5.6

5.6 Implications for Software 359

IMPLICATIONS FOR SOFTWARE

So far, we have looked at high-level architectural issues for bus-hased cache-
coherent multiprocessors and at how architectural and protocol trade-offs are
affected by workload characteristies. Let us now come full circle and examine how
the architectural characteristics ol these small-scale machines influence parallel soft-
ware. That is, instead of keeping the workload fixed and improving the machine or
its protocols, we keep the machine fixed and examine how to improve parallel pro-
grams. Improving synchronization algerithms to reduce traffic and latency was an
example of this, but let us look at the parallel programming process more generally.

The general techniques for load balance and inherent communication discussed
in Chapter 3 also apply to cache-coherent machines. In addition, one general parti-
tioning principle that is applicable across a wide range of computations on these ma-
chines is to try to assign computation such that only one processor writes a given set
of data, at least during a single computational phase. In many computations,
processors read one large shared data structure and write another, In Rayurace, for
example, processors read a scene and write an image. A choice is available of wheth-
er Lo partition the computation so the processors write disjoint pieces of the destina-
tion structure and read share the source structure, or read disjoint pieces of the
source structure and write share the same memory locations in the destination. All
other considerations being equal {such as load balance and programming complex-
ity}, it is usually advisable to avoid write sharing in these situations. Write sharing
not only causes invalidations and, hence, cache misses and trafhc, but if different
processes write the same words, it is very likely that the writes must be protected by
synchronization such as locks, which are even more expensive.

The structure of communication is not much of a variable: with a single central-
ized memory, little incentive exists to use explicit memory-to-memory data trans-
fers, so all communication is implicit through loads and stores that lead to the
transfer of cache blocks. Mapping is not an issue (other than to try to ensure that
processes migrate from one processor to another as little as possible) and is invari-
ably left to the operating system. The most interesting issues are managing data
locality and artifactual communication in the orchestration step, and in particular,
addressing temporal and spatial locality to reduce the number of cache misses and
hence reduce latency, trallic, and contention on the shared bus.

With main memory being centralized, temporal locality is exploited in the pro-
cessor caches. The specialization of the working set curve introduced in Chapter 3
for bus-hased machines is shown in Figure 5.32. All capacity-related misses go to
the same bus and memory and are about as expensive as coherence misses. The
other three kinds of misses will occur and generate bus trallic even with an infinite
cache. The major goal for temporal locality is to have working sets fit in the cache
hierarchy, and the techniques are the same as those discussed in Chapter 3,

360 cHarTER 5 Shared Memory Multiprocessors

First working set

Bus traffic

N

Capacity-generaled traffic
(including canflicts)

Second working set

| False sharing |°0 .:.;-,-.; NA T
L AL R T e .'..] L ".'\: . . '......

EEEAREEN .'.NI.".' T
|TruE' sh arln-:: I:rnherE'nt communic

Cnld start {n:u:rm ulsany) traffic

Cache size

FIGURE 5.32 Data traffic on the shared bus and its components as a function of
cache size. The points of inflection indicate the working sets of the program.

For spatial locality, a centralized memory makes data distribution and the granu-
larity of allocation in main memory irrelevant (only interleaving data among mem-
ory banks to reduce contention may be an issue, just as in uniprocessors). The ill
effects of poor spatial locality are fragmentation (i.e., letching unnecessary data on a
cache block) and false sharing. The reasons are that the granularity of communica-
tion and the granularity of coherence are both cache blocks, which are larger than a
word. The former causes fragmentation, and the latter causes false sharing. (We
assume here that techniques to eliminate false sharing like subblock dirty bits are
not used since they are not found in most real machines.) Let us examine some tech-
niques to alleviate these problems and effectively exploit the prefetching effects of
long cache blocks, as well as techniques to alleviate cache conflicts by better spatial
organization of data. Many such techniques can be found in a programmer’s “bag of
tricks.” The lollowing provides only a sampling of the most general ones.

B Assign tasks to reduce spatial interleaving of access patterns. It is desirable to
assign tasks such that each processor tends to access large contiguous chunks
of data. For example, if an array computation with n elements is to be divided
among p processors, it is better to divide it so that each processor accesses n/p
comtiguous elements rather than to use a linely interleaved assignment of ele-
ments, This increases spatial locality and reduces lalse sharing of cache blocks.
Of course, load halancing or other constraints may force us to do otherwise,

B Structure data to reduce spatial interleaving of access patterns. We saw an exam-
ple of this in the equation solver kernel in Chapter 3, when we used higher-
dimensional arrays to keep a processor’s partition of an array contiguous in the

5.6 Implications for Software 381

Cache block Contiguity in memory layout ache block is

straddles partition BYT =
boundary \ within a partition

A
T
i

jl."l,l E _F;_'a_._

=5 O . 5 1 3 =

LTI

P P i 3 ELTEE R CEE a
|
o i I i----_;-—“
I 1
:ﬁ__ Bl | i | Hal |
| I} |! | E | 1
| ! WHE N I I -
] SN | | | |
R R o i B o | i I | r_ R | |
i o I g L | g I i
. I | 1 | I
(&) Two-dimensional array (b} Four-dimensional array

FIGURE 5.33 Reducing false sharing and fragmentation by using higher-dimensional arrays
to keep partitions contiguous in the address space. In the two-dimensional array case, cache
olocks straddling partition boundaries cause both fragmentation (2 miss brings in useless data from the
other processor’s partition) as well as false sharing. The four-dimensional array representation makes
partitions contiguous and alleviates these problems.

address space in order to allocate partitions locally at page granularity in phys-
ically distributed memory. This technique also helps reduce false sharing, frag-
mentation of data transfer, and conflict misses, as shown in Figures 5.33 and
5.34, all ol which cause misses and traffic on the bus. A cache block larger
than a single grid element may straddle a column-oriented partition boundary,
as shown in Figure 5.33(a). If the block is larger than two grid elements, it can
cause communication due to false sharing. This is easiest to see if we assume
for a moment that there is no inherent communication in the algorithm; for
example, suppose in each sweep a process simply adds a constant value o
each of its assigned grid elements instead of performing a nearest-neighbor
computation. Now, even a two-element (or larger) cache block straddling a
partition boundary would be [alse-shared as different processors wrote differ-
ent words on it. This would also cause fragmentation in communication, since
a process reading its own boundary element and missing on it would also ferch
other elements in the other processor’s partition that are on the same cache
block but that it does not need. The conflict-misses problem is explained in
Figure 5.34. The issue in all these cases is noncontiguity of partitions. Thus, a
single data structure transformation (as in Figure 5.33[b]) helps us solve all
our spatial locality—related problems in the equation solver kernel. Figure 5.35
illustrates the performance impact of using higher-dimensional arrays to repre-
sent grids or blocked matrices in the Ocean and LU applications on the 5GI

362 CHATPTER 5

Shared Memory Multiprocessors

Locations in subrows
s e ew and e

T map to the same entries
R T mndicesy in the cache.
R e S P3 P3 The rest of the processor’s
RgthiE Het b cache entries are not mapped
T = tor by locations in its partition
ot o R (but would have been mapped
Py P, E ﬁ;‘ cJEi) to by subrows [——
T Bone S in other processors’ partitions)
e Sl T S and are thus wasted.
T b4
Fa ‘ﬁi?;"‘“-:. .
—— ‘-l—“"“-—.___‘x-'”“-m.____
Cache
entries

FIGURE 5.34 Cache mapping conflicts caused by a two-dimensional array representationin a
direct-mapped cache. The figure shows the worst case, in which the separation between successive
subrows in a process’s partition (i.e., the size of a full row of the 2D array) is exactly equal to the size of
the cache, so consecutive subrows map directly on top of one another in the cache. Every subrow
accessed knocks the previous subrow out of the cache. In the next sweep over its partition, the proces-
sor will miss an every cache block it references, even if the cache as a whole is large enough to fit a
whole partition. Many intermediately poor cases may be encountered depending on grid size, number

of processors, and
allocated arrays to

cache size. Since the cache size in bytes is a power of two, sizing the dimensions of
be powers of twe is discouraged.

Challenge. The impact of conflicts and false sharing on uniprocessor and mul-
tiprocessor performance is clear.

Beware of conflict misses. In illustrating conflict misses in the grid solver,
Figure 5.34 shows how allocating power-of-two-sized arrays can cause patho-
logical cache conflict problems since the cache size is also a power aof two.
[iven il the logical size of the array that the application needs is a power ol
two, it is often useful to allocate a larger array that is not a power of two and
then access only the amount needed. However, this strategy can interlere with
allocating data at page granularity (also a power of two) in machines with
physically distributed memory, so we may have to be careful, The cache map-
ping conflicts in this example are within a single data structure that is accessed
in a predictable manner and can thus be alleviated in a structured way. Map-
ping conflicts are more difficult to avoid when they happen across dilferent
major data structures (e.g., across different grids used by the Ocean applica-
tion}, where they may have to be alleviated by ad hoc padding and alignment.
However, in a shared address space they are particularly insidious when they
occur on seemingly harmless shared variables or data structures that a pro-
grammer is not inclined to think about. For example, a [requently accessed
pointer to an important data structure may conflict in a direct-mapped cache

5.0 Implications for Soltware 363

—+— n =130, 4D array —8— n=1,024, 4D array
—B— n =514, 4D array —— n =2048, 4D array
16 = | —— pn =130, 2D array 16 - | —&— n=1,024, 2D array
== n =514, 2D array =¥— n=2,048, 2D array
@ —— p=130,5trip ["7""TF
-
12
e [y A e e e
=
=
i
o B8
L1
] P s P A, I e
4
2 For = e e L e e e e e e e o
ﬂ | 1 L | | 1 I
1 3 5 7 9 11 13 15 1 3 5 7 g 11 13 15
Mumber of processors Number of processors
(a) Ocean b LLI

FIGURE 5.35 Performance impact of using 4D versus 2D arrays to represent two-dimensional
grid or matrix data structures on the 5GI Challenge. Results are shown for different problem sizes
for the Ocean and LU applications. For Ocean, “strip” indicates partitioning into strips of contiguous
raws {in which 2D or 4D arrays don't matter), while all other cases assume partitioning into squarelika
blocks.

with a scalar variable that is also frequently accessed during the same compu-
tation, causing a lot of trafhic. Fortunately, such problems tend to be infrequent
in modern {large and set-associative) second-level caches. In general, efforts to
exploit locality can be wasted if attention is not paid to reducing conflict
misses,

m Use per-processor heaps. It is desirable to have separate heap regions for each
processor (or process) from which it allocates data dynamically. Otherwise, if a
program performs a lot of very small memory allocations, data used by differ-
ent processors may fall on the same cache block.

m Copy data to increase spatial locality. I a processor is going to reuse a set of data
that is otherwise allocated nencontiguously in the address space, it is often
desirable to make a contiguous copy of the data for that period to improve spa-
tial locality and reduce cache conllicts. Copying requires memory accesses and
has a cost, and it is not useful il the data is likely to reside in the cache anyway.
For example, in blocked matrix factorization or multiplication, with a 2D
array representation of the matrix a block is not contiguous in the address
space (just like a partition in the equation solver kernel). However, a 2D repre-
sentation makes programming easier. It is therefore not uncommon o use 2D

364

CHAPTER 5

Shared Memory Multiprocessors

arrays and to copy blocks used from another processor’s assigned set to a con-
tiguous temporary data structure, during the time of active use, to reduce con-
flict misses. The cost of copying must be traded off against the benefit of
reducing conllicts. In particle-based applications, when a particle moves from
one processor’s partition to another, spatial locality can be improved by mov-
ing the data for that particle so that the memory for all the particles assigned to
a processor remains contiguous and dense,

Pad arrays. Beginning parallel programmers often build arrays that are indexed
using the process identifier. For example, to keep track of load balance, an
array of p integers may he maintained, each entry of which records the number
of tasks completed by the corresponding processor. Since many elements of
such an array fall into a single cache block, and since these elements will be
updated quite often by different processors, false sharing becomes a severe
problem. One solution is to pad each entry with dummy words to make its size
as large as the cache hlock size (or, to make the code more robust, as large as
the largest cache block size on anticipated machines) and then align the array
1o a cache block, However, padding many large arrays can result in a signifi-
cant waste of memory, and it can cause fragmentation in data transfer. A better
strategy is Lo combine all such variables for a given process into a record, pad
the entire record to a cache block boundary, and create an array of such
records indexed by process identifier.

Determine how to organize arrays of records. Suppose we have a number of logi-
cal records to represent, such as the particles in the Barnes-Hut gravitational
simulaticn., Should we represent them as a single array ol n particles, each
entry being a record with fields like position, velocity, force, mass, and so on,
as in Figure 5.36(a)? Or should we represent them as separate arrays of size n,
one per field, as in Figure 5.36(b)? Programs written for vector machines such
as traditional CRAY computers tend to use a separate array (vector) for each
property or field of an object—in fact, even one per field per physical dimen-
sion (x, y, or z). When data is accessed by field, for example, the velocity of all
particles, this increases the performance of vector operations by making
accesses (o memory unit stride and hence reducing memory bank conflicts. In
cache-coherent multiprocessors, however, new trade-offs arise, and the best
way 1o organize data depends on the access patterns.

An interesting tension is illustrated by the parricle update and force calcula-
tion phases of the Barnes-Hut application. Consider the update phase first. A
processor teads and writes only the position and wvelocity fields of all its
assigned particles in this phase. However, its assigned particles are not contig-
uous in the shared particle array. Suppose there is one array of size n (number
of particles) per field or property. A double-precision three-dimensional posi-
tion (or velocity) is 24 bytes of data, so several of these may fit on a cache
block. Since adjacent particles in the array may be read and written by diller-
ent processors, false sharing can result. For this phase, it is better to have a sin-
gle array of particle records, where each record holds all information about
that particle; that is, to organize data by particle rather than by field.

5.6 Implications for Software 365

Particle O Particle 1 SRR Particle n

iFE i ll B < Vi "'rl" "'rr:' f}: 'Il:lr']l.?

X2 [Viel¥y Ve | il B

(a) Organization by particle

Partg. Party == Fart,

Position izl xlviz x| wlz
]

Velocity Vel ¥y l—ffll.{x Vi lvz Vil¥l¥z
|
|

Force fle D | el
]

(b} Crganization of particles by property or figld

FIGURE 5.36 Alternative data structure organizations for record-based data

MNow consider the lorce calculation phase of the same application. Suppose
we use an organization by particle rather than by field as above. To compute
the force on a particle, a processor reads the position values of many other par-
ticles and cells; it then updates the force components of its own particle. How-
ever, the force and position components of a particle may fall on the same
cache block. In updating force components, it may therefore invalidate the
position values of this particle from the caches of other processors that are
using and reusing them as a result of false sharing within a particle record,
even though the position values themselves are not being modified in this
phase of computation. In this case, it would probably be better if we were to
split the single array of particle records into two arrays of size n each, one for
positions (and perhaps other properties) and one for forces. The entries of the
force array themselves could be padded 1o reduce cross-particle [alse sharing,
In general, it is often beneficial to split arrays of records to separate fields that
are used in a read-only manner in a phase [rom the fields whose values are
updated in the same phase. Different situations or phases may dictate different
organizations for a data structure, and the ultimate decision depends on which
pattern or phase dominates performance.

m Align arrays. In conjunction with the preceding techniques, it is often neces-
sary to align arrays o cache block boundaries to achieve the full benefits. For
example, given a cache block size of 64 bytes and 8-byte fields, we may have
decided to maintain a single array of particle records with x, ¥, z, fx, [y, and fz.
To avoid cross-particle false sharing, we pad each 48-byte record with two
dummy 8-byte fields to fill a cache block. However, this wouldn't help if the

366 CHAPTER 5 Shared Memory Multiprocessors

3.7

array started at an offset of 32 bytes [rom a page in the virtual address space, as
this would mean that the data [or each particle would now span two cache
blocks, causing false sharing despite the padding. Even if a malloc call does
not return data aligned to pages or blocks, alignment is easy to achieve by sim-
ply allocating a little extra memory through malloc and then suitably adjust-
ing the starting address of the array.

As seen in the preceding list of techniques, the organization, alignment, and pad-
ding of data structures are all important for exploiting spatial locality and reducing
false sharing and conflict misses, Experienced programmers and even some compil-
ers use these techniques. As discussed in Chapter 3, these locality and artifactual
communication issues can be more important to performance than inherent com-
munication and can cause us to revisit our algorithmic partitioning decisions for an
application (recall strip versus block partitioning lor the simple equation salver as
discussed in Section 3.1.2, and see Figure 3.35[al).

CONCLUDING REMARKS

Symmetric shared memory multiprocessors are a natural extension of workstations
and personal computers. A sequential application can run totally unchanged and yet
benefit in performance by obtaining a larger fraction ol a processor’s time and by tak-
ing advantage ol the large amount of shared main memory and /O capacity typically
available on such machines. Parallel applications are also relatively easy to bring up,
as all shared data is directly accessible from all processors using ordinary loads and
stores. Gradual parallelization is possible by selectively parallelizing computation-
ally intensive portions of a sequential application, subject to the dictates of Amdahl’s
Law. For multiprogrammed workloads, a key advantage is the fine granularity at
which resources can be shared among application processes and by the operating
system, which can thus easily export a familiar, single-system image to each applica-
tion. This is true both temporally, in that processors and/or main memory pages can
frequently be reallocated among different application processes, and physically, in
that main memory may be split among applications at the granularity of individual
pages. Because of these appealing features, all major vendors of computer systems,
friom workstation suppliers like Sun, Silicon Graphics, Hewlett-Packard, Digital, and
IBM to personal computer suppliers like Intel and Compag, are producing and sell-
ing such machines. In fact, for some of the large workstation vendors, these multi-
processors constitute a substantial fraction of their revenue stream and a still larger
fraction of their net profits because of the higher margins on these higher-end
machines.

The key technical challenge in the design of symmetric multiprocessors is the
organization and implementation of the shared memory system, which is used for
communication between processors in addition to handling all regular memory
accesses. Most small-scale parallel machines found today use the system bus as the
interconnect for communication, and the challenge then becomes how to maintain
coherency of the shared data in the private caches of the processors. A large variety

5.8

2

il

-

1

5.8 Exercises 367

ol options are available to the system architect, including the set of states associated
with cache blocks, the bus transactions and actions used. the choice of cache block
size, and whether updates or invalidations are used. The key task of the system
architect is o make choices that will both perform well on the data sharing patterns
expected in workloads and make the task of implementation easier. Another chal-
lenge is the design and implementation of efficient synchronization techniques that
are both high perlormance and flexible.

As processor, memory system, integrated circuit, and packaging technology con-
tinue to make rapid progress, questions arise about the future of small-scale mulri-
processors and the importance of various design issues. We can expect small-scale
multiprocessors to continue to be important for ar least three reasons. The first is
that thev offer an attractive cost-performance combination. Individuals or small
groups of people can easily allord them [or use as a shared resource or as a compute
or file server. Second, microprocessors today are designed to be multiprocessor-
ready, and designers are aware of future microprocessor trends when they begin to
design the next-generation multiprocessor, so there is no longer a significant time
lag berween the latest microprocessor and its incorporation in a multiprocessor, As
we saw in Chapter 1, the Intel Pentium Pro processor line plugs “gluelessly” into a
shared bus. The third reason is that the essential soltware technology for parallel
machines (compilers, operating systems, programming languages) is maturing rap-
idly for small-scale shared memory machines. For example, most computer system
vendors have efficient parallel versions of their operating systems ready for their
bus-based multiprocessors. As levels of integration increase, multiple processors on
a chip become attractive. While the optimal design points may change, the design
issues that we have explored in this chapter are fundamental and will remain impor-
tant with progress in technology.

This chapter has explored many of the key design aspects of bus-based multipro-
cessors at the “logical” level, involving cache block state transitions and complete
(atomic) bus transactions. At this level, the design and implementation appears to
be a rather simple extension of traditional cache contrellers. However, much of the
difficulty in such designs and many of the opportunities for optimization and inno-
vation occur at the next lower level of protocol design and ar the more detailed
“physical” level. The next chapter goes down a level deeper into the design and
organization of bus-based cache-coherent multiprocessors and some of their natural
generalizations.

EXERCISES

Is the cache coherence problem an issue with processor registers? Given that regis-
ters are not kept consistent in hardware, how do current systems guarantee the
desired semantics of a program?

Consider the following graph indicating the miss rate of an application as a func-
tion of cache block size on a multiprocessor. As might be expected, the curve has a
U-shaped appearance. Consider the three points A, B, and C on the curve. Indicate

