multiprocessor. Such multiprogrammed use in fact constitutes the most
common workload on small-scale multiprocessors. When the process reads in and
modifies a data item, in the M5] protocol two bus transactions are generated even
though there are never any sharers. The first is a BusRd that gets the memory block
in 5 state, and the second is a BusRdX (or BusUpgr) that converts the block from 5
to M state. By adding a state that indicates that the block is the only (exclusive) copy
but is not modified and by loading the bleck in this state, we can save the later
transaction since the state indicates that no other processor is caching the block.
This new state, called exclusive-clean or exclusive-unowned (or even simply “exclu-
sive”), indicates an intermediate level of binding between shared and modihed. It is
exclusive, so unlike the shared state, the cache can perform a write and move to the
maodified state without further bus transactions; but it does not imply ownership
(memory has a valid copy), so unlike the modified state, the cache need not reply
upon observing a request for the block. Variants of this MESI protocol are used in
many modern microprocessors, including the Intel Pentium, PowerPC 601, and the
MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. It was first
published by researchers at the University of llinois at Urbana-Champaign (Papa-
marcos and Patel 1984) and is often referred to as the Illinois protocol (Archibald
and Baer 1986).

The MESI protocol thus consists of four states: modified (M) or dirty, exclusive-
clean (E). shared (S), and invalid (1). M and 1 have the same semantics as belore, E,
the exclusive-clean or exclusive state, means that only one cache (this cache) has a
copy of the block and it has not been modified (i.e., the main memory is up-to-date).
S means that potentially two or more processors have this block in their cache in an
unmaodified state. The bus transactions and actions needed are very similar to those
for the MSI protocol.

State Transitions

When the block is first read by a processor, il a valid copy exists in another cache,
then it enters the processor’s cache in the 5 state, as usual. However, if no other
cache has a copy at the time (for example, in a sequential application), it enters the
cache in the E state. When that block is written by the same processor, it can directly
transition from E to M state without generating another bus transaction since no
other cache has a copy. If another cache had obtained a copy in the meantime, the
state of the block would have been demoted from E to 5 by the snooping protocol.

300 cuarTER 5 Shared Memory Multiprocessors

This protocel places a new requirement on the physical interconnect of the bus.
An additional signal, called the shared signal (S), must be available to the controllers
in order to determine on a BusRd if any other cache currently holds the data. During
the address phase of the bus transaction, all caches determine if they contain the
requested block and, if so, assert the shared signal. This signal is a wired-OR line, so
the controller making the request can observe whether any other processors are
caching the referenced memory block and can thereby decide whether to load a
requested block in the E state or the 5 state.

Figure 5.15 shows a state transition diagram for a MESI protocol, still assuming
that the BusUpgr transaction is not used. The notation BusRd(S5) means that the bus
read transaction caused the shared signal § to be asserted; BusRd(S) means S was
unasserted. A plain BusRd means that we don't care about the value of 5 [or that
transition. A write to a block in any state will promote the block to the M state, but
if it was in the E state, then no bus transaction is required. Observing a BusRd will
demaote a block from E 1o S since now another cached copy exists. As usual, ohserv-
ing a BusRd will demote a block from M to S state and will also cause the block to be
flushed onto the bus; here too, the block may be picked up only by the requesting
cache and not by main memory, but this may require additional states beyond MESL
(A fifth, owned state may be added, which indicates that even though other shared
copies of the block may exist, this cache [instead of main memory] is responsible for
supplying the data when it observes a relevant bus transaction. This leads to a five-
state MOESI protocol [Sweazey and Smith 1986].) Notice that it is possible for a
block to be in the 5 state even if no other copies exist since copies may be replaced
(S —+ 1} without notilying other caches. The arguments [or satislying coherence and
sequential consistency are the same as in the MS5I protocol.

Lower-Level Design Choices

An interesting question for bus-based protocols is who should supply the block for a
BusRd transaction when both the memory and another cache have a copy of it. In
the original (Illinois) version of the MESI protocol, the cache rather than main
memory supplied the data—a technique called cache-to-cache sharing, The argument
[or this approach was that caches, being constructed out of SRAM rather than
DRAM, could supply the data more quickly. However, this advantage is not necessar-
ily present in modern bus-based machines, in which intervening in another proces-
sor's cache to obtain data may be more expensive than obtaining the data from main
memory. Cache-to-cache sharing also adds complexity to a bus-based protocol: main
memory must wait until it is certain that no cache will supply the data before driving
the bus, and if the data resides in multiple caches, then a selection algorithm is
needed to determine which one will provide the data. On the other hand, this
technique is useful for multiprocessors with physically distributed memory (as we
sce in Chapter 8) because the latency to obtain the data from a nearby cache may be
much smaller than that for a faraway memory unit. This effect can be especially
important for machines constructed as a network of SMP nodes because caches

5.3.3

2.3 Design Space for Snooping Protocols 301

Prwr/BusRdx

PrfBusRdX

PrRdf _
BusRd (5}

PrRd/
B

FIGURE 5.15 State transition diagram for the lllinois MESI protocol. MESI stands
for the modified (dirty}, exclusive, shared, and invalid states, respectively. The notation is
the same as that in Figure 5.13. The E state helps reduce bus traffic for sequential programs
where data is not shared. Whenever feasible, the [llinois version of the MESI protocol makes
caches, rather than main memory, supply data for BusRd and BusRdX tranmsactions. Since
multiple processors may have a copy of the memory block in their cache, we need to select
only one to supply the data on the bus. Flush’ is true only for that processor; the remaining
pracessors take their usual action {invalidation or no action). In general, Flush® in a state
diagram indicates that the block is flushed only if cache-to-cache sharing is in use and then
only by the cache that is responsible for supplying the data,

within the requestor’s SMP node may supply the data. The Stanford DASH multipro-
cessor (Lenoski et al. 1993) used such cache-to-cache transfers for this reason.

A Four-State (Dragon) Write-Back Update Protocol

Let us now examine a basic update-based protocol for write-back caches, This proto-
col was hirst propesed by researchers at Xerox PARC [or their Dragon multiprocessor
system (McCreight 1984; Thacker, Stewart, and Satterthwaite 1988), and an

302 cHAPTER 5 Shared Memory Multiprocessors

enhanced version of it is used in the Sun SparcServer multiprocessors (Catanzaro
1997).

The Dragon protocol consists of four states: exclusive-clean (E), shared-clean
(5¢). shared-modified (Sm), and modified (M), Exclusive-clean (or exclusive) has
the same meaning and the same motivation as before: enly one cache (this cache)
has a copy of the block, and it has not been modified (i.e., the main memory is up-
to-date). Shared-clean means that potentially two or more caches (including this
one) have this block, and main memory may or may not be up-to-date, Shared-
modificd means that potentially two or more caches have this block, main memory is
not up-to-date, and it is this cache’s responsibility to update the main memory at the
time this block is replaced from the cache (ic., this cache is the owner). A block
may be in Sm state in only one cache at a time. However, it is quite possible that one
cache has the block in Sm state, while others have it in Sc state. Or it may be that no
cache has it in Sm state, but some have it in Sc state. This is why, when a cache has
the block in Sc state, memory may or may hot be up-to-date; it depends on whether
some other cache has it in Sm state. M signifies exclusive ownership as before: the
hock is modified (dirty) and present in this cache alone, main memory is stale, and
it is this caches responsibility to supply the data and to update main memory on
replacement. Note that there is no explicit invalid (I} state as in the previous proto-
cols. This is because Dragon is an update-based protocol; the protocol always keeps
the blocks in the cache up-to-date, so it is always okay to use the data present in the
cache if the tag match succeeds. However, if a block is not present in a cache at all, it
can be imagined in a special invalid or not-present state.?

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the [llineis MES] protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWwr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two maore request types: processor
read miss (PrRdMiss) and write miss (FrWwrMiss). As [or bus mransactions, we have
hus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The
BusUpd transaction takes the specific word (or bytes) written by the processor and
broadeasts it on the bus so that all other processors’ caches can update themselves.
By broadcasting only the contents of the specific modified word rather than the
whaole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state, a shared signal (5) is available to the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
locally cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

4. Logically, there is another state as well, but it is rather crude and is used o bootstrap the protacol. A
“miss mode” bit is provided with each cache line 10 force 3 miss when that block is accessed. Initializa-
tion software reads data into every line in the cache with the miss moede bit amed on o ensure that the
processor will miss the first time it references a block that maps to that line, After this first miss, the miss
moede bit is turned oll and the cache operates normally,

5.3 Design Space [or Snooping Protocols 303

Prid/—
Prid/— BusUpd/Update
; BusRdi—
PrRdMiss/BusRdis) - Pridhiss/BusRd(s)
Pritri—
Prvr/Buslpd(S)

Priériviissf(BusRd(S); BusUpd} Prvrivliss/BusRd(S)

PrindriBusUpdis)
BusUpel/Update |

Fridi—
FritdrBusUpd(s) PrRd/—
BusRd/Flush P/ —

FIGURE 5.16 State transition diagram for the Dragon update protocol. The four states are
exclusive (E), shared-clean (5c), shared-maodified (Sm), and modified (M), There is no invalid () state
because the update protocol always keeps blocks in the cache up-to-date.

State Transitions

Figure 3.16 shows the state transition diagram lor the Dragon update protocol. To
take a processor-centric view, we can explain the diagram in terms of actions taken
when a cache incurs a read miss, a write (hil or miss), or a replacement (no action is
ever taken on a read hit).

m Read miss: A BusRd transaction is generated. Depending on the status of the
shared signal (S), the block is loaded in the E or Sc state in the local cache. TF
the hlock is in M or Sm states in one of the other caches, that cache asserts the
shared signal and supplies the latest data for that block on the bus, and the
block is loaded in the local cache in Sc state. If the other cache had it in state
M, it changes its state to Sm. If the block is in Sc state in other caches, memory
supplies the data, and it is loaded in Sc state. If no other cache has a copy, then
the shared line remains unasserted, the data is supplied by the main memory,
and the black is loaded in the local cache in E state.

m Write: If the block is in the M state in the local cache, then no action needs to
be taken. If the block is in the E state in the local cache, then it changes to M
state and again no further action is needed. If the block is in Sc or Sm state,

304 cHAPTER 5 Shared Memory Multiprocessors

however, a BusUpd transaction is generated. 1f any other caches have a capy of
the data, they assert the shared signal, update the corresponding bytes in their
cached copies, and change their state to 5c il necessary. The local cache also
updates its copy of the block and changes its state to Sm il necessary. Main
memory is not updated. If no other cache has a copy of the data, the shared
signal remains unasserted, the local copy is updated, and the state is changed
to M. Finally, if on a write the block is not present in the cache, the write is
treated simply as a vead-miss transaction followed by a write transaction,
Thus, first a BusRd is generated. I the block is also found in other caches, a
BusUpd is generated, and the block is loaded locally in the Sm state; other-
wise, the block is loaded locally in the M state.

m Replacement: On a replacement (arcs not shown in the hgure), the block is
writtent back to memory using a bus transaction only if it is in the M or 5m
state. I it ig in the Se state, then either some other cache has it in Sm state or
none does, in which case it is already valid in main memory.

Example 5.7 illustrates the transitions for a familiar scenario.

EXAMPLE 5.7 Using the Dragon update protocol, show the state transitions and bus
transactions for the scenario depicted in Figure 5.3,

Answer The results are shown in Figure 5.17. We can see that, whereas for processor
actions 3 and 4 only one word is transferred on the bus in the update protocol, the
whaole memory block is transferred twice in the invalidation-based protocol. Of
course, it is easy to construct scenarios in which the invalidation protocol does
much better than the update protocol, and we discuss the detailed trade-offs in
Section 5.4. B

Lower-Level Design Choices

Again, many implicit design choices have been made in this protocol. For example,
it is [easible to eliminate the shared-modified state. In fact, the update protocol used
in the DEC Firefly multiprocessor does exactly that. The rationale is that every time
the BusUpd transaction occurs, main memory can also update its contents along
with the other caches holding that block; therefore, shared clean suffices, and a
shared-modified state is not needed. The Dragon protocol is instead based on the
assumption that the SRAM caches are much quicker to update than the DRAM main
memory, so it is inappropriate to wait for main memory to be updated on all BusUpd
transactions. Another subtle choice relates to the action taken on cache replace-
ments. When a shared-clean block is replaced, should other caches be informed of
that replacement via a bus transaction so that if only one cache remains with a copy
of the memory block, it can change its state to exclusive or modihed? The advantage
of doing this would be that the bus transaction upon the replacement might not be
in the critical path of a memory operation, whereas the later bus transaction that it
saves might be.

Since all writes appear on the bus in an update protocol, write serialization, write
completion detection, and write atomicity are all quite straightforward with a simple

5.4 Assessing Protocol Design Trade-offs 305

Processor Action Statein Py StateinP; Statein P; Bus Action Data Supplied By

1. P; reads u E - - BusRd Memory
2, Py reads u Sc - Sc BusRd Memory
3. Py writes u Sc = 5 BusUpd Py cache
&, P; reads u 5a - 8m null -

2. Ps reads u Sc Se Sm BusRd Py cache

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in
Figure 5.3. The figure shows the state of the relevant memary block at the end of each processor
action, the bus transaction generated {if any), and the entity supplying the data.

3.4

atomic bus, a lot like they were in the write-through case. However, with both
invalidation- and update-based protecols, we must address many subtle implemen-
tation issues and race conditions, even with an atomic bus and a single-level cache.
We discuss this next level of protocol and hardware design in Chapter 6, as well as
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and
hardware techniques that can reorder the completion of memory operations. None-
theless, we can gquantify many protocol trade-olls even at the state diagram level that
we have been considering so far.

ASSESSING PROTOCOL DESIGN TRADE-OFFS

Like any other complex system, the design of a multiprocessor requires many inter-
related decisions to be made. Even when a processor has been picked, we must
decide on the maximum number of processors to be supported by the system, vari-
ous parameters of the cache hierarchy (e.g., number of levels in the hierarchy, and
for each level the cache size, associativity, block size, and whether the cache is write
through or write back), the design of the bus (e.g., width of the data and address
buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of internal buffers), and the design of the
/O subsystem. Many of the issues are similar to those in uniprocessors (Smith 1982}
but accentuated. For example, a write-through cache standing before the bus may be
a poor choice for multiprocessors because the bus bandwidth is shared by many pro-
cessors, and memory may need to be more greatly interleaved because it services
cache misses from multiple processors. Greater cache associativity may also be use-
ful in reducing conflict misses that generate bus tralfic,

The cache coherence protocel is a crucial new design issue for a multiprocessor.
It includes protocol class (invalidation or update), protocol states and actions, and
lower-level implementation trade-offs. Protocol decisions interact with all the other
design issues. On the one hand, the protocal influences the extent to which the
latency and bandwidth characteristics of system components are stressed; on the
other, the performance characteristics as well as the organization of the memory and
communication architecture influence the choice of protocols. As discussed in

306 cHarTER 5 Shared Memory Multiprocessors

54.1

Chapter 4, these design decisions need to be evaluated relative to the behavior of
real programs. Such evaluation was very common in the late 19805, albeit using an
immature set of parallel programs as workloads (Archibald and Baer 1986; Agarwal
and Gupta 1988; Eggers and Katz 1988, 1989, 1989b).

Making design decisions in real systems is part art and part science. The ar
draws on the past experience, intuition, and aesthetics of the designers, and the sei-
ence is based in workload-driven evaluation. The goals are usually to meet a cost-
performance target and to have a balanced system, so that no individual resource is
a performance bottleneck yet each resource has only minimal excess capacity, This
section illustrates some key protocol trade-offs by putting the workload-driven
evaluation methodology from Chapter 4 into action.

Methodology

The basic strategy is as [ollows. The workload is executed on a simulator of a multi-
processor architecture, as described in Chapter 4. By observing the state transitions
encountered in the simulator, we can determine the frequency of various events
such as cache misses and bus transactions. We ean then evaluate the effect of proto-
col choices in terms of other design parameters such as latency and bandwidth
requirciments,

Choosing parameters according to the methodology ol Chapter 4, this section
first establishes the basic state transition characteristics generated by the set of appli-
cations [or the four-state llinois MES] protocol. It then illustrates how to use these
frequency measurements to obtain a preliminary quantitative analysis of the design
trade-offs raised by the example protocols above, such as the use of the exclusive
state in the MESI protocel and the use of BusUpar rather than BusRdX transactions
for the S — M transition. This section also illustrates more traditional design issues,
such as how the cache block size—the granularity of both coherence and communi-
cation—impacts the latency and bandwidth needs of the applications. To under-
stand this effect, we classilv cache misses into categories such as cold, capacity, and
sharing misses, examine the elfect of block size on each category, and explain the
results in light of application characteristics, Finally, this understanding of the appli-
cations is used to illustrate the wade-olls between invalidation-based and update-
based protocols, again in light of latency and bandwidth implications.

The analysis in this section is based on the frequency of various important events,
not on the absolute times taken or, therelore, the performance. This appreach is
common in studies of cache architecture because the results transcend particular
system implementations and technology assumptions, However, it should be viewed
as only a preliminary analysis since many detailed factors that might affect the per-
formance trade-olfs in real systems are abstracted away. For example, measuring
state transitions provides a means of calculating miss rates and bus traffic, but realis-
tic values for latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. To obtain an estimate ol
bandwidth requirements, we may artificially assume that every relerence takes a
fixed number of cycles to complete. However, the bandwidth requirements them-

3.4.2

5.4 Assessing Protocol Design Trade-olfs 307

selves do not translate into performance directly but only indirectly by increasing
the cost of misses due 1o contention. Contention is very difficult 1o estimate because
it depends on the timing parameters used and on the burstiness of the tratfic, which
is not captured by the [requency measurements. Contention, timing, and hence per-
formance are also affected by lower-level interactions with hardware structures (like
quenes and buffers) and policies.

The simulations used in this section do not model contention. Instead, they use a
simple PRAM cost model: all memory operations are assumed to complete in the
same amount of time (here a single cyele) regardless of whether they hit or miss in
the cache. There are three main reasons [or this. First, the focus is on understanding
inherent protocol behavior and wade-offs in terms of event frequencies, not so much
on performance. Second, since we are experimenting with diflerent cache block sizes
and organizations, we would like the interleaving of references from application pro-
cesses on the simulator to be the same regardless of these choices; that is, all proto-
cols and block sizes should see the same trace of references. With the execution-
driven rather than trace-driven simulation we use, this is only possible if we make the
cost of every memory operation the same in the simulations. Otherwise, il a relerence
misses with a small cache block but hits with a larger one, for example, then it will be
delayed by different amounts in the interleaving in the twoe cases, [t would therefore
be difficult 1o determine which effects are inherently due to the protocol and which
are due to the particular parameter values chosen. Third, realistic simulations that
model contention take much more time. The disadvantage of using this simple model
even 10 measure frequencies is that the timing model may affect some of the frequen-
cies we ohserve; however, this effect is small for the applications we study,

The illustrative workloads we use are the six parallel programs {from the
SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and
4. The parallel programs run in batch mode with exclusive access to the machine
and do not include operating system activity in the simulations, whereas the multi-
programmed workload includes operating system activity. The number of applica-
rions used is relatively small, but the applications are primarily for illustration as
discussed in Chapter 4; the emphasis here is on choosing programs that represent
important classes of computation and with widely varving characteristics, The fre-
quencies of basic operations for the applications appear in Table 4.1, We now study
them in more detail 1o assess design trade-offs in cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed
in Chapter 4. These are large enough to hold the important working sets for the
default problem sizes, which is a realistic scenario for all applications. We use four-
way set associativity (with LRU replacement) to reduce conllict misses and a 64-byte
cache block size for realism. Diriving the workloads through a cache simulator that
maodels the [llinois MESI protocol generates the state transition frequencies shown
in Table 5.1. The data is presented as the number of state transitions of a particular
type per 1,000 references issued by the processors. Note in the table that a new state,

308 CHAPTER 3

Shared Memory Multiprocessors

Table 5.1 State Transitions per 1,000 Data Memory References Issued by the_ Applications
To
Application NP I E 5 M
Barnes-Hut MP 0 0 0.0011 0.0362 0.0035
I 0.0201 0 0.0001 0.1856 0.0010
E E 0.0000 0.0000 0.0153 0.0002 0.0010
S 0.0029 0.2130 0 97.1712 0.1253
A 0.0013 0.00170 i) 0121/ 902,782
Lu MNP 0 0 (LOUOD0 0.6593 0.0011
I 0.0000 0 0 0.0002 0.0003
E E 0.0000] 0.4454 0.0004 0.2164
et 0.0339 0.0001 0 302.702 0.0000
I 0.0001 0.0007 B 0.2164 697.129
Qcean NP 0 0 1.2484 0.9565 1.6787
I 0.6362 0 0 1.8676 0.0015
E E 0.2040] 14.0040 0.0240 0.9955
G 0.4175 2.4994 0 134.716 2.2392
i 2.6259 0.0015 0 2.2996 843 565
Radiosity MNP 0 0 0.0068 0.2581 0.0354
I 0.0262 0 0 0.5766 0.0324
E E 0 0.0003 0.0241 0.0001 0.00e0
S 0.0082 0.7264 0 162.569 0.2768
il 0.0219 0.0305 { 0.3125 839.507
Radix MNP) 0 0.004746 2524705 1141419
| 0.130988 ad a0 1.108079 4.57868
E E 0.000759 0,.002848 0.080301 0 0.00019
1 5 0.029804 1.120988 0 178.1932 0.817818
il 0.044232 1153127 a 4.03157 802.282

continued

54 Assessing Protocol Design Trade-offs 309

Table 5.1 State Transitions per 1,000 Data Memory References Issued by the Applications

Application
Raytrace

Multiprog
User Data
References

Multiprog
User
Instruction
References

hMultiprog
kernel Data
References

Multiprog
Kerne|
Instruction
References

From

From

From

From

From

To
NP | E 5 A

MP] 0 1.3358 1.5486 0.0026
| (.0242 Q 0.0000 0.3403 0.0000
£ 0.8663 0 29.0187 0.3639 0.0175
5 13375 8 0.3740 0 310945 0.2894
Ml 0.0559 0.0001 0 0.2970 661.011
NP 4] 0 0.1675 0.5253 0.1843
I 0.2619 0 0.0007 0.0072 0.0013
E 0.0729 0.0008 11.6629 0.0221 0.0680
5 0.3062 0.2787 0 214.6523 0.2570
[l 0.2134 0.1196 0 0.3732 772.7819
MNP 0 O 3.2709 157722 0

I 0 O 0 0 o

E 1.3029 0 46. /8598 1.8967 0

5 16.9032 0 i 981.2618 0

il 0 0] 0 0 0
MNP O 0 1.0247 1.7209 4.0793
| 1.2950 Q 0.00749 1.1495 0.1153
E 0.5511 0.0063 55.7680 0.0959 0.3352
5 1.2740 2.0514 0 393.5066 1.7800
% 31827 0.3551 0 20732 5424318
MP 0 0 2.1799 26.5124 0

I 4] 0 0 0 0

E 0.8829 0 5.2156 1.2223]

5 24.6963 0 0 1,075.2158 0

% 0 0 O U 8]

The data assumes 16 processors (except for Multiprog, which is for 8 processors), 1-MB four-way set-
associative caches, 64-byte cache blocks, and the lllinois MESI coherence protocol.

310

CHAPTER 5 Shared Memory Multiprocessors

NP (not present), is introduced. This addition helps clarify transitions where, on a
cache miss, one block is replaced (creating a transition fromoneofl, E 5 or Mto
NP} and a new block is brought in (creating a transition from MPtooneol I, E, 5 or
M. The sum of state transitions can be greater than 1,000 even though we are pre-
senting averages per 1,000 references because some references cause multiple state
transitions. For example, a write miss can cause two transitions in the local proces-
sor's cache (e.g,, S — NP for the old block and NP = M for the incoming block), in
addition to transitions in other caches due to invalidations (I/E/S/M — 1), This state
transition frequency data is very useful for answering “what il” guestions. Example
5.8 shows how we can determine the handwidth requirement these workloads
would place on the memory system,

EXAMPLE 5.8 Suppose that the integer-intensive applications run at a sustained 200

MIPS per processor and the floating-point-intensive applications at 200 MFLOPS per
processor. Assuming that cache block transfers move 64 bytes on the data bus lines
and that each bus transaction involves 6 bytes of command and address on the
address lines, what is the traffic generated per processor?

Answer The first step is to calculate the amount of traffic per instruction. We

I_.,.'1

determine what bus action is taken for each of the possible state transitions and
therefore how much traffic is associated with each transaction. For example, an M
_s NP transition indicates that, due to a miss, a modified cache block needs to be
written back. Similarly, an 5 — M transition indicates that an upgrade request must
be issued on the bus. Flushing a modified block response to a bus transaction (e.g.,
the M — S or M — | transition) leads to a BusWE transaction as well. The bus
transactions for all possible transitions are shown in Table 5.2. All transactions
generate 6 bytes of address bus traffic and 64 bytes of data traffic, except BusUpgr,
which only generates address traffic. We can now compute the traffic generated.
Using Table 5.2, we can convert the state transitions per 1,000 memory references
in Table 5.1 to bus transactions per 1,000 memory references and convert this to
address and data traffic by multiplying by the traffic per transaction. Then, using
the frequency of memory accesses in Table 4.1, we can convert this to traffic per
instruction. Finally, multiplying by the assumed processing rate, we get the address
and data bandwidth requirement for each application. The result of this
calculation is shown by the leftmost bar for each application in Figure 5.18° H

For the Multiprog workload, to speed up the simulations, a 32-KB instruction cache is used as a filter
hefare passing the instrction references o the 1-MB unified instruction and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those relerences that missed
in the L instruction cache. This filiering docs not aflect how we compute data tralfic, bug it means that
instruction traffic is computed differently. In addition, for Multiprog we present data separately for kernel
instructions, kernel data references, user instructions, and user data references, A given relerence may
produce transitions of multiple wypes for user and kernel data. For example, if a kernel instruction miss
causes a madified user data block 1o be written hacle, then we will have one transition for kernel instruc-
tions from NP — E/S and another transition for the user data reference category from M — NE

5.4 Assessing Protocol Design Trade-offs 3711

Table 5.2 Bus Actions Corresponding to State Transitions in lllinois MESI Protocol

To
NP E 5 M

NP — — Busid BusRd BusRdx

| i — BusRd BusRd BusRdx

E
5 — — Mot possible — BusUpgr
% BusWEe EusWE Mot possible BuswWB —

5.4.3

The calculation in the preceding example gives the average bandwidth require-
ment under the assumption that the bus bandwidth is enough to allow the proces-
sors to execute at full speed. (In practice, bandwidth limitations may slow
processors and events down, which in trn would lead to lower traffic per unit
time.) This calculation provides a useful basis [or sizing the number of processors
that a system can support without saturating the bus. For example, on a machine
such as the 5GI Challenge with 1.2 GB/s of data bandwidth, the bus provides suffi-
cient average bandwidth to support 16 processors on all the applications other than
Radix for these problem sizes. A typical rule of thumb might be to leave 50% “head-
room” to allow for burstiness of data transfers. If the Ocean and Multiprog work-
loads were also excluded, the bus could support up to 32 processors. If the
bandwidth is not sufhcient to support the application, the application will slow
down. Thus, we would expect the speedup curve for Radix to flatten out quite
quickly as the number of processors grows. In general, a multiprocessor is used for a
variety of workloads, many with low per-processor bandwidth requirements, so the
designer will choose to support configurations of a size that would overcommit the
bus an the most demanding applications.

Impact of Protocol Optimizations

Given this base design point, we can evaluate protocol trade-ofls under common
machine parameter assumptions, as illustrated in Example 5.9.

EXAMPLE 5.9 We have described two invalidation protocols in this chapter—the

basic three-state M5 protocol and the lllinois MES| protocol. The key difference is
that the MESI protocol includes the existence of the exclusive state. How large is
the bandwidth savings due to the E state?

Answer The main advantage of the E state is that no traffic need be generated

when going from E — M. A three-state protocol would have to generate a BusUpgr
transaction to acquire exclusive ownership for the memory block. To compute
bandwidth savings, all we have to do is put a BusUpagr for the E — M transition in
Table 5.2 and recompute the traffic as before. The middie bar in Figure 5.18 shows

the resulting bandwidth requirements. W

Shared Memory Multiprocessors

3

CHABTER

312

(XIPY-ISE) SUDIISUEIL |y <— § 104 1BdNSNg JO pRAJSUI XPYSNE 3sn am uaym (02010ud 31815-334y1 au) 1o Jeq jsownubu ag) pue
{ISE) 2115 3 31 INOYIM (000100 UCTIERIEAUI B1B1S-2JU1 JISEQ SU1 35N 8M SI8UM 8582 31 10} JBQ ajppiw au ‘(|| josooud 153 siou)|
31 10} J1}JeI] SMOLS JBg 1SOLWLS| SU| dijen snq (pueLlwo Buipnpul) ssaippe pue Jipes) ejep ojul jgds st Jijen ay) peopyiosm Goid)
-INiA Y3 Jog elep saous Jelyd ybu ayy pue "swesboud |2jeded au) Joj BiEp SMOLS LBYD JBq 13| 3y) Jossadold Jad saypes giy-| pue
sa0ssa301d S4OT4IN/SIN-00Z Bunwnsse ‘suciedjdde snouea sy Joj sjuswadinbas Yipimpueq Jossadold-1ad 8L°S JHNOIS

I I
y= =
2 2 =1 = ,._UM = o s
=) O o r 0 = & S @ 3
& o a o SDD o o o W o =
520 BP0 25 5128 58 » § k2 'S = 2 o
258 BA? BED SA% GHISHES b oo dLe HiOls B 5 58 o
A e Vo o 23 i i S LA = th B = th B A by T T
il veng gl ReRiR neiRig B g e | 0 e Lot R AR
Hmw__, DE O WEO DA =T oA HWW o2 = - = = o @ R
ool foc Ggf fuo BEEl SRS e s D Bmie L swie &8 aie
g Lt e A P == e = oA = o = X . = x 9@ =
0 0
.......]
||||||||||||||||||||||||||||||||||| 0Z
0Z
I_
|||||||||||||||||| ﬁ_mm_n.r or
g e e e I I R e e e e e = 0%
g
||||||||||||||||||| 0s
5y 08
o
sng e1eq [l 09 T
||| _...|..
|||||||| sng ssaappy [] | oz 0 ,
&=
— 08 0Zl =
|| _“_.w_._..
-1 09l
m...n_ﬂm__u-_
||||||||||||||||||||||||||||||| sng ssaappy [(7] 08L

— 002

5.4.4

5.4 Assessing Protocol Design Trade-oflfs 313

Example 5.9 illustrates how an intuitive rationale for a more complex design may
not stand up to quantitative measurement of workleads. Contrary to expectations,
the E state offers negligible savings in traffic. This is true even lor the Multiprog
workload, which consists primarily ol sequential jobs and should have benefited
most. The primary reason [or this negligible gain is that the [raction of E — M wran-
sitions in Table 5.1 is quite small (i.e., blocks loaded in exclusive state by a read miss
are not olten written while still in that state), In addition, the BusUpgr (ransaction
that would have been needed [or the S — M ransition in a three-state protocol takes
only 6 bytes of address traffic and no data traffic. Example 5.10 examines the advan-
tage of the BusUpgr transaction.

EXAMPLE 5.10 Recall that even in the three-state M5 protocol, a write that finds the

memory block in shared state in the cache generates a BusUpgr request on the bus
rather than a BusRdX. This saves bandwidth, as no data need be transferred for a
BusUpgr, but it complicates the implementation, as we shall see. The question is,
how much bandwidth are we saving for taking on the extra complexity?

Answer To compute the bandwidth for the less complex implementation and a

three-state protocol, all we have to do is put in BusRdX in the E — M and 5 — M
transitions in Table 5.2 (these would all be 5§ — M transitions in the three-state MS|
protocol) and then recompute the bandwidth numbers. The results for all
applications are shown in the rightmost bar in Figure 5.18. While for most
applications the difference in bandwidth is small, Ocean and Multiprog kernel data
references show that it can be as large as 10-20% for some applications. W

The performance impact of these differences in bandwidth requirement depends
on how the bus transactions are actually implemented. However, this high-level
analysis indicates where more detailed evaluation is required.

Finally, as discussed in Chapter 4, for the input data set sizes we are using it is
important that we run the Ocean, Raytrace, and Radix applications [or smaller cache
sizes as well, to model the situation where an important working set does not fit in
the cache hierarchy. We use 64-KB caches here, which fit all but the largest working
set for these problem sizes. The raw state transition data for this case is presented in
Table 3.3, and the per-processor bandwidth requirements are shown in Figure 5.19.
As we can see, not having one of the critical working sets fit in the processor cache
can dramatically increase the bus bandwidth required due to capacity misses, A 1.2-
GB/s bus can now barely support 4 processors for Ocean and Radix and 16 proces-
sors for Raytrace.

Trade-Offs in Cache Block Size

The cache organization is a critical performance factor in all modern computers, b
it is especially so in multiprocessors. In the uniprocessor context, cache misses are
typically categorized into the “three Cs": compulsory, capacity, and conflict misses
(Hill and Smith 1989; Hennessy and Pattersan 1996}, Compulsory misses, or cold
misses, occur on the first reference to a memory block by a processor. Capacity
misses occur when all the blocks that are referenced by a processor during the execu-
tion of a program do not fit in the cache (even with full asseciativity), so some

314

CHAPFTER 5

Shared Metmory Multiprocessors

Table 5.3 State Transitions per 1,000 Memory References Issued by the Applications

with Smaller Caches

To
Application NP I E 5 M
Ocean MP 0 0 26,2491 2.6030 15.1458
| 1.3305 0 0 0.2012 0,0008
E E 21.1804 0.2976 452.580 0.4489 43216
B S 24632 13333 0 113.257 11112
Ml 19.0240 0.0015 B 1.5543 387.780
Radix MNP 0 o 0 440787 2.557865 27 36084
| 4.354862 0 Q.0005/7 0:157565 1.499903
E t 8.148377 0.001329 140.9295 0.0123=9 0. 126621
= 5 3.825407 0.481427 a 102.4144 0.454464
% 23.03084 5.628429 0 2.069604 717.1426
Ravytrace MP 0 0 7.2642 3.9742 0.1305%
I 0.0526 0 0.0003 0.2799 0.0000
= 64119 0 131,944 0.7973 0.0456
= 5 4.6768 0.3329 0 205854 0.2835
W 0.1812 0.0007 o 0.2837 660.753

The data assumes 16 processors, 54-KB four-way set-associative caches, 64-biyte cache blocks, and the
Minais MESI coherence protocol.

blocks are replaced and later accessed again. Conflict or collision misses occur in
caches with less than [ull associativity when the collection of blocks referenced by a
program that maps to a single cache set does not [fit in the set, They are misses that
wonld not have oecurred in a fully associative cache. Many studies have examined
how cache size, associativity, and block size allect each category of miss.

Architecturally, capacity misses are teduced by enlarging the cache. Contlict
misses are reduced by increasing the associativity or increasing the number of lines
to map to in the cache (by increasing cache size or reducing block size). Cold misses
can be reduced only by increasing the block size so that a single cold miss will bring
in more data that may be accessed thereafter as well. What malkes cache design chal-
lenging in uniprocessors is that these factors trade off against one another. For
example, increasing the block size for a fixed cache capacity will reduce the number
of blacks, so the reduced cold misses may come at the cost of increased conflict
misses, Also, variations in cache organization can alfect the miss penalty or the hit
time and, therelore, perhaps the processor cycle time,

Cache-coherent multiprocessors introduce a fourth category ol misses: coherence
misses. These occur when blocks of data are shared among multiple caches. There

3.4 Assessing Protocol Design Trade-offs 315

400 —

[C] Address bus

e e

300 Diata bus
T
ey e e] B ORI
=
w200
2
o 150
[
|_
100
50
0
= —R) = A
el L = w. N | a Mmoo
e e R [T
- B B D5 4 L
g e @ S L]
o 5 o m = &
= e e @m U
i] Mom
l...l —_
0 £l %
(il

FIGURE 5.19 Per-processor bandwidth requirements for the various applications,
assuming 200-MIP5/MFLOPS processors and 64-KB caches. The traffic is split into data
traffic and address {including command) bus traffic, The leftmast bar shows traffic for the
Ilineis MESI protocal, the middle bar for the case where we use the hasic three-state invali-
dation protocol without the E state (as described in Section 5.3.1), and the rightmaost bar for
the three-state protocol when we use BusRdX instead of BusUpgr for S — M transitions.

are two types: true sharing and false sharing misses. True sharing occurs when a data
word produced (written) by one processor is used (read or written) by another,
False sharing occurs when independent data words accessed by different processors
happen to he placed in the same memory (cache) block, and at least one of the
accesses is a write. The cache block size is not only the granularity (or unit} of the
data fetched from the main memory, it is also typically used as the granularity of
coherence. That is, on a write by a processor, the whole cache block is invalidated in
other processors’ caches, not just the word that is written.

Maore precisely, a true sharing miss occurs when one processor writes some words
in & cache block, invalidating that block in another processor’s cache, after which the
second processor reads one of the modified words. It is called a “true” sharing miss
because the miss truly communicates newly delined data values that are used by the
second processor; such misses are essential to the correctness of the program,
regardless of interactions with the machine organization or granularities. On the
other hand, when one processor writes a word in a cache block and then another
processor reads (or writes) a different word in the same cache block, the invalidation
of the block and subsequent cache miss occurs as well, even though no uselul values
are being communicated between the processors. These misses are thus called false
sharing misses (Dubois et al. 1993). As cache block size is increased, the probability
of distinct variables being accessed by different processors but residing on the same

316 cHarTER 5 Shared Memory Multiprocessors

cache block increases. If at least some of these variables are written, the likelihood of
false sharing misses increases as well. False sharing misses would not occur with a
one-word cache block size, while true sharing misses would, Technology pushes in
the direction of large cache block sizes (e.g., DRAM organization and access modes
and the need to ohtain high-bandwidth data transfers by amortizing overhead), so it
is important to understand the potential impact of false sharing misses and how they
may be avoided.

True sharing misses are inherent to a given parallel decomposition and assign-
ment, so, like cold misses, the only way to reduce them is by increasing the block
size and increasing spatial locality of communicated data, False sharing misses, on
the other hand, are an example of the artifaciual communication discussed in
Chapter 3 since they are caused by interactions with the architecture. In conirast to
trie sharing and cold misses, false sharing misses can be decreased by reducing the
cache block size, as well as by a host of other optimizations in software (orchestra-
tion) and hardware that we shall discuss later. Thus, a flundamental tension exists in
determining the best cache block size. which can only be resolved by evaluating the
options against real programs,

A Classification of Cache Misses

The flowchart in Figure 5.20 gives a detailed algorithm for classifying cache misses
in cache-coherent multiprocessors.” Understanding the details is not critical [or
now—it is enough for the rest of the chapter to understand only the preceding defi-
nitions—but it adds insight and is a useful exercise. In the algorithm, the lifetime of
a black in a cache is defined as the time interval during which the block remains
valid in the cache, that is, the time from the occurrence of the miss that loads the
block in the cache until its invalidation, replacement, or the end of the program. We
cannot classily a cache miss when it occurs but only when the fetched memory
block is replaced or invalidated in the cache, because it is only then that we know
whether true sharing or only false sharing occurred during that lifetime. Let us con-
sider the simple cases first. Cases | and 2 are straightforward cold misses occurring
on previously unwritten blocks. Cases 7 and 8 reflect lalse and true sharing on a
block that was previously invalidated in the cache but yet replaced by another. The
type of sharing is determined by whether the specific word or words modified since
the invalidation are actually used during the current lifetime. Case 9 is a straightfor-
ward capacity (or conflict) miss since the block was previously replaced [rom the
cache and the words in the black have not been modified since last accessed. All of
the other cases refer to misses that occur due to a combination of factors. For exam-
ple, cases 4 and 5 are cold misses because this processor has never accessed the
black before; however, some other processor had written the block, so there is also

6. In this classification, we do not distingnish conflict from capacity misses since both are a result of the
availahle resources (se1 or entire cache) becoming full and the difference between them does not shed
additienal light on mulliprocessor issues.

3.4 Assessing Protocol Design Trade-offs 317

hiss classification

First refarence 1o
memory block by processor

EA%0n
Or miss

Yes Other

Reasan for
elimination of
last copy

Replacement

Invalidation

- Old copy
with state = jnvali
still thera

e

wiardls) accessed
during lifetime

3. False-sharing-
cold

ki

Has block
gen rmadified sing
repreEcement

5. False-sharing- M

inval-cap

B, True-sharing-

myal-cap 7. Pure-
ialse-sharing &, Fure-

frug-sharing

No_~ord

s

wordis] aooesse
dring lifetim

9. Pure- 10 Trug-sharing-
capacity Capacily

11. Falsesharing- 12 True-sharing-
cap-inval cap-inval

FIGURE 5.20 A classification of cache misses for shared memory multiprocessors. The four
basic categories of cache misses in this classification are cold, capacity, true sharing, and false sharing
misses (conflict misses are considered to be capacity misses for this purpose). Many mixed categories
arise because there may be multiple causes for a miss. For example, a block may be first replaced from
processor A's cache, then written to by processor 8, and then read back by processor A, making it a
capacity-cum-invalidation falseftrue sharing miss. This would be labeled “falseftrue sharing cap-inval” in
the classification since sharing takes priority and since the replacement happened before the invalida-
tion (cases 11 and 12 in the figure). If the block were first invalidated in A% cache, then the invalid block
replaced, and then read again by A, it would be labeled “falseftrue sharing inval-cap” (cases 6 and 7). In
terms of the four majer categories, these misses all fall into true or false sharing misses, as appropriate.
Note: the guestion “modified wordis) accessed during lifetime?” asks whether accesses are made by
this processor in the current lifetime to word(s) within the cache block that have been modified since
the last "essential coherence” miss ta this block by this processor, where essential coherence misses cor-
respond to categories 4, 6, 8, 10, and 12. This can only be determined when the current lifetime of the
block ends.

318

CHAPTER 5 Shared Memory Multiprocessors

sharing (false or true). Similarly, we can have false or true sharing on blocks that
were previously replaced due to capacity or conflicts. Solving only one of the prob-
lems in these cases may not necessarily eliminate such misses, For example, if a miss
accurs due to both false sharing and capacity problems, then eliminating the false
sharing problem by reducing block size will likely not eliminate that miss. On the
other hand, sharing misses are in a sense more fundamental than capacity misses
since they will remain even if the size of cache is increased to infinity, so we give
them priority in the classilication of multiple-cause misses. All misses with true
sharing in their names in the resulting classification are called essential coherence
misses. They would occur even with infinite caches, single-word blocks, and all data
preloaded into all caches (i.e., no cold misses). Example 5.11 illustrates these defini-
tions of miss categories.

EXAMPLE 5.11 Suppose three processors, Py, P3, and P, issue the memory operations

shown in the first few columns of Table 5.4 (the first column indicates virtual time
or steps). Use the miss classification algerithm to classify the misses in the last col-
umn. Assume that each processor's cache consists of only a single four-werd cache
block and that all the caches are initially empty.

Answer The results are shown in Table 5.4. W

Impact of Block 5ize on Miss Rate

Applying the classification algorithm of Figure 5.20 to simulated runs ol a workload,
we can determine how frequently the various kinds of misses occur in programs and
how the [requencies change with variations in cache organization, such as block
size. Figure 5.21 shows the decomposition of the misses for the example applica-
tions running on 16 processors, with 1-MB [our-way set-associative caches each, as
the cache block size is varied from 8 bytes to 256 bytes. The bars show the four hasic
types of misses: cold misses {cases 1 and 2), capacity—including conflict—misses
(case 9), true sharing misses, (cases 4, 6, 8, 10, 12}, and false sharing misses (cases
3.5, 7.and 11). In addition, they show the frequency of upgrades—writes that find
the block in the cache but in the shared state. Upgrades are different [rom the other
types of misses since the cache already has the valid data and only needs exclusive
ownership. While they are not included in the classification scheme ol Figure 5.20,
they are still usually considered to be misses since they generate trallic on the inter-
connect and can stall the processor,

For each individual application, the miss characteristics change with block size
much as we would expect from our understanding of the program and the miss cat-
egories. Cold, capacity, and true sharing misses tend to decrease with increasing
hlack size because the additional data brought in with each miss is accessed hefore
the block is replaced, due to spatial locality. However, false sharing misses tend to
increase with block size. In all cases, true sharing is a significant fraction of the
misses. so even with ideal, infinite caches, the miss rate and bus bandwidth will not
go to zero. However, the overall characteristics differ widely across programs. For
example, the size of the true sharing compenent varies significantly. Some applica-

5.4 Assessing Protocol Design Trade-offs 319

Table 5.4 Classifying Misses in an Example Reference Stream from Three

Processors e
Time Py Ps P3 Miss Classification
1 Id wO f[d w2 Py and Py miss; but we will classify later an replace/finval
2 stwZ Py 4 pure cold miss; Py 5: upgrade
3 |cd] P5 misses, but we will classity later on replacefinval
4 ld w2 ld w7 P hits; Py misses; Py 4 cold miss
g Id wS Py misses
6 I wit Py misses; Py 5: cold true sharing miss (w2 accessed)
7 stwb Fy 5: cald miss; Fs : upgrade; P5 4: pure cold miss
& I ws Py misses
9 |l ws ld w2 Py hits; P35 misses
10 ldw2 |dwil P+. P2 miss; Py gt pure true share miss; P; ¢ cold miss
11 st wh Py misses; Py 4 pure true sharing miss
12 st wd Py g0 capacity miss; Pg 4. upgrade
13 ld w7 P3 misses; P3 o capacity miss
14 Id w2 Pz misses; P q3: inval cap false sharing miss
15 IdwO Py misses; Py 44: capacity miss

R
If multiple references are listed in the same row, we assume that P, issuss before P; and P,
issues before Py, The notation Id/st wi refers to load/store of word /. W1 through wd are on
the samne cache block, and so an. The notation Py points to the memory reference issued by
pracessor rat row [

tions show a substantial increase in false sharing with block size, whereas others
show almost none. Furthermore, the figure shows data only for the default data sets.
In practice it is very important to examine the results as the input data set size and
number of processors are scaled before drawing conclusions about the false sharing
or spatial locality of an application (see Chapter 4). Let us investigate the properties
ol the applications that give rise to differences in miss characteristics ohserved at the
machine level and that allow us to understand scaling qualitatively,

Relation to Application Structure

Multiword cache blocks exploit spatial locality by prefetching data swrounding the
accessed address. Of course, beyond a point, larger cache blocks can hurt perfor-
mance by (1) prefetching unneeded data, (2) causing increased conflict misses as
the number of distinct blocks that can be stored in a hnite cache decreases with
increasing block size, and (3) causing increased false sharing misses, Spatial locality
in parallel programs tends to be lower than in sequential programs because, when a

320 cHAPTER 5 Shared Memory Multiprocessors

0e —
] Upgrade
[[] False sharing —
0.5 |4 L pemem———— B e - —————mEmE—— e ———mEm——————
[True sharing ki
B Capacity
B cold
0.4
=
W B
e e e e b e e
4
=
0.2 |-
43 [R
=N
ﬂ | i £ =
T T U S e
= — = o L b oy = o
by Lgllgene Lo FaS T SinSE w S oslElE 5 8
[| i = LK 1k] | i A [= !
g £ E = £ E =285 8 B & =
[3+] T == i o = — 1= o &
o =] a m ma] = = = = =
] o 47 4] m m =)
€ e« o | o;
el e

FIGURE 5.21(a) Breakdown of application miss rates as a function of cache block size for 1-MB
caches per processor for Barnes-Hut, LU, and Radiosity applications. Conflict misses are included in
capacity misses. The breakdown and behavior af misses vary greatly across applications, but we can
observe some commaon trends. Cold misses and capacity misses tend to decrease quite quickly with
block size as a result of spatial locality. True sharing misses also tend to decrease, whereas false sharing
misses increase. While the false sharing campanent is usually small for small block sizes, it sometimes
remains small and sometimes increases very guickly. Upgrades are shown at the top of the bars and
without shading, so they can be ignored it desired.

memory block is brought into the cache, some of the data therein may belong to
another processor and will not be used by the processor performing the miss. As an
extreme example, some parallel programs assign adjacent elements of an array to
different processors in order to ensure good load balance and in the process substan-
tially decrease the spatial locality of the program.

The data in Figure 5.21 shows that LU and Ocean have good spatial locality and
litile false sharing even in the parallel case: The miss rates for many components
drop proportionately to increases in cache block size, and [alse sharing misses are
essentially nonexistent. This is in large part because these array-based codes use

5.4 Assessing Protocol Design Trade-offs 321

12 —
|] Upgrade
[] False sharing
N R e T R e e e
B Capacity
B cold

o N S S R S S . e e e i . e

Bliss rate (%)

D e e e e g e e L e ey 0 2 e e e

R G e I e i
— —

e BT =il -E'E?_Zgig e T R e

B Al @ @ W P~ TR L~ I — T Loom e @ oo

o I R L B T I T o o 15".,‘-"-"-*0@

i e RS Lot e R o SRS e T

0 I o = m m om0

e E oE @ m

o B

FIGURE 5.21(b) Breakdown of application miss rates as a function of cache block size for 1-MB
caches per processor for Ocean, Radix, and Raytrace applications.

architecturally aware data structures, as discussed in Chapters 3 and 4. For example,
a grid in Ocean is not represented as a single 2D array (which can introduce sub-
stantial false sharing at column-oriented partition boundaries) but as a 4D array: a
2D array of blocks, each of which is itself a 2D array. Such structuring, by program-
mers or compilers, ensures that most accesses are unit stride and over substantial,
contiguous blocks of data, thus the nice behavior,

In Ocean, capacity misses are significant, but they are 1o the interior elements of a
processs partition, so they have very pood spatial locality. One difference with LU is
that true sharing misses in Ocean do not exhibit such good spatial locality. Most of
the true sharing misses are to elements at the borders of neighboring partitions,
These exhibit good spatial locality ar row-oriented borders where the data to be
fetched is contiguous in the address space. However, when a processor accesses an
clement at a column-oriented border, it fetches an entire cache block of interior ele-
ments of its neighbor’s partition, which it will not use and therefore wastes, Since

322 cHAPTER 5 Shared Memory Muhiprnruﬁﬁurﬁ

capacity misses are not very large with this problem and machine configuration,
overall spatial locality is limited by that of true communication. In LU, even true
communication is of B-by-B contiguous blocks at a time, so spatial locality is excel-
lent even on true sharing misses,

As for scaling, the spatial locality for these two applications is expected to remain
good with no false sharing as both the problem size and the number of processors are
increased (at least until partitions become unrealistically small). This should be true
even for cache blocks larger than 256 bytes, at least [or LU, In Ocean, how capacity
versus trie communication misses (and hence spatial locality) scale depends strongly
on the relative scaling of data set size and processor count.

The graphics application Raytrace also shows negligible [alse sharing but displays
sommewhat worse spatial locality, False sharing is small becanse the main data struc-
ture (the collection of polygons constituting the scene) is read-only. The only read-
write sharing happens on the image plane data structure and the task queues, but
that is well controlled and small [or large enough problems. This true sharing miss
rate is reduced by increasing cache block size. The reason for the poor spatial local-
ity of capacity misses (although the overall magnitude is small in this configuration)
is that the access pattern to the collection ol polygons is quite arbitrary since the set
ol ohjects that a ray will bounce off ol is unpredictable. As for scaling, as problem
size is increased (most likely in the form of more polygons), the primary elfect is
likely ta be larger capacity miss rates; the spatial locality within individual compo-
nents should not change. A larger number of processors is in many ways similar to
having a smaller problem size, except that we may see more sharing in the image
plane and task queue data structures,

The Barnes-Hut and Radiosity applications show moderate spatial locality and
false sharing. These applications employ complex data structures, including (rees
encading spatial information and arrays in which the records assigned Lo each pro-
cessor are not contiguous in memory. For example, Barnes-Hut operates on particle
records stored in an array. As the application proceeds and particles move in physical
space, particle records get reassigned to different processors, with the result that
alter some time adjacent particles in the array most likely belong to dillerent proces-
sors. Spatial locality is exploited well within a particle record but not very well
across records. False sharing becomes a problem at large block sizes [or different rea-
sons, First, different processors may write to different records that share a cache
black. Second, a particle data structure (record) contains both lields that are being
modified by the owner of that particle in a phase (e.g., the current force on this par-
ticle in the force calculation phase) and fields that are read by other processors and
are nol being modilied in this phase (e.g., the current position of the particle}. Since
these two fields may [all in the same cache block for large block sizes, false sharing
results. It is possible to eliminate such false sharing by splitting the particle data
stricture according to the access patterns of the fields, but that is not done in this
program since the absolute magnitude of the miss rate is small, As problem size and
the number of processors are scaled, the miss rate behavior of Barnes-Hut is
expected to change little, This is because the working set size changes very slowly
{as the log of the number of particles, unlike Ocean and Raytrace), spatial locality is

3.4 Assessing Protocol Design Trade-olls 323

Todh =
3ot Sl Mparaddes o
[] False sharing
= 0.8 —| B True sharing
E' B cCapacity
SRR b TET e g P L =
= B Cold g
i
= 04
0.2 p——mmmmmm e
FIGURE 5.22 Breakdown of
0.0 Lem! . 1 [T miss rates for Multiprog as a
;i N ZRE RS 228 function of cache block size.
g = o s S e L b e The results are for 1-MB caches.
o 4 @ = | o O = oW : - ;
R TR S e b R S e e R Spatial locality for true sharing
G e e & L o LG ; - . =
ZYyY FEE Jug . B misses 15 much better for the
agd ood ans Y88 applications than for the operat-
< <L 44 Ing system.

determined by the size of one particle record and thus remains the same, and the
sources of false sharing are not very sensitive to the number ol processors. Radiosity
is a much more complex application whose behavior is difficult 1o reason about with
larger data sets or more processors; the only option is to gather empirical data show-
ing the growth trends.

The poorest sharing behavior is exhibited by Radix, which not only has a very
high miss rate even with 1-MB caches (due to cold and true sharing misses) but
which gets significantly worse due to false sharing misses for block sizes of 128
bytes or more. The effect of false sharing in Radix was illustrated in Chapter 4. Let
us now examine how it is poverned. Consider sorting 256-K kevs, using a radix of
1,024 and 16 processors. On average, this results in 16 keys per radix per processor
(64 bytes of data), which are then written to a contiguous portion of a global array at
an unpredictable starting point. Adjacent 64-hyte chunks in this array are written by
different processars, If the cache block size is larger than 64 bytes, the high potential
for false sharing is clear. As the problem size is increased we will clearly see much
less false sharing. The effect of increasing the number of processors is exactly the
opposite. Radix illustrates quite dramatically that it is not sufficient to look at a
given problem size and number ol processors and, based on that, draw conclusions
of whether or not false sharing or spatial locality is a problem. 1t is very important to
understand how the results are dependent on the key parameters chosen in the
experiment and how these parameters may vary in reality,

Data for the Multiprog workload for 1-MB caches is shown in Figure 5.22. The
data is shown separately for user code, user data, kernel code, and kernel data. For
code, there are only cold and capacity misses. Furthermore, we see that the spatial
locality in operating system data references is not very good. This is true, to a some-

324 cHAPTER 5 Shared Memory Multiprocessors

what lesser extent, for the application data misses as well, because goc (the main
application causing misses in Multiprog) uses a large number of linked lists, which
do not offer good spatial locality. 1t is interesting that we have an observable fraction
of application true sharing misses, although we are running only sequential appli-
cations. These misses arise due to process migration and are incurred when a se-
quential process migrates from one processor to another (a decision made by the
operating system for resource management) and then relerences memory blocks that
it wrote while it was executing on the other processor. While the spatial locality in
cold and capacity misses is quite reasonable, the true sharing misses do not decrease
at all for kernel data, One reason for this may be that the operating system has not
been well structured as a parallel program.

Finally, let us examine the behavior of Ocean, Radix, and Raytrace for smaller 64-
KB caches. The miss rate results are shown in Figure 5.23. As expected, the overall
miss rates are higher, and capacity misses have increased substantially. The effects of
cache block size for true sharing and false sharing misses are not significantly differ-
ent from the results for 1-MB caches because these properties are quite fundamental
to the assignment and orchestration used by a program and are not too sensitive to
cache size. However, the behavior of capacity misses has a much larger effect on the
behavior of the overall miss rate. For example, in Ocean, capacity misses now domi-
nate sharing misses; since they have much better spatial locality, the overall miss rate
decreases much more quickly with increasing block size than it did with 1-MB
caches. (Very large blocks in a small cache can have the problem that blocks may be
replaced from the cache due to conflicts before the processor has had a chance to ref-
erence all of the words in them.) In Raytrace, capacity misses have somewhat worse
spatial locality than true sharing misses, so the overall benefits of large blocks look
worse with smaller caches. Results [or false sharing and spatial locality for other
applications can be found in the literature (Torrellas, Lam, and Hennessy 1994; Jere-
miassen and Eggers 1991; Woo et al. 1995),

While larger cache blocks reduce the miss rate for most of our applications,
within the range of block sizes we consider they have two important potential disad-
vantages. First, they can increase the cost of each miss since more data has to be
rransferred across the bus (although techniques like only waiting for the relerenced
word to arrive belore allowing the processor to proceed, called a critical word restart
approach, can alleviate this). Second, they increase traffic, and hence contention, if
the whole block is not useful.

Impact of Block Size on Bus Traffic

Let us briefly examine the impact of cache block size on bus traffic rather than miss
rate. While the number of misses and total traffic generated are clearly related, their
impact on observed performance can be quite different. Misses have a cost that may
contribute directly to performance, even though modern microprocessors try hard
to hide the latency of misses by overlapping it with other activities. Tralfic, on the

3.4 Assessing Protocol Design Trade-ofts 325

30 -

[] Upgrade
[] False sharing
] True sharing

B Capacity

25 i

hiss rate (%)

- R T -+ T = [B Y- R W Y- e F . ST -
%Emgrﬂm ";-—mgmm T e LT - B T
SN G s S e O ﬁ‘ﬁ?“ﬁ"'{s T P L S e 5.
s R e e 2 i h R ol IS v B R
Qe e et mr o om = = = ®om om W e
o HI = L S E (i 1 IS 1 TS |~ L. = R v £ et ks kst |l Sep
5 & &85 & 8 2 & & § 8 & o= e B0
5 T & e o lm e B A

e & e ®™ ;o

= = = i

FIGURE 5.23 Breakdown of application miss rates as a function of cache block size for 64-KB

caches. Capacity misses are now a much larger fraction of the overall miss rate. Capacily miss rates
decrease differently with block size for different applications.

other hand, affects performance indirectly by causing contention and hence increas-
ing the cost of other misses. For example, if an application program’s misses are
reduced significantly by increasing the cache block size, but the bus traffic is
increased by 50%, this might be a reasonable trade-off if the application was origi-
nally using only 10% of the available bus and memory bandwidth. Increasing the
bus and memory utilization to 15% is unlikely to increase the miss latencies signifi-
cantly. However, if the application was originally using 75% of the bus and memory
bandwidth, then increasing the block size is probably a bad idea,

Figure 5.24 shows the total bus traffic for our applications in bytes/instruction or
bytes/FLLOT as the cache block size is varied. Three key points can be ohserved from
this graph. First, traffic behaves very differently than miss rate. Only LU shows
monotonically decreasing total trathe for the block sizes used. Most other applica-
tions see a doubling or tripling of traflic as block size becomes large. Second, the

326 CHAPTER 3 Shared Memory Multiprocessors

D48 Fem L e ————— e
[| Address bus
0.16 —
B Data bus
-Eﬂ.'i-'l'l
e
T
L 0.2
55
=
E 01
w1
2
& 0.08
[-
A
tlr:dn_{rs
=
0.04
Q.02
: - e & WD M~ T oM D
LE - IR et | [+ %]
@ @ o o® P g ol R a e e I s
8 W oowm m o= o Pt e B © @ @ @ = &
o | CEEE TR T T T = = = B W oy S e
L= e e g SRR TR 1] O v g A e sty E L I R e T LT,
O e = = B =0 E S EeEl LRt R e e SRS S Sl S
i e S O = = = A 0 o s S B il s
£ 8 = 3 8 83 3353 €F25E5E GG
£ = = cEoE L e T
10 B —m———— e ——————
g 4 [] Address bus - 1.6 |- [] Address bus
B Data bus B OCatabus
gl L2 Al S TR e e
s
= —————mmm———— a
= O A2
= |
e [T
s o,
1] L
= ¥ Ml ————
& =
a8 i)
Lo L
= w08 -
= i
T o
+ = - ————— e m—————— —— —
L
=
0.4 -
02—
E 0] L - Y
LT o ERR o' IS — N + o B | = | L= T e L~ R = BT} L e |
g2 a8 & 8 TEgddr T =B8R A
e~ B e B s b | W R e e bl e W ol B
EE‘EEEE = 3> 33 2 @ = 5 8 £ C
S &S BN s T S

FIGURE 5.24 Traffic (in bytes/instruction or bytes/FLOP) as a function of cache block size
with 1-MB caches per processor. Data traffic increases guite quickly with block size when communi-
cation misses dominate, except for applications like LU that have excellent spatial locality on all types of
misses. Address (including command) bus traffic tends to decrease with block size since the miss rate
and, hence, number of blocks transferred decrease.

5.4 Assessing Protocol Design Trade-offs 327

[] Addressbus
0.5 -1 [Data bus

3= —mor e m———————

0.2

Traffic (bytesfinstruction)

R e

=5 o o o 00 & o i = e R =T oD O

SEH ¥4 228 524

ot

5% £2%F 255 £3F5%

g sZoa MEd oo
T B gog oOwnwny

$E8E8E gLcoco O O oo
o < = <

FIGURE 5.25 Traffic in bytes/instruction as a function of cache block size for Mul-
tiprog with 1-ME caches. Traffic increases quickly with block size for data references from
the O5 kernal.

overall maffic requirements for the applications are still small, even [or 256-byte
block sizes, with the exception of Radix. Radix’s large bandwidth requirements
(approximately 630 MB/s per processor for 128-byte cache blocks, assuming a sus-
tained 200-MIPS processor) reflect its false sharing problems at large block sizes.
Third, the constant address and command traffic overhead for each bus transaction
or miss comprises a significant fraction of total traffic for small block sizes. Hence,
although actual application data traffic usually increases as we increase the block
size due to poor spatial locality, the total traffic is often minimized at 16-32 bytes
rather than 8 bytes due to the amortization of the overhead with improved miss
rates.

Figure 5.25 shows the tralfic data for Multiprog, While the increase in wrallic from
64-byte cache blocks te 128-byte blocks is small, the jump at 256-byte blocks is
much more substantial (primarily due to kernel data references). Finally, Figure 5.26
shows the traffic results for 64-KB caches for the three relevant applications. For
Ocean, even 64- and 128-byte cache blocks don't look so bad, due to the dominance
of capacity misses that have good spatial locality.

328 cuaPTER 5 Shared Memory Multiprocessors

Traffic (bytesfinstruction)
Traffic {bytes/FLOP)

™ s | o B W N T ®m W o JRLT- TR YRR S~ B
2 5 2 B i e NI Ao DN Pkl e SRS ST g L L
'EE-E% O dr oW e L [e R Ewi e] B
= 5 L R o L o oy - 1 I Y| < PR - i Fal ity m R v
e I o - R, - R |~ R W&o W o om m
L | B e il ST M ol EE ¥ E = T = R T E T T
€ & 8 & TR S S o 0 0 £ &
e @ m o m = K [T |

& &£ e o

[

FIGURE 5.26 Traffic (in bytes/instruction or bytes/FLOP) as a function of cache block size
with 64-KB caches per processor. Traffic increases maore slowly now for Ocean than with 1-ME caches
since the capacity misses that now dominate exhibit excellent spatial locality (traversal of a process’s
assigned subgrid). However, traffic in Radix increases quickly once the threshold biock size that causes
false sharing 15 exceeded,

Alleviating the Drawbacks of Large Cache Blocks

The trend toward larger cache block sizes is driven by the increasing gap between
processor performance and memory access time. The larger block size amortizes the
cost of the bus transaction and memory access across a greater amount of data. The
increasing density of processor and memory chips makes it possible to employ large
first-level and second-level caches so that the prefetching of data obtained through a
larger block size dominates the small increase in conlflict misses. However, this trend
may bode poorly for multiprocessor designs because false sharing becomes a larger
problem. Fortunately, hardware and sofltware mechanisms can be employed to
counter the effects of large hlock size.

Software techniques to reduce false sharing and improve locality on coherence
misses are discussed in detail later in the chapter. They essentially involve organiz-
ing data structures or work assignments so that data accessed by different processes
is not interleaved finely in the shared address space. One example is the use ol
higher-dimensional arrays so blocks or partitions are whelly contiguous. Compiler

4.5

5.4 Assessing Protoeol Design Trade-olls 329

techniques have also been developed to automate some methods ol laying out data
to reduce false sharing (Jeremiassen and Eggers 1991).

Since false sharing is caused by a large granularity of coherence, the way to re-
duce it while still exploiting spatial locality is to use large blocks [or data transfer
but a smaller unit of coherence. A natural hardware mechanism is the use of sub-
blocks. Each cache block has a single address tag but distinet state bits for each of
several subblocks, One subblock may be valid while others are invalid or dirty. This
technique is used in many uniprocessor systems to reduce the amount of data that is
copied back to memory on a replacement or to reduce the memory access time on a
read miss by resuming the processor when the accessed subblock is present (critical
word restart), To avoid false sharing, a write by one processor may invalidate the
subblock in another processor’s cache while leaving the other subblocks valid. Alter-
natively, small cache blocks can be used, but on a miss the system can prefetch
blocks bevond the accessed block. Proposals have also been made for caches with
adjustable block sizes (Dubnicki and LeBlanc 1992). The disadvantage of these ap-
proaches is increased state and complexity beyond a commodity cache design.

A more subtle hardware technique is to delay propagating or applying invalida-
tions from a processor until it has issued multiple writes. Delaying invalidations and
performing them all at once reduces the occurrence of intervening read misses to
those blocks, However, this sort of technique can change the memory consistency
maodel in subtle ways, so further discussion is deferred until Chapter 9 where we
consider weaker consistency models in the context of scalable machines. Another
hardware technique to reduce false sharing is the use of update- rather than invali-
dation-based protocols.

Update-Based versus Invalidation-Based Protocols

Whether writes should cause other cached copies to be updated or invalidated has
been the subject of considerable debate. Various vendors have taken different stands
and, in fact, have changed their position from one design to the next. The contro-
versy arises because the relative performance of update-based versus invalidation-
based protocols depends strongly on the sharing patterns exhibited by the workload
and on the cost of various underlying operations. Intuitively, if the processors that
were using the data before it was updated (written) are likely to want to see the new
values in the future, updates should perform better than invalidations. However, if
the processors holding the old data are never going to use it again, the update traffic
is useless and just consumes interconnect and controller resources. Invalidations
would clean out the old copies and eliminate the apparent sharing. This “pacl rat”
phenomenon with update protocols is especially irritating under multiprogrammed
use of a machine, when sequential processes migrate from processor to processor
under 05 control so that useless updates are performed in caches of processors that
are no longer running that process. It is easy to construct cases in which either
scheme does substantially better than the other, as illustrated by Example 5.12.

330 cCHAPTER 5 Shared Memory Multiprocessors

EXAMPLE 5.12 Consider the following two program reference patterns:

m Patfern 1: Repeat k times; processor 1 writes a new value into variable V and
processors 2 through P read the value of V. This represents a one-producer-
many-consumer scenario that may arise, for example, when processors are
accessing a highly contended flag for one-to-many event synchronization.

m Pattern 2: Repeat & times; processor 1 writes M times to variable V and then
processor 2 reads the value of V. This represents a sharing pattern that may
occur between pairs of processors, where the first successfully computes and
accumulates values into a variable and then when the accumulation is com-
plete, another processor reads the value.

VWhat is the relative cost for update- and invalidation-based protocels in terms
of the number of cache misses and bus traffic? Assume that an invalidation/
upgrade transaction consumes & bytes (5 bytes for address plus 1 byte for com-
mand), an update takes 14 bytes (6 bytes for address and command and 8 bytes of
data for the updated word), and a regular cache miss takes 70 bytes (6 bytes for
address and command plus 64 bytes of data corresponding to cache block size).
Also assume that P= 16, M = 10, k = 10, and that all caches initially are empty.

Answer With an update scheme in pattern 1, the first iteration on all P processors
will incur a regular cache miss (including processor 1 when it writes) plus an update
due to the write. In subsequent k = 1 iterations, no more misses will occur and only
one update per iteration will be generated. Thus, overall we will see misses = P =
16; traffic = P = RdMiss + (kK — 1) x Update = 16 x 70 + 10 x 14 = 1,260 bytes.

With an invalidate scheme, all P processors will incur a regular cache miss in the
first iteration. In subsequent k — 1 iterations, precesser 1 will generate an upgrade,
but all others will experience a read miss. Thus, counting upgrades as misses, over-
all we will see misses = P+ (k= 1) x P=16 + 9 x 16 = 160, of which 151 are read
misses and 9 are upgrades; traffic = read misses x RdMiss + (k —= 1) = Upgrade = 151
* 70+ 9% b=100624 bytes.

VWith an update scheme on pattern 2, the first iteration will incur two regular
cache misses, one for processor 1 and the other for processor 2. In subsequent k — 1
iterations, no more misses will be generated, but A updates will be generated in
each iteration. Thus, overall we will see misses = 2; traffic = 2 x RdMiss + M =< (k- 1)
» Update =2 = 70 + 10 % 9 x 14 = 1,400 bytes.

With an invalidate scheme, two regular cache misses will occur in the first
iteration. In subsequent k - 1 iterations, one upgrade (for the first write only) plus
one regular read miss will be generated in each iteration. Thus, counting upgrades
as misses, overall we will see misses =2 + (k- 1) % 2 =2 + 9 = 11; traffic = misses x
RdMiss + (k— 1) = Upgrade = 11 x 70 + 9 x 6 = 824 bytes. B

These example patterns suggest that it might be possible o design schemes that
capture the advantages of both update and invalidate protocols. The success of such
schemes will depend on their costs and en the sharing patterns for real parallel pro-
grams and workloads. Let us briefly explore the design options and then employ
warkload-driven evaluation.

Combining Update- and Invalidation-Based Protocols

One way to take advantage of both update and invalidate protocols is to support
bath in hardware and to decide dynamically at page granularity whether coherence

2.4 Assessing Protocol Design Trade-ofls 331

for a given page is to be maintained using an update or an invalidate protocol. The
decision about the cheice of protocol can be indicated by making a system call, The
main advantage of such schemes is that they are relatively easy to support; they uti-
lize the TLB 1o indicate to the rest of the coherence subsystem which of the two pro-
tocols 1o use. The main disadvantage of such schemes is the burden they put on the
programmer to choose protocols for pages or data structures. The decision task is
also made difficult because of the coarse granularity at which control is made avail-
able; data structures that desire different protocols may fall on the same page.

An alternative is to choose the protocol at a cache block granularity, by observing
the sharing behavior at run time. Ideally, for each write, we would like 1o he able to
peer into the future references that will be made to that cache block by all processors
and then decide whether to invalidate other copies or to do an update. Since this
information is obviously not available, and since there are substantial perturbations
due to cache replacements and lalse sharing, a more practical scheme is needed.

So-called competitive schemes change the protocol for a block between invalidate
and update in hardware based on observed patterns at run time. The key attribute of
such schemes is that if a wrong decision is made once for a cache block, the losses
due to that wrong decision should be kept bounded and small (Karlin et al. 198a).
For instance, if a block is currently using update mode, it should not remain in that
maode if one processor is continuously writing to it hut none of the other processors
are reading values [rom it

One class of schemes that has been proposed to bound the losses of update proto-
cols works as follows (Grahn, Stenstrom, and Dubois 1995). Starting with the base
Dragon update protocol described in Section 5.3.3, associate a countdown counter
with each block. Whenever a cache block is accessed by the local processor, the
counter value for that block is reset to a threshold value k. Every time an update is
received for a block, the counter is decremented. If the counter goes to zero, the
block is locally invalidated. The consequence of the local invalidations is that the
next time an update is generated on the bus, it may find that no other cache has a
valid copy; in that case, that block will switch to the modified state (as per the
Dragon protocol) and will stop generating updates. If some other processor now
accesses that block, the block will again switch to shared state and this mixed proto-
col will again start generating updates.

A related approach implemented in the Sun SparcCenter 2000 is to selectively
invalidate rather than update with some probability that is a parameter set when
configuring the machine (Catanzaro 1997). Other mixed approaches may also be
used. For example, one approach uses an invalidation-based protocol for first-level
caches and, by default, an update-based protocol for second-level caches. However,
il the I; cache receives a second update for the block while the block in the L; cache
is still invalid, then the block is invalidated in the 1; cache as well. When the block
is thus invalidated in all other L; caches, writes to the block nao longer cause
updates.

232

Miss rate (%)

CHAPTER 3 Shared Memory Multiprocessors

0.60 PG
{ [[] False sharing
- B True sharing
L RS A ey 0000 B Capacity 2.00
0.40
....... E 150
: | =
u-3ﬂ ____________ [I N E
= 1.00
0.20
0.50
010 Fommmmm————— S S .- - -
0.00 .00

= = ® - > = o=
- E = = L = = =B
= = E =1
S B piEn s E e
2 = i = = = X
1=] ™ -
i 8 g (T & 5 =
& O 0 o

Raytracefinv
Raytrace/upd

FIGURE 5.27 Miss rates and their decompesition for invalidate, update, and hybrid proto-
cols. The data assumes 1-MB caches, 64-byte cache blocks, four-way set associativity, and threshold
k = 4 for hybrid protocal,

Workload-Driven Evaluation

To assess the trade-olls among invalidate, update, and the mixed protocols just
described, Figure 5.27 shows the miss rates by category for four applications using
the default 1-MB four-way set-associative caches with a 64-byte block size. The
mixed protocol used is the threshold-based scheme just described. We see that for
applications with significant capacity miss rates, the misses sometimes increase with
an update protocol, This makes sense because the protocol (with LRU replacement
in a set) keeps data in processor caches that would have been removed by an invali-
dation protocol. For applications with significant true sharing or false sharing miss
rates, these categories decrease with an update protocol: after a write update, the
other caches holding the blocks can access them without a miss. Overall, the update
protocol appears to be advantageous for the sum of these three categories and the
mixed protocol falls in between. The category that is not shown in this figure, how-
ever, is the upgrade or update operations for these protocols. This data is presented
in Figure 5.28. Note that the scale of the graphs has changed because update opera-
tions are roughly four times more prevalent than misses. It is useful to separate these
operations from other misses becanse the way they are handled in the machine is

5.4 Assessing Protocol Design Trade-ofls 333

2.51}|— ——————————————— - H_Uﬂl_
7.00
2.00
= = 6.00
i z
e i e R L R e S © 5.00
[1F) ar
E - 4.00
s £
= T
3 1.00 2 300
L [
g oy
— 2 200
050 F—————————————-——-_ W . __.____
1.00
0.00 ——— - S . S 0.00 = .
£ B £E E B S o e
il
= =] w E 11'En & o = s 2
= @ T, o = o T3 b=
Gl sEs S 5 & 2 2
o O éﬂ, ‘%
e

FIGURE 5.28 Upgrade and update rates for invalidate, update, and mixed protocols. The data
assurnes 1-ME caches, 64-byte cache blocks, four-way set associativity, and threshold k = 4 for hybrid
protocol. Rates are measured relative to total memaory references.

likely to be different. Updates are a single-word write rather than a full cache block
transler. Because the data is being pushed from where it is being produced, it may
arrive at the consumer before it is needed. Even for the producer, the latency of
update and upgrade operations may be less critical than that of misses since it is
quite easily hidden from the processors critical path (see Chapter 11).

Unlortunately, the traffic associated with updates is quite substantial. In large
part, this occurs because multiple writes are made by a processor to the same block
belore a read, all generating updates. With the invalidate protocol, the first of these
writes may cause an invalidation, but the rest can simply accumulate locally in the
block and be transferred in one bus transaction on a flush or a write back (sce
Example 5.12). The increased traffic canses contention and can greatly increase the
cost of misses. Sophisticated update schemes might attempt 1o delay the update to
achieve a similar effect (by merging writes in the write buffer) or use other tech-
niques to reduce traffic and improve performance (Dahlgren 1995). However, the
increased bandwidth demand, the complexity of supporting updates, the trend
toward larger cache blocks, and the pack rat phenomenon with the important case of
multiprogrammed sequential workloads underlie the trend away from update-hased
protocols in the industry. We see in Chapter 8 that update protocols also have some
other problems for scalable cache-coherent architectures, making it less attractive
for microprocessors to support these protocols.

334 cuarTeEk 3 Shared Memory Multiprocessors

3.5

Having discussed how 1o keep data coherent, let us now consider how synchroni-
zation is managed in bus-based multiprocessors.

SYNCHRONIZATION

A critical interplay of hardwaure and soltware in multiprocessors arises in supporting
synchronization operations: mutual exclusion, point-to-point events, and global
events, There has been considerable debate over the years about how much hard-
ware support and exactly what hardware primitives should be provided to suppor
these synchronization operations. The conclusions have changed {rom time to time
with changes in technology and design style. Hardware support has the advantage of
speed, but moving lunclionality o software has the advantages of cost, flexibility,
and adaptability o different situations. The classic works of Dijkstra (1965} and
Knuth (1966} show that it is passible to provide mutual exclusion with only atomic
read and wrile operations (assuming a sequentially consistent memory). However,
all practical synchronization methods rely on hardware support for some sort of
atomic read-modify-write operation, in which the value of a memory location is
ensured 1o be read, modified, and written back atomically without intervening
accesses 10 the location by ather processors. Simple or sophisticated synchroniza-
tion algorithms can be built in software using these primitives,

The history of instruction sets offers a glimpse into the evolving hardware sup-
port for synchronization. One of the key instruction sel enhancements in the 1BM
370 was the inclusion of a sophisticated atomic instruction, the compareswap
instruction, 0 support synchronization in concurrent Progranuming on uniproces-
sor or multiprocessor systems, The compare&rswap compares the value in a memory
location with the value in a specified register and, if they are equal, swaps the value
in the memory location with the value in a second specilied register. The Intel x86
allows any instruction to be prefixed with a lock modifier to make it atomic; since
the source and destination operands are memory locations, much ol the instruction
set can be used 1o implement various atomic operations involving even more than
one memory location. Advocates of high-level language architecture have proposed
that the user-level synchronization operations, such as locks and barriers, should be
supported directly ac the machine level, not just atomic read-modify-write
primitives; that is, the synchronization “algorithm” itsell should be implemented in
hardware. This issue became very active during the reduced instruction set debates
since the operations that access memory were scaled back to simple loads and stores
with only one memory operand. The Sparc approach was 1o provide atomic opera-
tions involving a register or registers and a memory location using a simple swap
{atomically swapping the contenis of the specilied register and memory location)
and a compare&swap, MIPS left off atomic primitives in the early instruction sets, as
did the 1BM Power architecture used in the RS6000. The primitive that was eventu-
ally incorporated in MIPS was a novel combination of a special load and a condi-
tional store, described later in this section, which allows a variety of higher-level
read-modily-write operations to be constructed withour requiring the design 1o
implement them all. In essence, the pair of instructions can be used instead of a sin-

5.5.1

5.5 Synchronization 335

gle instruction to implement atomic exchange or more complex atomic operations,
This approach was later incorporated into the PowerPC and DEC Alpha architec-
tures and is now quite popular. As we will see, synchronization brings to light a rich
[amily of trade-olls across the layers of communication architecture. Nat only can a
spectrum of high-level operations and low-level primitives be supported by hard-
ware, but the synchronization requirements of applications vary substantially as
well,

The focus of this section is on how synchronization operations can be imple-
mented on a bus-based cache-coherent multiprocessor through a combination of
software algorithins and hardware primitives. In particular, it describes the imple-
mentation of mutual exclusion through lock-unlock pairs, point-to-point event syn-
chronization through flags, and global event synchronization through barriers. Let
us begin by considering the components of a synchronization event. This will make
it clear why supperting the high-level mutual exclusion and event operations di-
rectly in hardware is difficult and is likely to make the implementation too rigid,
Then, given that the hardware supports only the basic atomic operations, we can ex-
amine the role of the user soltware and system soltware in synchronization opera-
tions and then consider the hardware and soltware design trade-ofls in greater detail.

Components of a Synchronization Event
There are three major components of a synchronization event:

1. Acquire method: a method by which a process tries to acquire the right to the
synchronization (to enter the critical section or proceed past the event syn-
chronization).

2. Whiting algorithm: a method by which a process waits for a synchronization to
become available; for example, if a process tries to acquire a lock but the lock
is not free, or to proceed past an event but the event has not yet occurred.

3. Release method: a method for a process to enable other processes to proceed
past a synchronization event; for example, an implementation of the Unlock
operation, a method for the last process arriving at a barrier to release the
waiting processes, or a method lor notifying a process waiting at a point-to-
peoint event that the event has occurred.

The choice of waiting algorithm is quite independent of the type of synchroniza-
tion. There are two main choices; busy-waiting and blocking, Busy-waiting means
that the process spins in a loop that repeatedly tests for a variable 1o change its
value, A release of the synchronization event by another processor changes the value
of the variable, allowing the waiting process to proceed. Under blocking, the process
does not spin but simply blocks (suspends) itsell and releases the processor il it
finds that it needs to wait, It will be awakened and made ready to run again when
the release it was waiting for occurs, The trade-offs between busy-waiting and block-
ing are clear, Blocking has higher overhead since suspending and resuming a process
involves the operating system (and suspending and resuming a thread involves the
run-time system of a threads package), but it makes the processor available to other

336 cHAPTER 3 Shared Memaory Multiprocessors

3.3.2

threads or processes that have useful work to do, Busy-waiting avoids the cost of
suspension but consumes the processor and cache handwidch while waiting, Block-
ing is strictly more powerful than busy-waiting because, if the process or thread that
15 being waited upon is not allowed to run, the busy-wait will never end.’ Busy-
wailing is likely o be better when the waiting periad is short, whereas hlecking is
likely to be a better choice if the waiting period is long and if there are other pro-
cesses to run. Hybrid waiting methads can he used in which the process busy-waits
for a while in case the waiting period is short, and if the waiting perind exceeds a
certain threshold, the process blocks, allowing other processes to run (a two-phase
waiting algorithm).

The difficulty in implementing high-level synchronization operations in hard-
ware is not the acquire or the release compaonent but the waiting algorithm, Thus, it
makes sense to provide hardware suppaort for the eritical aspects of the acquire and
release methods and allow the three components to be glued together in software,
Iowever, subtle but very important hardware/software interactions remain in how
the spinning operation in the busy-wail component is realized.

Role of the User and System

Whao should he responsible [or implementing the internals of high-level synchroni-
zation operations such as locks and barriers? Typically, a programmer wants 1o use
locks, events, or even higher-level operations without having 1o worry about their
internal implementation. The implementation is lelt 1o the system, which must
decide how much hardware support to provide and how much of the functionality
to implement in software. Software synchronization algorithms wsing simple atomic
exchange primitives have been developed that approach the speed of Tull hardware
implementations, and the flexibility and hardware simplification they afford are very
attractive. As with ather aspects of svstem design, the urility of faster operations
with more hardware support depends on the frequency of the use of those opera-
lions in the applications. So, once again, the best answer will be determined by a
herter understanding of application behavior,

Software implementations of synchronization constructs are usually included in
system libraries. Good synchronization library design can be quite challenging. One
potential complication is that the same type of synchronization (lock, barrier), and
even the same synchronization variable, may be used at dillerent times under very
different run-time conditions. For example, a lock may be accessed with low conten-
tion {a small number of processors, maybe only one, trying 1o acquire the lock at a
time) or with high contention {(many processors trying to acquire the lock at the
same time). The different scenarios impose different performance requirements.

This problem ol denving respurces o the critical process or thread is ane thae s acooally made simpler
with moere processors, When the processes are time-shared ona single processor, strict busy-waiting
withour preemption is sure ta be a problem. 1 each process or thread has its own processor, it is poaran-
teed nat to be a problem. Multiprogramming environmems on a limited ser of processors may [all some-
where in between.

5.5.3

3.5 Synchronization 337

Under high contention, most processes will spend time waiting, and the key require-
ment of a lock algorithm is that it provide high lock-unlock transfer bandwidth;
under low contention, the key geal is to provide low latency for lock acquisition.
Different algorithms may satisfy different requirements better, so we must either find
a geod compromise algorithm or provide different algorithms for each type ol syn-
chronization [rom which a user can choose. If we are lucky, a flexible library can at
run time choose the best implementation for the situation at hand, Different syn-
chronization algorithms may also rely on different basic hardware primitives, so
some may be better suited to a particular machine than others, Under multiprogram-
ming, process scheduling and other resource interactions can change the synchroniza-
tion behavior of the processes in a parallel program. A more sophisticated algorithm
that addresses multiprogramming effects may provide better performance in practice
than a simple algorithm that has lower latency and higher bandwidth in the dedicated
case. All of these [actors make synchronization a critical point of hardware/software
Interaction.,

Mutual Exclusion

Mutual exclusion (lock-unlock) operations are implemented using a wide range of
algorithms: The simple algorithms tend to be fast when there is little contention for
the lock but inefficient under high contention, whereas sophisticated algorithms
that deal well with contention have a higher cost in the low-contention case. Alter a
brief discussion of hardware locks, this section describes the simplest software algo-
rithms for memory-based locks using atomic exchange instructions. Following this
is a discussion of how these simple algorithms can be implemented by using the spe-
cial load-locked and store-conditional instruction pairs to synthesize atomic
exchange, in place of atomic exchange instructions themselves, and what the trade-
offs are. Next, we will look at more sophisticated algerithms that can be built using
either method of implementing atomic operations,

Hardware Locks

Lock operations can be supported entirely in hardware, although this is not popular
on modern bus-based machines. One option that was used on some older machines
was to have a set of lock lines on the bus, each used for one lock at a time. The pro-
cessor holding the lock asserts the line, and processors waiting for the lock wait for
it to be released. A priority circuit determines which processor gets the lock next
when there are multiple requestors. However, this approach was quite inflexible
since only a limited number of locks can be in use at a time and the waiting algo-
rithm is fixed (typically a form of busy-wait with ahort after time-out). Usually, these
hardware locks were used only by the operating system for specific purposes, one of
which was to implement a larger set of soltware locks in memory. The CRAY Xmp
provided an interesting variant of this approach. A set of registers was shared among

338

CHAPTER 3 Shared Memory Multiprocessors

the processors, including a fixed collection of lock registers, Although the architee-
ture made it possible to assign lock registers 1w user processes, with only a small set
of such registers it was awkward to do so in a general-purpose setting, and in prac-
tice the lock registers too were used primarily to implement higher-lével locks in
IMETOY.

Simple Sofltware Lock Algorithms

Consider a lock operation used to provide atomicity for a eritical section of code,
For the acquire method, a process trving o obtain a lock must check that the lock is
[ree and, il it is, then claim ownership of the lock. The state of the lock can be stored
in a hinary variable, with 0 representing frec and 1 representing husy. A simple way
ol thinking about the lock acquire operation is that a process trying o abrain the
lock should check if the variable is 0 and if so set it to 1, thus marking the lock busy;
il the variable is 1 {lock is busy), then it should wait for the variable to turn to 0
using rhe waiting algorithm. An unlock operation should simply set the variable to 0
(the release method). The lollowing are assembly-level instructiens for this attempt
at a lock and unlock. (In our pseudo-assembly notation, the first eperand always
specifies the destination il there is one.)

lock: 1d register, location /fcopy location Lo vegister™/
cmp register, #0 fEcompare with 0%/
bnz lock £ not O, try again®/
gt location, #1 fstore |into location to mark it locked*/
riot Hreturn control to caller of lock™/

and

unlock: st loeation, #0 fwrite O to location ™!

ret fFretion control to caller®/

The problem with this lock, which is supposed to provide atomicity lor the erit-
cal section that lollows it, is that it needs (hut lacks) atomieity in its own implemen-
tation, To illustrate this, suppose that the lock variable was initially set w 0 and two
processes Py and Py execute the ahove assembly code implementations of the lock
operation. Process Py reads the value of the lock variable as 0 and thinks it is lree, so
it proceeds past the branch instruction. 1ts next step is to set the variable 1o |, mark-
ing the lock as busy, but before it can do this, process Py reads the variable as @,
thinks the leck is free, and passes the branch instruction too. We now have two pro-
cesses simultancously proceeding past the lock and entering the same critical scc-
tion, which is exactly what the lock was meant to avoid. Puuing the store
instruction just after the load instruction would not help either. The two-instruction
sequence—reading (testing) the lock variable to checls its state and writing (setting)
it 1o busy if it is free—is not atomic, and there is nothing to prevent these operations
in dilferent processes from being interleaved in time. What we need is a way Lo
atomically test the value ol a variable and set it to another value if the test succeeds
(i.e.. 1o atomically read and then conditionally modify a memory location) and then

3.9 Synchronization 339

to return whether the atomic sequence was executed successlully or not. One way to
provide this atomicity for user processes is to place the lock routine in the operating
system and access it through a system call, but this is expensive and leaves the ques-
tion ol how the locks are supported by the operating system itsell. Another option is
to utilize a hardware lock around the instruction sequence lor the lock routine, but
this requires hardware locks and tends te be slow on madern processors.

An efficient, general-purpose solution to the lock problem is to support an atomic
read-modify-write instruction in the processors instruction set. A typical approach
is to have an atomic exchange instruction: a value at a memory location specified by
the instruction is read into a register, and another value is stored into the location,
all in an atomic operation with no other accesses 1o that location allowed to inter-
vene. Many variants of this operation exist with varying degrees of flexibility in the
nature of the value that can be stored. A simple example that works lor mutual
exclusion is an atomic tesidset instruction. In this case, the value in the MEmory
location is read into a specilied register, and the constant 1 is stored into the location
atomically. The success of the test&rset is determined by examining the value in the
register, I it is O, the test&eset was successful. 10t is 1, it was not successful: the
value 1 written to memory by the tesi&&sel instruction is the same as was already
there, so no harm is done. (1 and 0 are the values typically used, though any other
constants might be used in their place.) Given such an instruction, with the mne-
monic t&s, we can write a lock and unlock in psendo-assembly language as fallows;

look - CL&s register, location
Mcopy location to reg, and set location to 1%/
bnz register, lock Mcompare old value weturmed with 0%/
Hifnot 0, i.e., lock already busy, so try again®™/

rel Hretwrn control to caller of lock™/
and
unlock:st location, #0 FEwrite O to location®/
rekt return control to caller®!

The lock implementation keeps trying to acquire the lock using testérset instruc-
tions until the testérset leaves zero in the register, indicating that the lock was free
when tested (in which case the test&set has set the lock variable to 1, thus acquiring
it). The unlock construct simply sets the location associated with the lock 1o 0, indi-
cating that the lock is now free and enabling a subsequent lock operation by any
process Lo succeed. A simple mutual exclusion construct has been implemented in
software, relying on the fact that the architecture supports an atomic test&rsel
Insiruction.

More sophisticated variants of such atomic instructions exist and, as we will see,
are used by different software synchronization algorithms. One example is a swap
instruction. Like a test@rset, this reads the value from the specified memory location
into the specihied register, but instead of writing a fixed constant into the memory
location, it writes whatever value was in the register to begin with. That is, it atomi-
cally exchanges or swaps the values in the memory location and the register. Clearly,

340

CHAPTER 5 Shared Memory Multiprocessors

we can implement a lock as before by replacing the test&set with a swap instruction
as long as we use the values 0 and 1 and ensure that the value in the register is 1
before the swap instruction is executed; the lock has succeeded if the value left in
the register by the swap instruction is 0.

Another example is the family of fetch&op instructions. A fetch&op instruction
also specifies a location and a register. [t atomically reads the current value of the
location into the register and writes the value {which has been obtained by applying
the operation specified by the letch&rop instruction to the current value of the
location) into the location. The simplest forms of fetch&op to implement are the
fetehEincrement and fetch&decrement instructions, which change the current value
by 1. A fetchéadd would take another operand, which is a register or value, to add
into the previous value ol the location. A more complex primitive is the
compare&swap operation. It takes two register operands and a memory location (i.e.,
it is a three-operand instruction, not commoenly supported by RISC architectures); it
compates the value in the location with the contents of the first register operand,
and, if the two are equal, it swaps the contents of the memory location with the con-
tents of the second register.

Performance of the Simple Lock

Figure 5.29 shows the perlormance of a simple testérset lock on the SGI Challenge ®
Performance is measured lor the following microbenchmark executed repeatedly in
a loop:

Tocels (L) ;
critical-section{c):
unlock (L) ;

where ¢ is a delay parameter that determines the size of the critical section (it is only
a delay in this case, with no real worlk done). The benchmark is configured so that
the same total number of lock calls are executed as the number of processors
increases, reflecting a situation where a fixed number of tasks must be dequeued
from a centralized task queue, independent of the number of processors. Perfor-
mance is measured as the time per lock transfer, that is, the cumulative time taken
by all processes executing the benchmark divided by the number of times the lock is
obtained. The cumulative time spent in the critical section itself (i.e., c times the
number of successful locks executed) is subtracted from the cumulative execution
time so that only the time for the lock transfers themselves (or any contention
caused by the lock operations) is obtained. All measurements are in microseconds.

In fact, the processor on the SGI Challenge, which is the machine for which synchronization perfor-
mance is presented In this chapter, does not provide a test&rset instruction. Rather, it uses alternative
primitives that will be described later in this section. For these experiments, a mechanism whose behav-
ior closely resembles that of testézset is synthesized from the available primitives. Results for real
testézset-based locks on older machines like the Scquent Symmetry can be found in the literature
(Granuke and Thallkar 1990; Mellor-Crummey and Scott 1991).

5.5 Synchronization 341

20 —

—b— Test&set, c=0

1g L) % Testdset, exponential backoff, ¢=364 | L

B Test&set, exponential backoff, c=0

Time (us)

Mumber of processors

FIGURE 5.29 Performance of the synthesized test&set locks with an increasing number of
competing processors on the 5Gl Challenge. The y-axis is the time per lock-unlock pair, excluding
the critical section of size ¢ microseconds. The irregular nature of the top curve is due to the timing
dependence of the contention effects caused.

The upper curve in the figure shows the time per lock transler with an increasing
number of processors when using the test&rset lock with a very small critical section
{ignore the curves with “backoff” in their labels for now). Ideally, we would like the
time per lock acquisition to be independent of the number of processors competing
for the lock, with only one uncontended bus wransaction per lock transfer, as shown
in the curve labeled “ideal.” However, the figure shows that performance clearly
degrades with an increasing number of processors.

The problem with the test&rset lock is the trallic generated during the waiting
method: every attempt to check whether the lock is [ree to be acquired, whether suc-
cessful or not, generates a write operation to the cache block that holds the lock
variable (since it uses a testdrset operation and writes the value to 1); since this
block is currently in the cache of some other processor (which wrote it last when
doing its testérset), a bus transaction is generated by each write to invalidate the
previous owner of the block, Thus, all processors put transactions on the bus repeat-

342 cuarrer 5 Shared Memory Multiprocessors

edly and consume precious bus bandwidth even during the waiting algorithm. The
resulting contention slows down the lock transfer considerably as the number of
processors, and hence the frequency of test&rsets and bus transactions, increases. It
impedes the progress af the processor releasing the lock and of the next processor
that actually acquires it. In reality, it would also impede the work done in the critical
section. The high degree of contention on the bus and the resulting timing depen-
dence of obtaining locks causes the henchmark timing to vary sharply across num-
bers of processors used and even across executions. The results shown are for a
particular, representative set of executions with different numbers of processors.

Enhancements to the Simple Lock Algorithm

We can do two simple things to alleviate this traffic. First, we can reduce the fre-
quency with which processes issue testérset instructions while waiting; second, we
can have processes busy-wait only with read operations so they do not generate
invalidations and misses until the lack is actually released. These two possibilities
are called the testéset lock with backoff and the test-and-testGset loch.

Test&Set Lock with Backoff The basic idea in backoll is for a process to insert a
delay after an unsuccessful attempt to acquire the lock. The delay between testézset
atternpts should not be too long; otherwise, processors might remain idle even when
the lock becomes free. But it should be long enough that traffic is substantially
reduced, A natural question is whether the delay amount should be fixed or variable.
Experimental results have shown that good performance is obtained by having the
delay vary “exponentially”; that is, the delay after the first attempt is a small con-
stant lt that increases geometrically, so that after the ith attempt, it is k x ', where ¢
is another constant. Such a lock is ealled a test&set lock with exponential backolf.
Figure 5,29 also shows the performance for the test&ser lock with backoff for two
different sizes of the critical section, using the starting value it for backoll that
appears to perform best. Performance improves but still does not scale very well
since there is still substantial taffic interfering with the release and acquire. Perlor-
mance results using backoff with a real testé&set instruction on older machines can
be found in the literature {Granuke and Thakkar 1990; Mellor-Crummey and Scott
1091}, See also Exercise 3.14, which discusses why the performance with a nonzero
critical section is worse than that with a null critical section when backoff is used.

Test-and-Test&Set Lock A more subtle change to the algorithm is to have it use in-
structions that do not generate as much bus traffic while busy-waiting. Processes
husy-wait by repeatedly reading with a standard load, not a testérset, the value of the
lack variable until it turns from 1 (locked) to O {unlocked). On a cache-coherent
machine, the reads can be performed in-cache by all processors, without generating
bus traffic, since each obtains a cached copy of the lock variable the first time it
reads it. When the lock is released, the cached copies of all waiting processes are in-
validated, and the next read of the variable by each process will generate a read miss.
The waiting processes will then find that the lock has been made available and only

5.5 Synchronization 343

then will each generate a test&set instruction to actually try to acquire the lock. One
of them will succeed in this acquire attempt, while the others will fail and return to
the read-based waiting method. The test-and-testérset lock substantially reduces bus
tratfic.

Performance Goals for Locks

Before examining more sophisticated lock algorithms and primitives, it is useful to
clearly articulale some performance goals for locks and to review how the locks
described here measure up. The goals include the following;

B Low latency. If a lock is free and no other processors are trying to acquire it at
the same time, a processor should be able to acquire it with low latency,

m Low traffic. If many or all processors try to acquire a lock at the same time,
they should be able to acquire the lock one afier the other with as little gener-
ation of traffic or bus transactions as possible. As discussed earlier, contention
due to high tratfic can slow down lock acquisitions as well as unrelated trans-
actions that compete for the bus (including in the critical section).

m Scalability. Neither latency nor traffic should scale quickly with the number of
processors used. However, since the number ol processors in a bus-based SMP
is not likely to be large, it is not asymptotic scalability that is important but
only scalability within the realistic range,

® Low storage cost. The information needed for a lock should be small and
should not scale quickly with the number of processors.

m Fairness. ldeally, processors should acquire a lock in the same order as their
requests are issued. Ar the least, starvation or substantial unfairness should he
avoided. Since starvation is usually unlikely, the importance of fairness mus
be traded off with its impact on performance.

Consider the simple atomic exchange or test&rset lock. Tt is very low latency il
the same processor acquires the lock repeatedly without any competition, since the
number of instructions executed is very small and the lock variable will stay in that
processor’s cache, However, we have seen thal it can generate a lot of bus traffic and
contention if many processors compete for the lock. The performance of the lack
scales poorly as the number of competing processors increases, The storage cost is
low (a single variable suffices) and does not scale with the number of processors.
The lock makes no attempt to be lair, and an unlucky processor can be starved out.
The test&set lock with backoff has the same uncontended latency as the simple
testérset lock, generates less trallic, is somewhat more scalable, takes no more stor-
age, and is no more fair. The test-and-lest&set lock has slightly higher uncontended
latency than the simple test&rset lock (it does a read in addition to a test&rset even
when there is no competition) but generates much less bus traffic and is more scal-
able, It too requires negligible storage and is not fair, (Exercise 5.12 asks vou 1o
count the number of bus transactions and the time required for the test-and-
test&eset type of lock in different scenarios.)

344

CHAPTER 3 Shared Memory T'vfllflipr-::-t‘l.*ﬁﬁl‘.lr!—‘.

In the test-and-test&set lock, since a test&rset operation (and hence a bus trans-
action) is only issued when a processor is notified that the lock is ready, and there-
after if it fails it busy-waits (spins) on a cached block, there is no need for backoff.
However, the lock does have the problem that when the lock is released, all waiting
processes rush out and perform their read misses and their testézset instructions at
about the same time. The bus transactions for the read misses may be combined in a
smart bus protocol; however, each of the test&rset instructions itself generates inval-
idations and subsequent misses, resulting in O(p?) bus tratfic for p processors to
acquire the lock once each. A random delay before issuing the test&rset could help to
stagger at least the test&rset instructions, but it would increase the latency to acquire
the lock in the uncontended case. While test-and-test&set was a major step forward
at its time, better hardware primitives and better algorithms have been designed to
alleviate its tralfic problem.

Improved Hardware Primitives: Load-Locked, Store-Conditional

In addition to spinning with reads rather than read-modify-writes, which test-and-
test&rset accomplishes, we would prefer that failed attempts to complete the read-
modify-write do not generate invalidations. It would also be useful to have a single
primitive that allows us to implement a range of atomic read-modify-write
operations—such as testérset, fetchézop, comparedrswap—rather than implement-
ing each with a separate instruction. One way to achieve both goals, increasingly
supported in modern microprocessors, is to use a pair ol special instructions rather
than a single read-write-modify instruction to implement atomic access to a variable
(let’s call it a synchronization variable). The first instruction, commonly called load-
loched or load-linked (LL), loads the synchronization variable into a register. 1t may
be followed by arbitrary instructions that manipulate the value in the register—that
is, the modify part of a read-modify-write. The last instruction of the sequence is the
second special instruction, called a store-conditional. 1t tries to write the register back
to the memaory location {the synchronization variable) if and only if no other proces-
sor has written to that location {or cache block) since this processor completed its
LL. Thus, if the store-conditional succeeds, it means that the load-locked, store-
conditional (LL-SC) pair has read, perhaps modified in between, and written back
the variable atomically. If the store-conditional detects that an intervening write has
occurred to the variable or cache block, it fails and does not even try to write the
value back (or generate any invalidations). This means that the atomic operation on
the variable has failed and must be retried starting from the LL. Success or failure of
the store-conditional is indicated by the condition codes or a return value, How the
LL and store-conditional are actually implemented will be discussed later; for now,
we are concerned with their semantics and performance.

Using LL-SC to implement atomic operations, the simple lock and unlock algo-
rithms can be written as follows, where regl is the register into which the current
value of the memory location is loaded and reg2 holds the value to be stored in the
memory location by this atomic exchange (reg2 could simply be the value 1 for a
lock attempt, as in a test&rset).

5.5 Synchronization 345

lock: 11° regl, location Hload-locked the location to reel #/

bnz regl, lock Mif location was locked (nonzera),
try again®/
s¢, location, reg2 {*store reg2 conditionally into location®/
beqz lock /*if store-conditional failed, start again®/
Tar Mreturn control to caller of lock*/
and

unleck: st location, #0 fEwrite O Lo location™/

ret HEreturn control to caller®/

Many processors may perlorm the LL at the same time, but only the first one that
manages to put its store-conditional on the bus will actually succeed in its store-
conditional. This processor will have succeeded in acquiring the lock, whereas the
others will have failed and will have to retry the LL-SC. Mote that the store-condi-
tional may fail either because it detects the occurrence of an intervening write before
even allempting to access the bus or because it attempts to get the bus but some
other processor’s store-conditional gets there first. Of course, if the location is 1
(nonzero) when a process does its LL, it will load 1 into regl and will retry the lock
starting from the LL without even attempting the store-conditional.

It is worth noting that the LL itsell is not a lock and the store-conditional itself is
not an unlock. For one thing, the completion of the LL itself does not imply obtain-
ing exclusive access; in fact, LL and store-conditional are used together to imple-
ment a lock operation. For another, even a successful LL-5C pair does not guarantee
that the instructions between them (if any) are executed atemically with respect to
those instructions on other processors, so in fact these instructions do not consti-
tute a critical section. All that a successful LL-5C guarantees is that no conflicting
writes to the synchronization variable itself intervene between the LL and store-
conditional, In fact, since the instructions hetween the LL and store-conditional are
executed unconditionally but should not be visible if the store-conditional fails, it is
important that they do not modify any other important state. Typically, these in-
structions manipulate only the register into which the synchronization variable is
loaded—for example, 1o perlorm the op part of a fetch&op—and do not modify any
other program variables (modification of this register is okay since the register will
be reloaded anyway by the LL in the next attempt). Microprocessor vendors that
support LL-5C explicitly encourage software writers to follow this guideline and, in
fact, often specify what instructions are possible to insert with a guarantee of cor-
rectness given their implementations of LL-5C. The number of instructions between
the LL and store-conditional should also be kept small to reduce the probability of
store-conditional [ailure due to an intervening write. Although the LL and store-
conditional do not constitute a lock-unlock pair, they can be used directly to imple-
ment certain atomic operations on shared data structures. For example, if the de-
sired function is a small operation on a globally shared variable (like a counter or
global sum}, it makes much more sense to implement it as the natural sequence
{LL, register op, store-conditional, test) than to build a lock and unlock around the
variable update.

346 CcHAPTER 3 Shared Memory Multiprocessors

Like the test-and-test&rset, the spin-lock built with LL-5C does not generate bus
traffic during the waiting algorithm il the LL indicates that the lock is currently held.
Better than the test-and-testérset, it also does not generate invalidations on a [ailed
attempt to obtain the lock (ie., a failed store-conditional). However, when the lock
is released, the processors spinning in a tight loop of lead-locked operations will
indeed miss on the location and rush out to the bus with read transactions, After
this, only a single invalidation will be generated for a given lock acquisition by the
processor whose store-conditional succeeds, but this will again invalidate all caches.
Traffic is reduced greatly from even the test-and-test&rset case and there are no read-
modify-write bus transactions, but tralfic still increases linearly with the number of
pracessors (i.e., O{p) bus transactions per look acquisition). Since spinning on a
locked location is already done through reads (load-locked operations), no analog of
a test-and-test&rset exists to [urther improve its performance. However, backoff can
be used between the LL and store-conditional to reduce bursty traffic.

The simple LL-5C lock is also low in latency and storage, but it is not a fair lock
and does not reduce trallic o a minimum. More advanced lock algorithms can be
used that provide both lairness and reduced traffc. They can be built using either
atomic read-modily-write instructions or atomic operations of equivalent semantics
synthesized with LL-5C, though ol course the traffic advaniages are different in the
two cases. Ler us consider two of these algorithms that are appropriate for bus-based
machines.

Advanced Lock Algorithms

Especially when using an atomic exchange instruction like test&set, instead of LL-
SC, to implement locks, it is desirable to have only one process actually attempt to
obtain the lock when it is released (rather than have them all rush out to do a
test&rset and issue invalidations as in all the preceding algorithms). It is even more
desirable to have only one process incur a read miss (even with LL-5C) when a lock
is released. The ticket lock accomplishes the first purpose: the array-based loch
accomplishes both goals but at a little cost in space. Unlike all the previous locks,
hoth these locks are [air and grant the lock to processars in FIFCQ order.

Ticket Lock The ticket lock operates just like the ticket system in the sandwich line at
a delicatessen or like the teller line at a bank. Every process wanting to acquire the
lock takes a ticket number and then busy-waits on a global now-serving num-
ber—like the number on the LED display that we watch intently in the sandwich
line—until the now-serving number equals the ticket number it obtained. To
release the lock, a process simply increments the now-serving number so that the
next waiting process can acquire the lock. The atomic primitive needed is a
fetch&increment, which a process uses when it lirst reaches the lock operation o
ohtain its ticket number from a shared counter. No atomic operation {e.g., test&zset)
is needed to actually abtain the lock upon a release since only the unique process
that has its ticket number equal to now-serving attempts to enter the critical sec-
tion when it sees the release. Thus, the acquire method is the ferch&increment, the

5.5 Synchronization 347

waiting algorithm is busy-waiting for now-serving to equal the ticket number, and
the release method is to increment now-serving. This lock has uncontended
latency about equal to the test-and-test&zset lock but generates much less tralTic.
Although every process does a fetch&inerement when it first arrives at the lock (pre-
sumably not every process at the same time), the testSzset attempts upon a release of
the lock are eliminated, which tend to be simultaneous and a lot more heavily con-
tended. The ticket lack also requires constant and small storage and is fair since pro-
cesses obtain the lock in the order of their fetch&inerement operations,

The fetch&increment needed by the ticket lock can be implemented with LL-5C.
However, since the simple LL-5C lock already avoids multiple processors issuing in-
validations in trying to acquire a lock after its release, there is not a large difference
in trafhe between the ticket lock and the simple LL-5C lock. (The simple LL-5C lock
is somewhat worse since in that case another invalidation and set of read misses oc-
cur when a processor succeeds in its store-conditional.) The key difference between
these two locks is fairness.

Like the simple LL-5C lock, the ticket lock still has a read traffic problem at a
release. The reason is that all processes spin on the same variable (now-serving).
When that variable is written at a release, all processors’ cached copies are inwvali-
dated, and they all incur a read miss. The read misses may be combined on some
buses hut can cause unnecessary wallic il the combining is unavailable or unsuccess-
ful. One way to reduce this bursty read-miss traffic is to introduce a form of hackofl.
We do not want 1o use exponential backoll because we do not want all Processors Lo
he backing ofl when the lock is released so that none tries to acquire it for a while. A
promising technique is to have each processor back off from trying to read the now-
serving counter by a duration proportional to when it expects its turn to actually
come—that is, by a duration proportional to the difference in its ticket number and
the now-serving value it last read. Alternatively, the array-based lock completely
climinates this extra read traffic upon a release by having every process spin on a
distinct location,

Array-Based Lock The idea here is to use a fetch&increment to obtain not a value
but a unique location on which to busy-wait. I there are p processes that might pos-
sibly compete [or a lock, then the lock data structure contains an array of p locations
that processes can spin on, ideally each on a separate memory block to avoid [alse
sharing. The acquire method then uses a feichérinerement operation to obtain the
next available location in this array (with wraparound), the waiting method spins on
this lacation, and the release method writes a value denoting “unlocked” 1o the nexi
location in the array (after the one that the releasing processor was itsell spinning
on). Only the processor that was spinning on that next location has its cache block
invalidated at the release; its consequent read miss tells it that it has obtained the
lock. As in the ticket lock, no test&rset is needed after the miss since only one pro-
cess is notified when the lock is released. This lock is clearly also FIFO and hence
[air. Tts uncontended latency is likely to be similar to that of the test-and-test&rset
lock (a fetch&rincrement followed by a read of the assigned array location), and it is
potentially more scalable than the ticket lock since only one processor incurs the

348

cHAPTER 5 Shared Memory Multiprocessors

read miss. For the same reason, unlike the ticket lock, it does not need any form of
backoff to reduce traffic. Its only drawback for a bus-based machine is that it uses
((p) space rather than O(1), but with both p and the proportionality constant being
small, this is usually not a very significant drawback. It has a potential drawback for
machines with distributed memory, but we shall discuss this drawback and lock
algorithms that overcome it in Chapter 7.

Performance

Let us briefly examine the performance of the different locks on the SGI Challenge,
as shown in Figure 5.30. All locks are implemented using LL-5C since the Challenge
provides only these and not atomic instructions. Results are shown for a somewhat
more parameterized version of the earlier microbenchmark code, in which a process
is allowed to insert a delay not only for the critical section but also between its
release of the lock and its next attempt to acquire it (as will happen in a real pro-
gram). That is, the code is a loop over the following body:

Tocki(L);

critical sectionic);:
unlock (L) ;

delay (d) ;

Let us consider three cases: (1 ¢=0,d=0;(2) ¢ =3.64 ys, d = 0; and (3} ¢ = 3.64
lis, d = 1.29 ps—called the null critical section case, the non-null critical section case,
and the non-null critical section with delay case, respectively. The delays ¢ and d are
inserted in the code as round numbers of processor eycles, which translates to these
microsecond numbers. Recall that in all cases, the delays ¢ and d (multiplied by the
number of lock acquisitions by each processor) are subtracted out of the total time,
which is supposed to measure only the total time taken for a certain number of lock
acquisitions and releases (see also Exercise 5.15),

Comsider the null critical section case. The first observation, comparing Figure
5.30 with Figure 5.29, is that all the other locks are indeed better than the test&rset
locks, as expected.” The second observation is that the simple LL-SC locks actually
seem to perform better than the more sophisticated ticket lock and array-based lock.
For these locks, which don't encounter as much contention as the tesi&set lock,
performance is largely determined by the number of bus transactions between a
release and a successful acquire, The reason that the LL-5C locks perform so well,
particularly at lower processor counts, is that they are not fair, and the unfairness is
exploited by architectural interactions! In particular, when a processor that releases
a lock with a write follows it immediately with the read (LL) [or its next acquire, its
read and the subsequent store-conditional are likely to succeed in its cache before

The test&rset is simulated using LL-5C as follows: every time a store-conditional fails, a write is per-
formed o another variable in the same cache block, causing invalidations as a testérset would. This
method of simulating testérser with LL-SC may lead 1o somewhat worse performance than a irue
testézset primitive, but it conveys the trend.

3.5 Synchronization 349

—8— Array-based

=M= LL-5C

—— LL-5C, exponential
—4— Ticket

—&— Ticket, proportional

Time (us)
Time {ps}
Time (us)

I"|IIIII||||| DIL']IIIIIIIII-

D \
TR e 1113 15 T i R e g TS |t ER o B P e e R 2 RN |
Number of processors Number of processors Number of processars
{a} Mull {c=0, d = 0} (b} Critical section {c = 3,64 s, d = 0) () Delay (¢ =3.64 ps, d = 1.29 us)

FIGURE 5.30 Performance of locks on the 5GI Challenge for three different scenarios

another processor can read the block across the bus. (The bias on the SGI Challenge
is actually more severe, since the releasing processor can satisfy its next read from its
write buller even belore the read exclusive corresponding to the releasing write gets
out on the bus.) Lock transfer is very quick, and performance is good, but the same
processor keeps acquiring the lock repeatedly. As the number of processors and the
competition for the bus increase, the likelihood of the last releasers store-condi-
tional successfully obtaining the bus decreases, and hence the likelihood of sell-
transiers decreases. In addition, bus trallic increases due to invalidations and read
misses, so the time per lock transier increases. Exponential backoff helps reduce the
burstiness of traffic and hence slows the rate of scaling, and a nonzero critical sec-
tion (¢ = 3.64, d = 0) helps this along further,

With delays both inside and outside the critical section (c = 3.64, d = 1.29), we
see the LL-5C lock not doing quite as well, even at low processor counts, This is
because a processor waits aller its release before trying to acquire the lock again,
making it much more likely that some other waiting processor will acquire the lock
before it. Self-transfers are unlikely, so lock transfers are slower even with two pro-
cessors. It is interesting that performance is particularly worse for the backeff case at
small processor counts when the delay d between unlock and lock is nonzero. This
is because it is quite likely that while the processor that just released the lock is wait-
ing for d to expire belore doing its next acquire, all the other processors are in a
backoff period and not even trying to acquire the lock. In the d = 0 case, the releas-
ing processor reacquires the lock right away, especially with a small number of pro-
cessors, Backoff must be used carefully for it to be successful.

350 cCHAPTER 3 Shared Memory Muliiprocessors

Consider the other locks, These are fair, so every lock transfer is to a different
processor and involves bus transactions in the critical path of the transler. Hence,
they all start off with a jump to about three bus transactions in the critical path per
lock transler even when two processors are used. Actual diflerences in time are due
to exactly which bus transactions are generated and how much of their latency can
be hidden [rom the processor. The ticket lock without backoll scales relatively
poorly: with all processors trying to read the now-serving counter, the expected
number of bus transactions between the release and the read by the correct proces-
sor is p/2, leading to the observed linear degradation in the lock transfer critical
path. With successiul proportional backoll, it is likely that the correct processor will
be the one te issue the read first after a release, so the time per transfer is constant
and does not scale with p. The array-based lock also scales well since only the cor-
recl processor issues a read,

The results illustrate the importance ol detailed architectural interactions in
determining the performance of locks. They also show that simple LL-5C locks per-
form quite well on buses that have sullicient bandwidth. On this particular machine,
performance for the unfair LL-5C lock becomes as bad as or a little worse than that
for the more sophisticated locks bevond 16 processors due to the higher traffic, but
not by much because bus bandwidth is quite high. When exponential backoll is
used to reduce tralfic, the simple LL-SC lock delivers the best average lock transfer
time in all cases. However, these results also illustrate the difficulty and the impor-
tance of sound experimental methodelogy in evaluating synchronization algorithms.
Mull critical sections display some interesting effects, but meaningful comparisons
depend on what the synchronization patterns look like in practice—in real applica-
tions. For example, the effect of critical section and delay size on the [requency of
self-transfers has a substantial impact on the comparison ol unfair locks with [air
locks. The nonrepresentativeness ol the null case in this regard is therefore an
important methodological consideration. An experiment to use LL-5C while guaran-
tecing round-robin acquisition among processors (faimess) by using an additional
variable showed performance very similar to that of the ticket lock, confirming that
unfairness and selt-transfers are indeed the reason for the better performance at low
processor counts. Especially if fairness is desired, the ticket lock with proportional
backoff and rthe array-based lock perform very well on bus-based machines.

Lock-Free, Nonblocking, and Wait-Free Synchronization

An additional set of performance concerns involving synchronization arises when
we consider that the machine running our parallel program is used in a multipro-
gramming environment, Other processes run lor periods of time or, even il we have
the machine to ourselves, background daemons run periodically, processes take page
faults, /O interrupts occur, and the process scheduler makes scheduling decisions
with limited information about the application requirements. These events can
cause the rate at which processes make progress to vary considerably. One important
question is how the parallel program as a whole slows down when one process is
slowed. With traditional locks, the problem can be serious: if a process holding a

3.3 Synchronization 357

lock stops or slows while in its critical section, all ether processes may have 1o wait.
This problem has received a good deal of attention in work on operating system
schedulers. In some cases, attempts are made to avoid preempling a process that is
holding a lock. Another line ol research takes the view that lock-based operations
are not very robust and should be avoided; [or example, il a process dies while hold-
ing a lock, other processes hang. It has been observed that most lock-unlock opera-
tions are used to support operations on a well-delined data structure or object that is
shared by several processes, for example, updating a shared counter or manipulating
a shared quene, These higher-level operations on the data structure can be imple-
mented directly using atomic primirives without actually using locks, as discussed
for LL-SC earlier.

A shared data structure is said to be lock-free if the operations defined on it do not
require murual exclusion over multiple instructions. If the operations on the data
structure guarantee that some process will complete its operation in a finite amount
of time, even if other processes halt, the data structure is nonblocking. 1 the opera-
tions can guarantee that every (nonfaulting) process will complete its operation in a
finite amount of time, the data structure is wait-free (Herlihy 1993). A body of liter-
ature is available that investigates the theory and practice of such data structures,
including requirements placed on the basic atomic primitives to implement them
{Herlihy 1988), general-purpose techniques for translating sequential operations Lo
nonblocking concurrent operations (Herlihy 1993}, specific useful lock-free data
structures (Valois 1995; Michael and Scott 1996), operating system implementations
{Massalin and Pu 1991; Greenwald and Cheriton 1996}, and propesals for architec-
tural support (Herlihy and Moss 1993). The basic approach is to implement updates
o a shared object by reading a portion of the object to make a copy, updating the
copy, and then performing an operation to commit the change only if no conflicting
updates have been made (reminiscent of LL-5C). As a simple example, consider a
shared counter. The counter is read into a register, a value is added to the register
copy, and the result is put in a second register. Next, a compare&swap updates the
shared counter only if its value is still the same as the copy. For more sophisticated,
linked-list data structures, a new element is created and then linked into the shared
list if the insert is still valid. These techniques serve 1o limit the window in which
the shared data structure is in an inconsistent state, so they improve robustness,
although it can be difficult to make them efficient.

Theoretical research has identified the properties of different atomic exchange
operations in terms of the time complexity of using them 1o implement synchro-
nized access to variables. In particular, it has been lound that simple operations like
testérset and fetch&rop are not powerlul enough to guarantee that the time taken by
a processor to access a synchronized variable is independent of the number of pro-
cessors, whereas more sophisticated atomic operations like compare&zswap and
swapping the values of two memory locations are powerful enough to make this
guarantee (Herlihy 1988).

Having discussed the options for mutual exclusion on bus-based machines, let us
move on to point-to-point, and then barrier, event synchronization.

352 cHarter 3 Shared Memory Multiprocessors

3.

B

4

Point-to-Point Event Synchronization

Point-to-point synchronization within a parallel program is often implemented by
husy-waiting on ordinary variables, using them as flags. If we want to use blocking
instead of busy-waiting, we can use semaphores, just as they are used in concurrent
programming and operating systems {Tanenbaum and Woodhull 1997).

Software Algorithms

Flags are control variables, typically used to communicate the occurrence of a syn-
chronization event rather than to transfer values, If two processes have a producer-
consumer relationship on the shared variable a, then a flag can be used 1o manage
the synchronization as follows:

Py P2
a = fix}; [Mseta* while [flag iz 0) do nething;
flag = 1; bi= gi{a); fusea

If we know that the variable a is initialized to a certain value (say, 0), which will be
changed to a new value we are interested in by this production event, then we can
use a itself as the synchronization [lag, as follows:

P P2

a = E(x); Mseta*f while (a is 0) do nothing;

b = gla); [ffusea*

This eliminates the need for a separate [lag variable and saves the write to and read
of that variable at perhaps some cost in readability and maintainability.

Hardware Support: Full- Empty Bits

This idea of special flag values has been extended in some research machines (al-
though mostly in machines with physically distributed memory) to provide hard-
ware support for fine-grained producer-consumer synchronization. A bit, called a
full-empty bit, is associated with every word in memory, This bit is set when the word
is “full” with newly produced data (i.e., on a write) and unset when the word is
“emptied” by a processor consuming that data (i.e., on a read). Word-level producer-
consumer synchronization is then accomplished as follows. When the producer pro-
cess wants to write the location, it does so only if the full-empty bit is set to empty
and then leaves the bit set to full. The consumer reads the location only if the bit is
Full and then sets it to empty. Hardware preserves the atomicity of the read or write

5.5.5

5.3 Synchronization 353

with the manipulation of the full-empty bit. Given full-empty hits, our preceding ex-
ample can be written without the spin loop as

F‘1 Ps

g = L) eetats B o= gilal s o Muse atf

Full-empty bits raise concerns about [lexibility. For example, they do not lend
themselves easily to single-producer-multiple-consumer synchrenization or to the
case where a producer updates a value multiple times before a consumer consumes
it, Also, should all reads and writes use full-empty bits or only those that are com-
piled down to special instructions? The latter method requires support in the lan-
guage and compiler, but the former is too restrictive in imposing synchronization on
all accesses to a location (for example, it does not allow asynchronous relaxation in
iterative equation solvers; see Chapter 2). For these reasons, and the hardware cost,
full-empty bits have not found favor in most commercial machines.

Interrupts

Another important kind of event is the interrupt conveyed from an /O device need-
ing attention to a processor. In a uniprocessor machine, there is no question where
the interrupt should go, but in an SMP any processor can potentially take the inter-
rupt. In addition, there are times when one processor may need to issue an interrupt
ta another. In early SMP designs, special hardware was provided to monitor the pri-
ority of the process on each processor and to deliver the IO interrupt to the proces-
sor running at lowest priority. Such measures proved to be of small value, and most
modern machines use simple arbitration strategies. In addition, a memory-mapped
interrupt control region usually exists, so at kernel level any processor can interrupt
any other by writing the interrupt information at the associated address.

Global (Barrier) Event Synchronization

Finally, let us examine barrier synchronization on a bus-based machine. Software
algorithms for barriers are typically implemented using locks, shared counters, and
Hags. Let us begin with a simple barrier among p processes, which is called a central-
ized barrier since it uses only a single lock, a single counter, and a single [lag,

Centralized Software Barrier

A shared counter maintains the number of processes that have arrived at the barrier
and is therefore incremented by every arriving process. These increments must be
mutually exclusive. After incrementing the counter, a process checks to see if the
counter equals p, that is, if it is the last process to have arrived. If not, it busy-waits

354 CHAPTER 5 Shared Memory Multiprocessors

on the flag associated with the barrier; if so, it writes the Hag to release the p — |
wailing processes, A simple attempt at a barrier algorithm may therefore look like

struct: bar_type {
int counter;
struct lock_type lock;
int flag = 0;

} bar_ name;

BARRIEE {(bar name, p)

i

LOCK (bar_name: lock) :

if dbar name.counter == 0)
bar_name.flag = 0; M*reset flag if first to reach®/

mycount = bar name.counter:+; {Fmycount is a private variable®/

UNLACK (bar _name. lock] ;

i imycount ==-p) Flast to arrive™/
bar_name.counter = 0; fresel counter for next barrier®/
bar name.flag = 1; [release waiting processes™/

}

else
while (bar name.flag == 0) {1}; /*busy-wait for release®/

'

Centralized Barrier with Sense Reversal

Can you sce a problem with the preceding barrier? There is one. 1t occurs when the
barrier operation is performed consecutively using the same barrier variable—for
example, if each processor executes the following code:

some computation...
BARRIER |bharl; p);

some more computation. ..
BARRIER {(barl, pl;

The first process to enter the barrier the second time reinitializes the barrier counter,
so that is not a problem. The problem is the flag. To exit the first barrier, processes
spin on the flag until it is set 1o 1. Processes that see the llag change to 1 will exit the
barrier, perform the subsequent computation, and enter the barrier again. However,
suppose one processor P, does not see the flag change [rom the first barrier before
others have reentered the barrier for the second time; for example, it gets swapped
out by the operating system because it has been spinning too long. When it is
swapped back in, it will continue to wait for the flag to change ro 1. In the mean-
time, other processes may have already entered the second instance of the barrier,
and the first of these will have reset the flag to 0. Now the [lag can only get set to 1

5.5 Synchronization 335

again when all p processes have registered at the new instance of the barrier; which
will never happen since P, will never leave the spin loop from the first barrier.

How can we solve this problem? What we need to do is prevent a process from
entering a new instance of a barrier uniil all processes have exited the previous
instance of the same barrier. One way is to use another counter to count the pro-
cesses that leave the barrier and to not let a process reset the lag in a new barrier
instance until this counter has turned to p for the previous instance. Flowewver,
manipulating this counter incurs further latency and contention. On the other hand,
with the current setup we cannot wait for all processes to reach the barrier before
resetting the flag to 0, since that is when we actually set the {lag o 1 for the release.
A better solution is to avoid explicitly resetting the flag value altogether and rather
have processes wail for the flag to obtain a dillerent release value in consecutive
instances of the barrier. For example, processes may wait lor the flag to turn to 1 in
one instance and to turn to 0 in the next instance. A private variable is used per pro-
cess to keep track of which value to wait [or in the current barrier instance. Since by
the semantics of a barrier a process cannot get more than one barrier ahead of
another, we only need two values (0 and 1) that we toggle between each time. Hence
we call this method sense reversal. Now, in the previous example, the flag need not
be reset when the first process reaches the barrier; rather, the process stuck in the
old barrier instance still waits for the llag to reach the old release value while pro-
cesses that enter the new instance wait for the other (toggled) release value. The
value of the flag is only changed once when all processes have reached the (new)
harrier instance, so it will not change belore processes stuck in the old instance see
it. Here is the code [or a simple barrier with sense reversal:

BARRIER (bar_ name, D)

local_sense = !l(local sense); M rogale private sense variable®/
LOCK (bar_name.lock);
mycount = bar_name.counter++; Mmycount is a private variable®/
if (bar_name.counter == pli | f=last to arrive®/
NLOCK (har_name. lock] ;
bar_name.counter = 0; {Freset counter for next barrier®/
bar_name.flag = local_sense /release waiting pracesses®/
b
alse |
UNLOGCK (bar_name. lock] ;
while (bar_name.flag != lecal_sense) (}: /busy-wait for
release™/
1

3

Mote that the lock is not released immediately after the increment of the counter
but only after the condition is evaluated; the reason for this is revealed in an exercise
(see Exercise 5.18). We now have a correct barrier that can be reused any number of
times consecutively. The remaining issue is perlormance, which we examine next.

356 cHArTER 3 Shared Memory Multiprocessors

(Note that the LOCK/UNLOCE protecting the increment of the counter can be
replaced more efficiently by a simple LL-5C or atomic increment operation.)

Performance

The major performance goals for & barrier are similar to those for locks. They
include the following:

m Low latency (small critical path length). The chain of dependent operations and
bus transactions needed for p processors to pass the barrier should be small.

m Low traffic. Since barriers are global operations, it is quite likely that many pro-
cessors will try to execute a barrier at the same time. The barrier algorithm
should reduce the total number of bus transactions (whether in the critical
path or not) and hence the possible contention.

m Scalability. Latency and traffic should increase slowly with the number of

Processors.

Low storage cost. We would, of course, like to keep the storage cost low.

B Fairness. We should ensure that the same processor does not always become
the last one to exit the barrier (or we may wanlt to preserve FIFO ordering).

In the centralized barrier described previously, each processor accesses the lock
once, hence the critical path length is at least proportional to p. Consider the bus
traffic. To complete its operation, a centralized barrier involving p processors per-
forms 2p bus transactions for processors to obtain the lock and increment the
counter, two bus transactions for the last processor to reset the counter and write the
release flag, and another p— 1 bus transactions to read the flag after it has been inval-
idated, Note that this is better than the traffic for even a test-and-test&eset lock to be
acquired by p processes because, in that case, each of the p releases causes an invali-
dation that results in O(p) processes trying to perform the test&set again, thus
resulting in O(p®) bus transactions. However, the contention resulting from these
competing bus transactions can be substantial if many processors arrive at the bar-
rier simultanecusly, so barriers can be expensive.

Improving Barrier Algorithms for a Bus

One part of the problem in the centralized barrier is that all processors contend for
the same lock and flag variables. To address this, we can construct barriers that
cause fewer processors to contend for the same variable. For example, processors
can signal their arrival at the barrier through a software combining tree (see Section
3.3.2). In a binary combining tree, for example, only two processors notify each
other of their arrival at each node of the tree, and only one of the two moves up to
participate at the next higher level of the tree. Thus, only two processors ever access
a given variable. In a distributed network with multiple parallel paths, such as those
found in scalable machines, a combining tree can perform much better than a cen-
tralized barrier since different pairs of processors can communicate with each other

5.5 Synchronization 357

—8— Cantralized
35 | —— Combining tree [~=======---
—b— Tournament
—B— Dissemination

|
1 2 3 4 5 b) (5]

Mumber of processors

FIGURE 5.31 Performance of some barriers on the 5Gl Challenge. Performance is
measured as average time per barrier over a loop of many consecutive barriers (with no
work or delays between them). The higher critical path latency of the combining tree bar-
rier hurts it an a bus, where it has no traffic and contention advantages.

in different parts of the network in parallel. However, with a centralized intercon-
nect like a bus, even though pairs of processors communicate through different vari-
ables, they all generate bus transactions and hence serialization and contention on
the same bus. Since a binary tree with p leaves has approximately 2p nodes, a com-
hining tree requires a similar total number of bus transactions to the centralized bar-
rier, It also has higher latency since, while it too requires O(p) serialized bus
transactions in all, even without bus serialization each processor must wait at least
log p steps to get [rom the leaves to the root of the tree, each with significant work.
The advantage of a combining tree for a bus is that it does not use locks but, rather,
simple read and write operations, which may compensate for its larger uncentended
latency if the number of processors on the bus is large. However, the simple central-
ized barrier performs quite well on a bus, as shown in Figure 5.31. Some of the other
barriers shown in the figure for illustration will be discussed along with tree barriers
in the context of scalable machines in Chapter 7.

Hardware Primitives

Since the centralized barrier uses locks and ordinary reads and writes, the hardware
primitives needed depend on which lock algorithms are used. 1f a machine does not
support atomic primitives well, combining tree barriers can be useful for hus-hased
machines as well.

A special bus primitive can be used to reduce the number of bus transactions for
read misses in the centralized barrier (as well as for highly contended locks in which

358 CHAPTER 3 Shared Memory Muliiprocessors

5.5.06

processors spin on the same variable). This optimization takes advantage of the fact
that all processors issue a read miss for the same value of the flag when they are
invalidated at the release. Instead of all processors issuing a separate read-miss bus
transaction, 4 processor can monitor the bus and abort its read miss belore putting it
on the bus, il it sees the response to a read miss to the same location (issued by
another processor that happened to get on the bus first), and simply take the return
value from the bus. In the best case, this piggybacking can reduce the number of
read-miss bus transactions from p (o 1.

Hardware Barriers

If a separate synchronization bus is provided, as discussed for locks, it can be used
to support barriers in hardware too. This takes the traffic and contention ol the
main system bus and can lead o higher-performance barriers. Conceptually, a single
wired-AND line is enough. A processor sets its input high when it reaches the bar-
rier and waits until the output goes high before it can proceed. (In practice, reusing
barriers requires that more than a single wire be used.) Such a separate hardware
mechanism for barriers can be particularly useful if the frequency ol barriers is very
high, as it may be in programs that are automatically parallelized by compilers at the
inner loop level and that need global synchronization after every innermost loop.
However, its value in practice is unclear, and it can be difficult to manage when only
a portion of the processors on the machine participate in the barrier. For example, it
is difficult to dynamically change the number of processors participating in the
barrier or to adapt the configuration of participating processors when processes are
migrated among processors by the operating system. Having multiple participating
processes running on the same processor also causes complications. Current bus-
based multiprocessors therefore do not tend to provide special hardware support but
build barriers in software out of locks and shared variables.

Synchronization Summary

Some bus-based machines have provided full hardware support for synchronization
operations such as locks and barriers. However, concerns about flexibility have led
most contemporary designers to provide support for only simple atomic operations
in hardware and to synthesize higher-level synchronization operations from them in
software libraries. The application programmer generally uses the libraries and can
be unaware ol the low-level atomic operations supported on the machine. The
atomic operations may be implemented either as single instructions or through
speculative read-write instruction pairs like load-locked and store-conditional. The
greater [lexibility of the latter is making them increasingly popular. We have already
seen some of the interplay between synchronization primitives, algorithms, and
architectural details. This interplay will be much more pronounced when we discuss
synchronization for scalable shared address space machines in the coming chapters.

5.6

5.6 Implications for Software 359

IMPLICATIONS FOR SOFTWARE

So far, we have looked at high-level architectural issues for bus-hased cache-
coherent multiprocessors and at how architectural and protocol trade-offs are
affected by workload characteristies. Let us now come full circle and examine how
the architectural characteristics ol these small-scale machines influence parallel soft-
ware. That is, instead of keeping the workload fixed and improving the machine or
its protocols, we keep the machine fixed and examine how to improve parallel pro-
grams. Improving synchronization algerithms to reduce traffic and latency was an
example of this, but let us look at the parallel programming process more generally.

The general techniques for load balance and inherent communication discussed
in Chapter 3 also apply to cache-coherent machines. In addition, one general parti-
tioning principle that is applicable across a wide range of computations on these ma-
chines is to try to assign computation such that only one processor writes a given set
of data, at least during a single computational phase. In many computations,
processors read one large shared data structure and write another, In Rayurace, for
example, processors read a scene and write an image. A choice is available of wheth-
er Lo partition the computation so the processors write disjoint pieces of the destina-
tion structure and read share the source structure, or read disjoint pieces of the
source structure and write share the same memory locations in the destination. All
other considerations being equal {such as load balance and programming complex-
ity}, it is usually advisable to avoid write sharing in these situations. Write sharing
not only causes invalidations and, hence, cache misses and trafhc, but if different
processes write the same words, it is very likely that the writes must be protected by
synchronization such as locks, which are even more expensive.

The structure of communication is not much of a variable: with a single central-
ized memory, little incentive exists to use explicit memory-to-memory data trans-
fers, so all communication is implicit through loads and stores that lead to the
transfer of cache blocks. Mapping is not an issue (other than to try to ensure that
processes migrate from one processor to another as little as possible) and is invari-
ably left to the operating system. The most interesting issues are managing data
locality and artifactual communication in the orchestration step, and in particular,
addressing temporal and spatial locality to reduce the number of cache misses and
hence reduce latency, trallic, and contention on the shared bus.

With main memory being centralized, temporal locality is exploited in the pro-
cessor caches. The specialization of the working set curve introduced in Chapter 3
for bus-hased machines is shown in Figure 5.32. All capacity-related misses go to
the same bus and memory and are about as expensive as coherence misses. The
other three kinds of misses will occur and generate bus trallic even with an infinite
cache. The major goal for temporal locality is to have working sets fit in the cache
hierarchy, and the techniques are the same as those discussed in Chapter 3,

360 cHarTER 5 Shared Memory Multiprocessors

First working set

Bus traffic

N

Capacity-generaled traffic
(including canflicts)

Second working set

| False sharing |°0 .:.;-,-.; NA T
L AL R T e .'..] L ".'\: . . '......

EEEAREEN .'.NI.".' T
|TruE' sh arln-:: I:rnherE'nt communic

Cnld start {n:u:rm ulsany) traffic

Cache size

FIGURE 5.32 Data traffic on the shared bus and its components as a function of
cache size. The points of inflection indicate the working sets of the program.

For spatial locality, a centralized memory makes data distribution and the granu-
larity of allocation in main memory irrelevant (only interleaving data among mem-
ory banks to reduce contention may be an issue, just as in uniprocessors). The ill
effects of poor spatial locality are fragmentation (i.e., letching unnecessary data on a
cache block) and false sharing. The reasons are that the granularity of communica-
tion and the granularity of coherence are both cache blocks, which are larger than a
word. The former causes fragmentation, and the latter causes false sharing. (We
assume here that techniques to eliminate false sharing like subblock dirty bits are
not used since they are not found in most real machines.) Let us examine some tech-
niques to alleviate these problems and effectively exploit the prefetching effects of
long cache blocks, as well as techniques to alleviate cache conflicts by better spatial
organization of data. Many such techniques can be found in a programmer’s “bag of
tricks.” The lollowing provides only a sampling of the most general ones.

B Assign tasks to reduce spatial interleaving of access patterns. It is desirable to
assign tasks such that each processor tends to access large contiguous chunks
of data. For example, if an array computation with n elements is to be divided
among p processors, it is better to divide it so that each processor accesses n/p
comtiguous elements rather than to use a linely interleaved assignment of ele-
ments, This increases spatial locality and reduces lalse sharing of cache blocks.
Of course, load halancing or other constraints may force us to do otherwise,

B Structure data to reduce spatial interleaving of access patterns. We saw an exam-
ple of this in the equation solver kernel in Chapter 3, when we used higher-
dimensional arrays to keep a processor’s partition of an array contiguous in the

5.6 Implications for Software 381

Cache block Contiguity in memory layout ache block is

straddles partition BYT =
boundary \ within a partition

A
T
i

jl."l,l E _F;_'a_._

=5 O . 5 1 3 =

LTI

P P i 3 ELTEE R CEE a
|
o i I i----_;-—“
I 1
:ﬁ__ Bl | i | Hal |
| I} |! | E | 1
| ! WHE N I I -
] SN | | | |
R R o i B o | i I | r_ R | |
i o I g L | g I i
. I | 1 | I
(&) Two-dimensional array (b} Four-dimensional array

FIGURE 5.33 Reducing false sharing and fragmentation by using higher-dimensional arrays
to keep partitions contiguous in the address space. In the two-dimensional array case, cache
olocks straddling partition boundaries cause both fragmentation (2 miss brings in useless data from the
other processor’s partition) as well as false sharing. The four-dimensional array representation makes
partitions contiguous and alleviates these problems.

address space in order to allocate partitions locally at page granularity in phys-
ically distributed memory. This technique also helps reduce false sharing, frag-
mentation of data transfer, and conflict misses, as shown in Figures 5.33 and
5.34, all ol which cause misses and traffic on the bus. A cache block larger
than a single grid element may straddle a column-oriented partition boundary,
as shown in Figure 5.33(a). If the block is larger than two grid elements, it can
cause communication due to false sharing. This is easiest to see if we assume
for a moment that there is no inherent communication in the algorithm; for
example, suppose in each sweep a process simply adds a constant value o
each of its assigned grid elements instead of performing a nearest-neighbor
computation. Now, even a two-element (or larger) cache block straddling a
partition boundary would be [alse-shared as different processors wrote differ-
ent words on it. This would also cause fragmentation in communication, since
a process reading its own boundary element and missing on it would also ferch
other elements in the other processor’s partition that are on the same cache
block but that it does not need. The conflict-misses problem is explained in
Figure 5.34. The issue in all these cases is noncontiguity of partitions. Thus, a
single data structure transformation (as in Figure 5.33[b]) helps us solve all
our spatial locality—related problems in the equation solver kernel. Figure 5.35
illustrates the performance impact of using higher-dimensional arrays to repre-
sent grids or blocked matrices in the Ocean and LU applications on the 5GI

362 CHATPTER 5

Shared Memory Multiprocessors

Locations in subrows
s e ew and e

T map to the same entries
R T mndicesy in the cache.
R e S P3 P3 The rest of the processor’s
RgthiE Het b cache entries are not mapped
T = tor by locations in its partition
ot o R (but would have been mapped
Py P, E ﬁ;‘ cJEi) to by subrows [——
T Bone S in other processors’ partitions)
e Sl T S and are thus wasted.
T b4
Fa ‘ﬁi?;"‘“-:. .
—— ‘-l—“"“-—.___‘x-'”“-m.____
Cache
entries

FIGURE 5.34 Cache mapping conflicts caused by a two-dimensional array representationin a
direct-mapped cache. The figure shows the worst case, in which the separation between successive
subrows in a process’s partition (i.e., the size of a full row of the 2D array) is exactly equal to the size of
the cache, so consecutive subrows map directly on top of one another in the cache. Every subrow
accessed knocks the previous subrow out of the cache. In the next sweep over its partition, the proces-
sor will miss an every cache block it references, even if the cache as a whole is large enough to fit a
whole partition. Many intermediately poor cases may be encountered depending on grid size, number

of processors, and
allocated arrays to

cache size. Since the cache size in bytes is a power of two, sizing the dimensions of
be powers of twe is discouraged.

Challenge. The impact of conflicts and false sharing on uniprocessor and mul-
tiprocessor performance is clear.

Beware of conflict misses. In illustrating conflict misses in the grid solver,
Figure 5.34 shows how allocating power-of-two-sized arrays can cause patho-
logical cache conflict problems since the cache size is also a power aof two.
[iven il the logical size of the array that the application needs is a power ol
two, it is often useful to allocate a larger array that is not a power of two and
then access only the amount needed. However, this strategy can interlere with
allocating data at page granularity (also a power of two) in machines with
physically distributed memory, so we may have to be careful, The cache map-
ping conflicts in this example are within a single data structure that is accessed
in a predictable manner and can thus be alleviated in a structured way. Map-
ping conflicts are more difficult to avoid when they happen across dilferent
major data structures (e.g., across different grids used by the Ocean applica-
tion}, where they may have to be alleviated by ad hoc padding and alignment.
However, in a shared address space they are particularly insidious when they
occur on seemingly harmless shared variables or data structures that a pro-
grammer is not inclined to think about. For example, a [requently accessed
pointer to an important data structure may conflict in a direct-mapped cache

5.0 Implications for Soltware 363

—+— n =130, 4D array —8— n=1,024, 4D array
—B— n =514, 4D array —— n =2048, 4D array
16 = | —— pn =130, 2D array 16 - | —&— n=1,024, 2D array
== n =514, 2D array =¥— n=2,048, 2D array
@ —— p=130,5trip ["7""TF
-
12
e [y A e e e
=
=
i
o B8
L1
] P s P A, I e
4
2 For = e e L e e e e e e e o
ﬂ | 1 L | | 1 I
1 3 5 7 9 11 13 15 1 3 5 7 g 11 13 15
Mumber of processors Number of processors
(a) Ocean b LLI

FIGURE 5.35 Performance impact of using 4D versus 2D arrays to represent two-dimensional
grid or matrix data structures on the 5GI Challenge. Results are shown for different problem sizes
for the Ocean and LU applications. For Ocean, “strip” indicates partitioning into strips of contiguous
raws {in which 2D or 4D arrays don't matter), while all other cases assume partitioning into squarelika
blocks.

with a scalar variable that is also frequently accessed during the same compu-
tation, causing a lot of trafhic. Fortunately, such problems tend to be infrequent
in modern {large and set-associative) second-level caches. In general, efforts to
exploit locality can be wasted if attention is not paid to reducing conflict
misses,

m Use per-processor heaps. It is desirable to have separate heap regions for each
processor (or process) from which it allocates data dynamically. Otherwise, if a
program performs a lot of very small memory allocations, data used by differ-
ent processors may fall on the same cache block.

m Copy data to increase spatial locality. I a processor is going to reuse a set of data
that is otherwise allocated nencontiguously in the address space, it is often
desirable to make a contiguous copy of the data for that period to improve spa-
tial locality and reduce cache conllicts. Copying requires memory accesses and
has a cost, and it is not useful il the data is likely to reside in the cache anyway.
For example, in blocked matrix factorization or multiplication, with a 2D
array representation of the matrix a block is not contiguous in the address
space (just like a partition in the equation solver kernel). However, a 2D repre-
sentation makes programming easier. It is therefore not uncommon o use 2D

364

CHAPTER 5

Shared Memory Multiprocessors

arrays and to copy blocks used from another processor’s assigned set to a con-
tiguous temporary data structure, during the time of active use, to reduce con-
flict misses. The cost of copying must be traded off against the benefit of
reducing conllicts. In particle-based applications, when a particle moves from
one processor’s partition to another, spatial locality can be improved by mov-
ing the data for that particle so that the memory for all the particles assigned to
a processor remains contiguous and dense,

Pad arrays. Beginning parallel programmers often build arrays that are indexed
using the process identifier. For example, to keep track of load balance, an
array of p integers may he maintained, each entry of which records the number
of tasks completed by the corresponding processor. Since many elements of
such an array fall into a single cache block, and since these elements will be
updated quite often by different processors, false sharing becomes a severe
problem. One solution is to pad each entry with dummy words to make its size
as large as the cache hlock size (or, to make the code more robust, as large as
the largest cache block size on anticipated machines) and then align the array
1o a cache block, However, padding many large arrays can result in a signifi-
cant waste of memory, and it can cause fragmentation in data transfer. A better
strategy is Lo combine all such variables for a given process into a record, pad
the entire record to a cache block boundary, and create an array of such
records indexed by process identifier.

Determine how to organize arrays of records. Suppose we have a number of logi-
cal records to represent, such as the particles in the Barnes-Hut gravitational
simulaticn., Should we represent them as a single array ol n particles, each
entry being a record with fields like position, velocity, force, mass, and so on,
as in Figure 5.36(a)? Or should we represent them as separate arrays of size n,
one per field, as in Figure 5.36(b)? Programs written for vector machines such
as traditional CRAY computers tend to use a separate array (vector) for each
property or field of an object—in fact, even one per field per physical dimen-
sion (x, y, or z). When data is accessed by field, for example, the velocity of all
particles, this increases the performance of vector operations by making
accesses (o memory unit stride and hence reducing memory bank conflicts. In
cache-coherent multiprocessors, however, new trade-offs arise, and the best
way 1o organize data depends on the access patterns.

An interesting tension is illustrated by the parricle update and force calcula-
tion phases of the Barnes-Hut application. Consider the update phase first. A
processor teads and writes only the position and wvelocity fields of all its
assigned particles in this phase. However, its assigned particles are not contig-
uous in the shared particle array. Suppose there is one array of size n (number
of particles) per field or property. A double-precision three-dimensional posi-
tion (or velocity) is 24 bytes of data, so several of these may fit on a cache
block. Since adjacent particles in the array may be read and written by diller-
ent processors, false sharing can result. For this phase, it is better to have a sin-
gle array of particle records, where each record holds all information about
that particle; that is, to organize data by particle rather than by field.

5.6 Implications for Software 365

Particle O Particle 1 SRR Particle n

iFE i ll B < Vi "'rl" "'rr:' f}: 'Il:lr']l.?

X2 [Viel¥y Ve | il B

(a) Organization by particle

Partg. Party == Fart,

Position izl xlviz x| wlz
]

Velocity Vel ¥y l—ffll.{x Vi lvz Vil¥l¥z
|
|

Force fle D | el
]

(b} Crganization of particles by property or figld

FIGURE 5.36 Alternative data structure organizations for record-based data

MNow consider the lorce calculation phase of the same application. Suppose
we use an organization by particle rather than by field as above. To compute
the force on a particle, a processor reads the position values of many other par-
ticles and cells; it then updates the force components of its own particle. How-
ever, the force and position components of a particle may fall on the same
cache block. In updating force components, it may therefore invalidate the
position values of this particle from the caches of other processors that are
using and reusing them as a result of false sharing within a particle record,
even though the position values themselves are not being modified in this
phase of computation. In this case, it would probably be better if we were to
split the single array of particle records into two arrays of size n each, one for
positions (and perhaps other properties) and one for forces. The entries of the
force array themselves could be padded 1o reduce cross-particle [alse sharing,
In general, it is often beneficial to split arrays of records to separate fields that
are used in a read-only manner in a phase [rom the fields whose values are
updated in the same phase. Different situations or phases may dictate different
organizations for a data structure, and the ultimate decision depends on which
pattern or phase dominates performance.

m Align arrays. In conjunction with the preceding techniques, it is often neces-
sary to align arrays o cache block boundaries to achieve the full benefits. For
example, given a cache block size of 64 bytes and 8-byte fields, we may have
decided to maintain a single array of particle records with x, ¥, z, fx, [y, and fz.
To avoid cross-particle false sharing, we pad each 48-byte record with two
dummy 8-byte fields to fill a cache block. However, this wouldn't help if the

366 CHAPTER 5 Shared Memory Multiprocessors

3.7

array started at an offset of 32 bytes [rom a page in the virtual address space, as
this would mean that the data [or each particle would now span two cache
blocks, causing false sharing despite the padding. Even if a malloc call does
not return data aligned to pages or blocks, alignment is easy to achieve by sim-
ply allocating a little extra memory through malloc and then suitably adjust-
ing the starting address of the array.

As seen in the preceding list of techniques, the organization, alignment, and pad-
ding of data structures are all important for exploiting spatial locality and reducing
false sharing and conflict misses, Experienced programmers and even some compil-
ers use these techniques. As discussed in Chapter 3, these locality and artifactual
communication issues can be more important to performance than inherent com-
munication and can cause us to revisit our algorithmic partitioning decisions for an
application (recall strip versus block partitioning lor the simple equation salver as
discussed in Section 3.1.2, and see Figure 3.35[al).

CONCLUDING REMARKS

Symmetric shared memory multiprocessors are a natural extension of workstations
and personal computers. A sequential application can run totally unchanged and yet
benefit in performance by obtaining a larger fraction ol a processor’s time and by tak-
ing advantage ol the large amount of shared main memory and /O capacity typically
available on such machines. Parallel applications are also relatively easy to bring up,
as all shared data is directly accessible from all processors using ordinary loads and
stores. Gradual parallelization is possible by selectively parallelizing computation-
ally intensive portions of a sequential application, subject to the dictates of Amdahl’s
Law. For multiprogrammed workloads, a key advantage is the fine granularity at
which resources can be shared among application processes and by the operating
system, which can thus easily export a familiar, single-system image to each applica-
tion. This is true both temporally, in that processors and/or main memory pages can
frequently be reallocated among different application processes, and physically, in
that main memory may be split among applications at the granularity of individual
pages. Because of these appealing features, all major vendors of computer systems,
friom workstation suppliers like Sun, Silicon Graphics, Hewlett-Packard, Digital, and
IBM to personal computer suppliers like Intel and Compag, are producing and sell-
ing such machines. In fact, for some of the large workstation vendors, these multi-
processors constitute a substantial fraction of their revenue stream and a still larger
fraction of their net profits because of the higher margins on these higher-end
machines.

The key technical challenge in the design of symmetric multiprocessors is the
organization and implementation of the shared memory system, which is used for
communication between processors in addition to handling all regular memory
accesses. Most small-scale parallel machines found today use the system bus as the
interconnect for communication, and the challenge then becomes how to maintain
coherency of the shared data in the private caches of the processors. A large variety

5.8

2

il

-

1

5.8 Exercises 367

ol options are available to the system architect, including the set of states associated
with cache blocks, the bus transactions and actions used. the choice of cache block
size, and whether updates or invalidations are used. The key task of the system
architect is o make choices that will both perform well on the data sharing patterns
expected in workloads and make the task of implementation easier. Another chal-
lenge is the design and implementation of efficient synchronization techniques that
are both high perlormance and flexible.

As processor, memory system, integrated circuit, and packaging technology con-
tinue to make rapid progress, questions arise about the future of small-scale mulri-
processors and the importance of various design issues. We can expect small-scale
multiprocessors to continue to be important for ar least three reasons. The first is
that thev offer an attractive cost-performance combination. Individuals or small
groups of people can easily allord them [or use as a shared resource or as a compute
or file server. Second, microprocessors today are designed to be multiprocessor-
ready, and designers are aware of future microprocessor trends when they begin to
design the next-generation multiprocessor, so there is no longer a significant time
lag berween the latest microprocessor and its incorporation in a multiprocessor, As
we saw in Chapter 1, the Intel Pentium Pro processor line plugs “gluelessly” into a
shared bus. The third reason is that the essential soltware technology for parallel
machines (compilers, operating systems, programming languages) is maturing rap-
idly for small-scale shared memory machines. For example, most computer system
vendors have efficient parallel versions of their operating systems ready for their
bus-based multiprocessors. As levels of integration increase, multiple processors on
a chip become attractive. While the optimal design points may change, the design
issues that we have explored in this chapter are fundamental and will remain impor-
tant with progress in technology.

This chapter has explored many of the key design aspects of bus-based multipro-
cessors at the “logical” level, involving cache block state transitions and complete
(atomic) bus transactions. At this level, the design and implementation appears to
be a rather simple extension of traditional cache contrellers. However, much of the
difficulty in such designs and many of the opportunities for optimization and inno-
vation occur at the next lower level of protocol design and ar the more detailed
“physical” level. The next chapter goes down a level deeper into the design and
organization of bus-based cache-coherent multiprocessors and some of their natural
generalizations.

EXERCISES

Is the cache coherence problem an issue with processor registers? Given that regis-
ters are not kept consistent in hardware, how do current systems guarantee the
desired semantics of a program?

Consider the following graph indicating the miss rate of an application as a func-
tion of cache block size on a multiprocessor. As might be expected, the curve has a
U-shaped appearance. Consider the three points A, B, and C on the curve. Indicate

