334 cuarTeEk 3 Shared Memory Multiprocessors

3.5

Having discussed how 1o keep data coherent, let us now consider how synchroni-
zation is managed in bus-based multiprocessors.

SYNCHRONIZATION

A critical interplay of hardwaure and soltware in multiprocessors arises in supporting
synchronization operations: mutual exclusion, point-to-point events, and global
events, There has been considerable debate over the years about how much hard-
ware support and exactly what hardware primitives should be provided to suppor
these synchronization operations. The conclusions have changed {rom time to time
with changes in technology and design style. Hardware support has the advantage of
speed, but moving lunclionality o software has the advantages of cost, flexibility,
and adaptability o different situations. The classic works of Dijkstra (1965} and
Knuth (1966} show that it is passible to provide mutual exclusion with only atomic
read and wrile operations (assuming a sequentially consistent memory). However,
all practical synchronization methods rely on hardware support for some sort of
atomic read-modify-write operation, in which the value of a memory location is
ensured 1o be read, modified, and written back atomically without intervening
accesses 10 the location by ather processors. Simple or sophisticated synchroniza-
tion algorithms can be built in software using these primitives,

The history of instruction sets offers a glimpse into the evolving hardware sup-
port for synchronization. One of the key instruction sel enhancements in the 1BM
370 was the inclusion of a sophisticated atomic instruction, the compareswap
instruction, 0 support synchronization in concurrent Progranuming on uniproces-
sor or multiprocessor systems, The compare&rswap compares the value in a memory
location with the value in a specified register and, if they are equal, swaps the value
in the memory location with the value in a second specilied register. The Intel x86
allows any instruction to be prefixed with a lock modifier to make it atomic; since
the source and destination operands are memory locations, much ol the instruction
set can be used 1o implement various atomic operations involving even more than
one memory location. Advocates of high-level language architecture have proposed
that the user-level synchronization operations, such as locks and barriers, should be
supported directly ac the machine level, not just atomic read-modify-write
primitives; that is, the synchronization “algorithm” itsell should be implemented in
hardware. This issue became very active during the reduced instruction set debates
since the operations that access memory were scaled back to simple loads and stores
with only one memory operand. The Sparc approach was 1o provide atomic opera-
tions involving a register or registers and a memory location using a simple swap
{atomically swapping the contenis of the specilied register and memory location)
and a compare&swap, MIPS left off atomic primitives in the early instruction sets, as
did the 1BM Power architecture used in the RS6000. The primitive that was eventu-
ally incorporated in MIPS was a novel combination of a special load and a condi-
tional store, described later in this section, which allows a variety of higher-level
read-modily-write operations to be constructed withour requiring the design 1o
implement them all. In essence, the pair of instructions can be used instead of a sin-

5.5.1

5.5 Synchronization 335

gle instruction to implement atomic exchange or more complex atomic operations,
This approach was later incorporated into the PowerPC and DEC Alpha architec-
tures and is now quite popular. As we will see, synchronization brings to light a rich
[amily of trade-olls across the layers of communication architecture. Nat only can a
spectrum of high-level operations and low-level primitives be supported by hard-
ware, but the synchronization requirements of applications vary substantially as
well,

The focus of this section is on how synchronization operations can be imple-
mented on a bus-based cache-coherent multiprocessor through a combination of
software algorithins and hardware primitives. In particular, it describes the imple-
mentation of mutual exclusion through lock-unlock pairs, point-to-point event syn-
chronization through flags, and global event synchronization through barriers. Let
us begin by considering the components of a synchronization event. This will make
it clear why supperting the high-level mutual exclusion and event operations di-
rectly in hardware is difficult and is likely to make the implementation too rigid,
Then, given that the hardware supports only the basic atomic operations, we can ex-
amine the role of the user soltware and system soltware in synchronization opera-
tions and then consider the hardware and soltware design trade-ofls in greater detail.

Components of a Synchronization Event
There are three major components of a synchronization event:

1. Acquire method: a method by which a process tries to acquire the right to the
synchronization (to enter the critical section or proceed past the event syn-
chronization).

2. Whiting algorithm: a method by which a process waits for a synchronization to
become available; for example, if a process tries to acquire a lock but the lock
is not free, or to proceed past an event but the event has not yet occurred.

3. Release method: a method for a process to enable other processes to proceed
past a synchronization event; for example, an implementation of the Unlock
operation, a method for the last process arriving at a barrier to release the
waiting processes, or a method lor notifying a process waiting at a point-to-
peoint event that the event has occurred.

The choice of waiting algorithm is quite independent of the type of synchroniza-
tion. There are two main choices; busy-waiting and blocking, Busy-waiting means
that the process spins in a loop that repeatedly tests for a variable 1o change its
value, A release of the synchronization event by another processor changes the value
of the variable, allowing the waiting process to proceed. Under blocking, the process
does not spin but simply blocks (suspends) itsell and releases the processor il it
finds that it needs to wait, It will be awakened and made ready to run again when
the release it was waiting for occurs, The trade-offs between busy-waiting and block-
ing are clear, Blocking has higher overhead since suspending and resuming a process
involves the operating system (and suspending and resuming a thread involves the
run-time system of a threads package), but it makes the processor available to other

336 cHAPTER 3 Shared Memaory Multiprocessors

3.3.2

threads or processes that have useful work to do, Busy-waiting avoids the cost of
suspension but consumes the processor and cache handwidch while waiting, Block-
ing is strictly more powerful than busy-waiting because, if the process or thread that
15 being waited upon is not allowed to run, the busy-wait will never end.’ Busy-
wailing is likely o be better when the waiting periad is short, whereas hlecking is
likely to be a better choice if the waiting period is long and if there are other pro-
cesses to run. Hybrid waiting methads can he used in which the process busy-waits
for a while in case the waiting period is short, and if the waiting perind exceeds a
certain threshold, the process blocks, allowing other processes to run (a two-phase
waiting algorithm).

The difficulty in implementing high-level synchronization operations in hard-
ware is not the acquire or the release compaonent but the waiting algorithm, Thus, it
makes sense to provide hardware suppaort for the eritical aspects of the acquire and
release methods and allow the three components to be glued together in software,
Iowever, subtle but very important hardware/software interactions remain in how
the spinning operation in the busy-wail component is realized.

Role of the User and System

Whao should he responsible [or implementing the internals of high-level synchroni-
zation operations such as locks and barriers? Typically, a programmer wants 1o use
locks, events, or even higher-level operations without having 1o worry about their
internal implementation. The implementation is lelt 1o the system, which must
decide how much hardware support to provide and how much of the functionality
to implement in software. Software synchronization algorithms wsing simple atomic
exchange primitives have been developed that approach the speed of Tull hardware
implementations, and the flexibility and hardware simplification they afford are very
attractive. As with ather aspects of svstem design, the urility of faster operations
with more hardware support depends on the frequency of the use of those opera-
lions in the applications. So, once again, the best answer will be determined by a
herter understanding of application behavior,

Software implementations of synchronization constructs are usually included in
system libraries. Good synchronization library design can be quite challenging. One
potential complication is that the same type of synchronization (lock, barrier), and
even the same synchronization variable, may be used at dillerent times under very
different run-time conditions. For example, a lock may be accessed with low conten-
tion {a small number of processors, maybe only one, trying 1o acquire the lock at a
time) or with high contention {(many processors trying to acquire the lock at the
same time). The different scenarios impose different performance requirements.

This problem ol denving respurces o the critical process or thread is ane thae s acooally made simpler
with moere processors, When the processes are time-shared ona single processor, strict busy-waiting
withour preemption is sure ta be a problem. 1 each process or thread has its own processor, it is poaran-
teed nat to be a problem. Multiprogramming environmems on a limited ser of processors may [all some-
where in between.

5.5.3

3.5 Synchronization 337

Under high contention, most processes will spend time waiting, and the key require-
ment of a lock algorithm is that it provide high lock-unlock transfer bandwidth;
under low contention, the key geal is to provide low latency for lock acquisition.
Different algorithms may satisfy different requirements better, so we must either find
a geod compromise algorithm or provide different algorithms for each type ol syn-
chronization [rom which a user can choose. If we are lucky, a flexible library can at
run time choose the best implementation for the situation at hand, Different syn-
chronization algorithms may also rely on different basic hardware primitives, so
some may be better suited to a particular machine than others, Under multiprogram-
ming, process scheduling and other resource interactions can change the synchroniza-
tion behavior of the processes in a parallel program. A more sophisticated algorithm
that addresses multiprogramming effects may provide better performance in practice
than a simple algorithm that has lower latency and higher bandwidth in the dedicated
case. All of these [actors make synchronization a critical point of hardware/software
Interaction.,

Mutual Exclusion

Mutual exclusion (lock-unlock) operations are implemented using a wide range of
algorithms: The simple algorithms tend to be fast when there is little contention for
the lock but inefficient under high contention, whereas sophisticated algorithms
that deal well with contention have a higher cost in the low-contention case. Alter a
brief discussion of hardware locks, this section describes the simplest software algo-
rithms for memory-based locks using atomic exchange instructions. Following this
is a discussion of how these simple algorithms can be implemented by using the spe-
cial load-locked and store-conditional instruction pairs to synthesize atomic
exchange, in place of atomic exchange instructions themselves, and what the trade-
offs are. Next, we will look at more sophisticated algerithms that can be built using
either method of implementing atomic operations,

Hardware Locks

Lock operations can be supported entirely in hardware, although this is not popular
on modern bus-based machines. One option that was used on some older machines
was to have a set of lock lines on the bus, each used for one lock at a time. The pro-
cessor holding the lock asserts the line, and processors waiting for the lock wait for
it to be released. A priority circuit determines which processor gets the lock next
when there are multiple requestors. However, this approach was quite inflexible
since only a limited number of locks can be in use at a time and the waiting algo-
rithm is fixed (typically a form of busy-wait with ahort after time-out). Usually, these
hardware locks were used only by the operating system for specific purposes, one of
which was to implement a larger set of soltware locks in memory. The CRAY Xmp
provided an interesting variant of this approach. A set of registers was shared among

338

CHAPTER 3 Shared Memory Multiprocessors

the processors, including a fixed collection of lock registers, Although the architee-
ture made it possible to assign lock registers 1w user processes, with only a small set
of such registers it was awkward to do so in a general-purpose setting, and in prac-
tice the lock registers too were used primarily to implement higher-lével locks in
IMETOY.

Simple Sofltware Lock Algorithms

Consider a lock operation used to provide atomicity for a eritical section of code,
For the acquire method, a process trving o obtain a lock must check that the lock is
[ree and, il it is, then claim ownership of the lock. The state of the lock can be stored
in a hinary variable, with 0 representing frec and 1 representing husy. A simple way
ol thinking about the lock acquire operation is that a process trying o abrain the
lock should check if the variable is 0 and if so set it to 1, thus marking the lock busy;
il the variable is 1 {lock is busy), then it should wait for the variable to turn to 0
using rhe waiting algorithm. An unlock operation should simply set the variable to 0
(the release method). The lollowing are assembly-level instructiens for this attempt
at a lock and unlock. (In our pseudo-assembly notation, the first eperand always
specifies the destination il there is one.)

lock: 1d register, location /fcopy location Lo vegister™/
cmp register, #0 fEcompare with 0%/
bnz lock £ not O, try again®/
gt location, #1 fstore |into location to mark it locked*/
riot Hreturn control to caller of lock™/

and

unlock: st loeation, #0 fwrite O to location ™!

ret fFretion control to caller®/

The problem with this lock, which is supposed to provide atomicity lor the erit-
cal section that lollows it, is that it needs (hut lacks) atomieity in its own implemen-
tation, To illustrate this, suppose that the lock variable was initially set w 0 and two
processes Py and Py execute the ahove assembly code implementations of the lock
operation. Process Py reads the value of the lock variable as 0 and thinks it is lree, so
it proceeds past the branch instruction. 1ts next step is to set the variable 1o |, mark-
ing the lock as busy, but before it can do this, process Py reads the variable as @,
thinks the leck is free, and passes the branch instruction too. We now have two pro-
cesses simultancously proceeding past the lock and entering the same critical scc-
tion, which is exactly what the lock was meant to avoid. Puuing the store
instruction just after the load instruction would not help either. The two-instruction
sequence—reading (testing) the lock variable to checls its state and writing (setting)
it 1o busy if it is free—is not atomic, and there is nothing to prevent these operations
in dilferent processes from being interleaved in time. What we need is a way Lo
atomically test the value ol a variable and set it to another value if the test succeeds
(i.e.. 1o atomically read and then conditionally modify a memory location) and then

3.9 Synchronization 339

to return whether the atomic sequence was executed successlully or not. One way to
provide this atomicity for user processes is to place the lock routine in the operating
system and access it through a system call, but this is expensive and leaves the ques-
tion ol how the locks are supported by the operating system itsell. Another option is
to utilize a hardware lock around the instruction sequence lor the lock routine, but
this requires hardware locks and tends te be slow on madern processors.

An efficient, general-purpose solution to the lock problem is to support an atomic
read-modify-write instruction in the processors instruction set. A typical approach
is to have an atomic exchange instruction: a value at a memory location specified by
the instruction is read into a register, and another value is stored into the location,
all in an atomic operation with no other accesses 1o that location allowed to inter-
vene. Many variants of this operation exist with varying degrees of flexibility in the
nature of the value that can be stored. A simple example that works lor mutual
exclusion is an atomic tesidset instruction. In this case, the value in the MEmory
location is read into a specilied register, and the constant 1 is stored into the location
atomically. The success of the test&rset is determined by examining the value in the
register, I it is O, the test&eset was successful. 10t is 1, it was not successful: the
value 1 written to memory by the tesi&&sel instruction is the same as was already
there, so no harm is done. (1 and 0 are the values typically used, though any other
constants might be used in their place.) Given such an instruction, with the mne-
monic t&s, we can write a lock and unlock in psendo-assembly language as fallows;

look - CL&s register, location
Mcopy location to reg, and set location to 1%/
bnz register, lock Mcompare old value weturmed with 0%/
Hifnot 0, i.e., lock already busy, so try again®™/

rel Hretwrn control to caller of lock™/
and
unlock:st location, #0 FEwrite O to location®/
rekt return control to caller®!

The lock implementation keeps trying to acquire the lock using testérset instruc-
tions until the testérset leaves zero in the register, indicating that the lock was free
when tested (in which case the test&set has set the lock variable to 1, thus acquiring
it). The unlock construct simply sets the location associated with the lock 1o 0, indi-
cating that the lock is now free and enabling a subsequent lock operation by any
process Lo succeed. A simple mutual exclusion construct has been implemented in
software, relying on the fact that the architecture supports an atomic test&rsel
Insiruction.

More sophisticated variants of such atomic instructions exist and, as we will see,
are used by different software synchronization algorithms. One example is a swap
instruction. Like a test@rset, this reads the value from the specified memory location
into the specihied register, but instead of writing a fixed constant into the memory
location, it writes whatever value was in the register to begin with. That is, it atomi-
cally exchanges or swaps the values in the memory location and the register. Clearly,

340

CHAPTER 5 Shared Memory Multiprocessors

we can implement a lock as before by replacing the test&set with a swap instruction
as long as we use the values 0 and 1 and ensure that the value in the register is 1
before the swap instruction is executed; the lock has succeeded if the value left in
the register by the swap instruction is 0.

Another example is the family of fetch&op instructions. A fetch&op instruction
also specifies a location and a register. [t atomically reads the current value of the
location into the register and writes the value {which has been obtained by applying
the operation specified by the letch&rop instruction to the current value of the
location) into the location. The simplest forms of fetch&op to implement are the
fetehEincrement and fetch&decrement instructions, which change the current value
by 1. A fetchéadd would take another operand, which is a register or value, to add
into the previous value ol the location. A more complex primitive is the
compare&swap operation. It takes two register operands and a memory location (i.e.,
it is a three-operand instruction, not commoenly supported by RISC architectures); it
compates the value in the location with the contents of the first register operand,
and, if the two are equal, it swaps the contents of the memory location with the con-
tents of the second register.

Performance of the Simple Lock

Figure 5.29 shows the perlormance of a simple testérset lock on the SGI Challenge ®
Performance is measured lor the following microbenchmark executed repeatedly in
a loop:

Tocels (L) ;
critical-section{c):
unlock (L) ;

where ¢ is a delay parameter that determines the size of the critical section (it is only
a delay in this case, with no real worlk done). The benchmark is configured so that
the same total number of lock calls are executed as the number of processors
increases, reflecting a situation where a fixed number of tasks must be dequeued
from a centralized task queue, independent of the number of processors. Perfor-
mance is measured as the time per lock transfer, that is, the cumulative time taken
by all processes executing the benchmark divided by the number of times the lock is
obtained. The cumulative time spent in the critical section itself (i.e., c times the
number of successful locks executed) is subtracted from the cumulative execution
time so that only the time for the lock transfers themselves (or any contention
caused by the lock operations) is obtained. All measurements are in microseconds.

In fact, the processor on the SGI Challenge, which is the machine for which synchronization perfor-
mance is presented In this chapter, does not provide a test&rset instruction. Rather, it uses alternative
primitives that will be described later in this section. For these experiments, a mechanism whose behav-
ior closely resembles that of testézset is synthesized from the available primitives. Results for real
testézset-based locks on older machines like the Scquent Symmetry can be found in the literature
(Granuke and Thallkar 1990; Mellor-Crummey and Scott 1991).

5.5 Synchronization 341

20 —

—b— Test&set, c=0

1g L) % Testdset, exponential backoff, ¢=364 | L

B Test&set, exponential backoff, c=0

Time (us)

Mumber of processors

FIGURE 5.29 Performance of the synthesized test&set locks with an increasing number of
competing processors on the 5Gl Challenge. The y-axis is the time per lock-unlock pair, excluding
the critical section of size ¢ microseconds. The irregular nature of the top curve is due to the timing
dependence of the contention effects caused.

The upper curve in the figure shows the time per lock transler with an increasing
number of processors when using the test&rset lock with a very small critical section
{ignore the curves with “backoff” in their labels for now). Ideally, we would like the
time per lock acquisition to be independent of the number of processors competing
for the lock, with only one uncontended bus wransaction per lock transfer, as shown
in the curve labeled “ideal.” However, the figure shows that performance clearly
degrades with an increasing number of processors.

The problem with the test&rset lock is the trallic generated during the waiting
method: every attempt to check whether the lock is [ree to be acquired, whether suc-
cessful or not, generates a write operation to the cache block that holds the lock
variable (since it uses a testdrset operation and writes the value to 1); since this
block is currently in the cache of some other processor (which wrote it last when
doing its testérset), a bus transaction is generated by each write to invalidate the
previous owner of the block, Thus, all processors put transactions on the bus repeat-

342 cuarrer 5 Shared Memory Multiprocessors

edly and consume precious bus bandwidth even during the waiting algorithm. The
resulting contention slows down the lock transfer considerably as the number of
processors, and hence the frequency of test&rsets and bus transactions, increases. It
impedes the progress af the processor releasing the lock and of the next processor
that actually acquires it. In reality, it would also impede the work done in the critical
section. The high degree of contention on the bus and the resulting timing depen-
dence of obtaining locks causes the henchmark timing to vary sharply across num-
bers of processors used and even across executions. The results shown are for a
particular, representative set of executions with different numbers of processors.

Enhancements to the Simple Lock Algorithm

We can do two simple things to alleviate this traffic. First, we can reduce the fre-
quency with which processes issue testérset instructions while waiting; second, we
can have processes busy-wait only with read operations so they do not generate
invalidations and misses until the lack is actually released. These two possibilities
are called the testéset lock with backoff and the test-and-testGset loch.

Test&Set Lock with Backoff The basic idea in backoll is for a process to insert a
delay after an unsuccessful attempt to acquire the lock. The delay between testézset
atternpts should not be too long; otherwise, processors might remain idle even when
the lock becomes free. But it should be long enough that traffic is substantially
reduced, A natural question is whether the delay amount should be fixed or variable.
Experimental results have shown that good performance is obtained by having the
delay vary “exponentially”; that is, the delay after the first attempt is a small con-
stant lt that increases geometrically, so that after the ith attempt, it is k x ', where ¢
is another constant. Such a lock is ealled a test&set lock with exponential backolf.
Figure 5,29 also shows the performance for the test&ser lock with backoff for two
different sizes of the critical section, using the starting value it for backoll that
appears to perform best. Performance improves but still does not scale very well
since there is still substantial taffic interfering with the release and acquire. Perlor-
mance results using backoff with a real testé&set instruction on older machines can
be found in the literature {Granuke and Thakkar 1990; Mellor-Crummey and Scott
1091}, See also Exercise 3.14, which discusses why the performance with a nonzero
critical section is worse than that with a null critical section when backoff is used.

Test-and-Test&Set Lock A more subtle change to the algorithm is to have it use in-
structions that do not generate as much bus traffic while busy-waiting. Processes
husy-wait by repeatedly reading with a standard load, not a testérset, the value of the
lack variable until it turns from 1 (locked) to O {unlocked). On a cache-coherent
machine, the reads can be performed in-cache by all processors, without generating
bus traffic, since each obtains a cached copy of the lock variable the first time it
reads it. When the lock is released, the cached copies of all waiting processes are in-
validated, and the next read of the variable by each process will generate a read miss.
The waiting processes will then find that the lock has been made available and only

5.5 Synchronization 343

then will each generate a test&set instruction to actually try to acquire the lock. One
of them will succeed in this acquire attempt, while the others will fail and return to
the read-based waiting method. The test-and-testérset lock substantially reduces bus
tratfic.

Performance Goals for Locks

Before examining more sophisticated lock algorithms and primitives, it is useful to
clearly articulale some performance goals for locks and to review how the locks
described here measure up. The goals include the following;

B Low latency. If a lock is free and no other processors are trying to acquire it at
the same time, a processor should be able to acquire it with low latency,

m Low traffic. If many or all processors try to acquire a lock at the same time,
they should be able to acquire the lock one afier the other with as little gener-
ation of traffic or bus transactions as possible. As discussed earlier, contention
due to high tratfic can slow down lock acquisitions as well as unrelated trans-
actions that compete for the bus (including in the critical section).

m Scalability. Neither latency nor traffic should scale quickly with the number of
processors used. However, since the number ol processors in a bus-based SMP
is not likely to be large, it is not asymptotic scalability that is important but
only scalability within the realistic range,

® Low storage cost. The information needed for a lock should be small and
should not scale quickly with the number of processors.

m Fairness. ldeally, processors should acquire a lock in the same order as their
requests are issued. Ar the least, starvation or substantial unfairness should he
avoided. Since starvation is usually unlikely, the importance of fairness mus
be traded off with its impact on performance.

Consider the simple atomic exchange or test&rset lock. Tt is very low latency il
the same processor acquires the lock repeatedly without any competition, since the
number of instructions executed is very small and the lock variable will stay in that
processor’s cache, However, we have seen thal it can generate a lot of bus traffic and
contention if many processors compete for the lock. The performance of the lack
scales poorly as the number of competing processors increases, The storage cost is
low (a single variable suffices) and does not scale with the number of processors.
The lock makes no attempt to be lair, and an unlucky processor can be starved out.
The test&set lock with backoff has the same uncontended latency as the simple
testérset lock, generates less trallic, is somewhat more scalable, takes no more stor-
age, and is no more fair. The test-and-lest&set lock has slightly higher uncontended
latency than the simple test&rset lock (it does a read in addition to a test&rset even
when there is no competition) but generates much less bus traffic and is more scal-
able, It too requires negligible storage and is not fair, (Exercise 5.12 asks vou 1o
count the number of bus transactions and the time required for the test-and-
test&eset type of lock in different scenarios.)

344

CHAPTER 3 Shared Memory T'vfllflipr-::-t‘l.*ﬁﬁl‘.lr!—‘.

In the test-and-test&set lock, since a test&rset operation (and hence a bus trans-
action) is only issued when a processor is notified that the lock is ready, and there-
after if it fails it busy-waits (spins) on a cached block, there is no need for backoff.
However, the lock does have the problem that when the lock is released, all waiting
processes rush out and perform their read misses and their testézset instructions at
about the same time. The bus transactions for the read misses may be combined in a
smart bus protocol; however, each of the test&rset instructions itself generates inval-
idations and subsequent misses, resulting in O(p?) bus tratfic for p processors to
acquire the lock once each. A random delay before issuing the test&rset could help to
stagger at least the test&rset instructions, but it would increase the latency to acquire
the lock in the uncontended case. While test-and-test&set was a major step forward
at its time, better hardware primitives and better algorithms have been designed to
alleviate its tralfic problem.

Improved Hardware Primitives: Load-Locked, Store-Conditional

In addition to spinning with reads rather than read-modify-writes, which test-and-
test&rset accomplishes, we would prefer that failed attempts to complete the read-
modify-write do not generate invalidations. It would also be useful to have a single
primitive that allows us to implement a range of atomic read-modify-write
operations—such as testérset, fetchézop, comparedrswap—rather than implement-
ing each with a separate instruction. One way to achieve both goals, increasingly
supported in modern microprocessors, is to use a pair ol special instructions rather
than a single read-write-modify instruction to implement atomic access to a variable
(let’s call it a synchronization variable). The first instruction, commonly called load-
loched or load-linked (LL), loads the synchronization variable into a register. 1t may
be followed by arbitrary instructions that manipulate the value in the register—that
is, the modify part of a read-modify-write. The last instruction of the sequence is the
second special instruction, called a store-conditional. 1t tries to write the register back
to the memaory location {the synchronization variable) if and only if no other proces-
sor has written to that location {or cache block) since this processor completed its
LL. Thus, if the store-conditional succeeds, it means that the load-locked, store-
conditional (LL-SC) pair has read, perhaps modified in between, and written back
the variable atomically. If the store-conditional detects that an intervening write has
occurred to the variable or cache block, it fails and does not even try to write the
value back (or generate any invalidations). This means that the atomic operation on
the variable has failed and must be retried starting from the LL. Success or failure of
the store-conditional is indicated by the condition codes or a return value, How the
LL and store-conditional are actually implemented will be discussed later; for now,
we are concerned with their semantics and performance.

Using LL-SC to implement atomic operations, the simple lock and unlock algo-
rithms can be written as follows, where regl is the register into which the current
value of the memory location is loaded and reg2 holds the value to be stored in the
memory location by this atomic exchange (reg2 could simply be the value 1 for a
lock attempt, as in a test&rset).

5.5 Synchronization 345

lock: 11° regl, location Hload-locked the location to reel #/

bnz regl, lock Mif location was locked (nonzera),
try again®/
s¢, location, reg2 {*store reg2 conditionally into location®/
beqz lock /*if store-conditional failed, start again®/
Tar Mreturn control to caller of lock*/
and

unleck: st location, #0 fEwrite O Lo location™/

ret HEreturn control to caller®/

Many processors may perlorm the LL at the same time, but only the first one that
manages to put its store-conditional on the bus will actually succeed in its store-
conditional. This processor will have succeeded in acquiring the lock, whereas the
others will have failed and will have to retry the LL-SC. Mote that the store-condi-
tional may fail either because it detects the occurrence of an intervening write before
even allempting to access the bus or because it attempts to get the bus but some
other processor’s store-conditional gets there first. Of course, if the location is 1
(nonzero) when a process does its LL, it will load 1 into regl and will retry the lock
starting from the LL without even attempting the store-conditional.

It is worth noting that the LL itsell is not a lock and the store-conditional itself is
not an unlock. For one thing, the completion of the LL itself does not imply obtain-
ing exclusive access; in fact, LL and store-conditional are used together to imple-
ment a lock operation. For another, even a successful LL-5C pair does not guarantee
that the instructions between them (if any) are executed atemically with respect to
those instructions on other processors, so in fact these instructions do not consti-
tute a critical section. All that a successful LL-5C guarantees is that no conflicting
writes to the synchronization variable itself intervene between the LL and store-
conditional, In fact, since the instructions hetween the LL and store-conditional are
executed unconditionally but should not be visible if the store-conditional fails, it is
important that they do not modify any other important state. Typically, these in-
structions manipulate only the register into which the synchronization variable is
loaded—for example, 1o perlorm the op part of a fetch&op—and do not modify any
other program variables (modification of this register is okay since the register will
be reloaded anyway by the LL in the next attempt). Microprocessor vendors that
support LL-5C explicitly encourage software writers to follow this guideline and, in
fact, often specify what instructions are possible to insert with a guarantee of cor-
rectness given their implementations of LL-5C. The number of instructions between
the LL and store-conditional should also be kept small to reduce the probability of
store-conditional [ailure due to an intervening write. Although the LL and store-
conditional do not constitute a lock-unlock pair, they can be used directly to imple-
ment certain atomic operations on shared data structures. For example, if the de-
sired function is a small operation on a globally shared variable (like a counter or
global sum}, it makes much more sense to implement it as the natural sequence
{LL, register op, store-conditional, test) than to build a lock and unlock around the
variable update.

346 CcHAPTER 3 Shared Memory Multiprocessors

Like the test-and-test&rset, the spin-lock built with LL-5C does not generate bus
traffic during the waiting algorithm il the LL indicates that the lock is currently held.
Better than the test-and-testérset, it also does not generate invalidations on a [ailed
attempt to obtain the lock (ie., a failed store-conditional). However, when the lock
is released, the processors spinning in a tight loop of lead-locked operations will
indeed miss on the location and rush out to the bus with read transactions, After
this, only a single invalidation will be generated for a given lock acquisition by the
processor whose store-conditional succeeds, but this will again invalidate all caches.
Traffic is reduced greatly from even the test-and-test&rset case and there are no read-
modify-write bus transactions, but tralfic still increases linearly with the number of
pracessors (i.e., O{p) bus transactions per look acquisition). Since spinning on a
locked location is already done through reads (load-locked operations), no analog of
a test-and-test&rset exists to [urther improve its performance. However, backoff can
be used between the LL and store-conditional to reduce bursty traffic.

The simple LL-5C lock is also low in latency and storage, but it is not a fair lock
and does not reduce trallic o a minimum. More advanced lock algorithms can be
used that provide both lairness and reduced traffc. They can be built using either
atomic read-modily-write instructions or atomic operations of equivalent semantics
synthesized with LL-5C, though ol course the traffic advaniages are different in the
two cases. Ler us consider two of these algorithms that are appropriate for bus-based
machines.

Advanced Lock Algorithms

Especially when using an atomic exchange instruction like test&set, instead of LL-
SC, to implement locks, it is desirable to have only one process actually attempt to
obtain the lock when it is released (rather than have them all rush out to do a
test&rset and issue invalidations as in all the preceding algorithms). It is even more
desirable to have only one process incur a read miss (even with LL-5C) when a lock
is released. The ticket lock accomplishes the first purpose: the array-based loch
accomplishes both goals but at a little cost in space. Unlike all the previous locks,
hoth these locks are [air and grant the lock to processars in FIFCQ order.

Ticket Lock The ticket lock operates just like the ticket system in the sandwich line at
a delicatessen or like the teller line at a bank. Every process wanting to acquire the
lock takes a ticket number and then busy-waits on a global now-serving num-
ber—like the number on the LED display that we watch intently in the sandwich
line—until the now-serving number equals the ticket number it obtained. To
release the lock, a process simply increments the now-serving number so that the
next waiting process can acquire the lock. The atomic primitive needed is a
fetch&increment, which a process uses when it lirst reaches the lock operation o
ohtain its ticket number from a shared counter. No atomic operation {e.g., test&zset)
is needed to actually abtain the lock upon a release since only the unique process
that has its ticket number equal to now-serving attempts to enter the critical sec-
tion when it sees the release. Thus, the acquire method is the ferch&increment, the

5.5 Synchronization 347

waiting algorithm is busy-waiting for now-serving to equal the ticket number, and
the release method is to increment now-serving. This lock has uncontended
latency about equal to the test-and-test&zset lock but generates much less tralTic.
Although every process does a fetch&inerement when it first arrives at the lock (pre-
sumably not every process at the same time), the testSzset attempts upon a release of
the lock are eliminated, which tend to be simultaneous and a lot more heavily con-
tended. The ticket lack also requires constant and small storage and is fair since pro-
cesses obtain the lock in the order of their fetch&inerement operations,

The fetch&increment needed by the ticket lock can be implemented with LL-5C.
However, since the simple LL-5C lock already avoids multiple processors issuing in-
validations in trying to acquire a lock after its release, there is not a large difference
in trafhe between the ticket lock and the simple LL-5C lock. (The simple LL-5C lock
is somewhat worse since in that case another invalidation and set of read misses oc-
cur when a processor succeeds in its store-conditional.) The key difference between
these two locks is fairness.

Like the simple LL-5C lock, the ticket lock still has a read traffic problem at a
release. The reason is that all processes spin on the same variable (now-serving).
When that variable is written at a release, all processors’ cached copies are inwvali-
dated, and they all incur a read miss. The read misses may be combined on some
buses hut can cause unnecessary wallic il the combining is unavailable or unsuccess-
ful. One way to reduce this bursty read-miss traffic is to introduce a form of hackofl.
We do not want 1o use exponential backoll because we do not want all Processors Lo
he backing ofl when the lock is released so that none tries to acquire it for a while. A
promising technique is to have each processor back off from trying to read the now-
serving counter by a duration proportional to when it expects its turn to actually
come—that is, by a duration proportional to the difference in its ticket number and
the now-serving value it last read. Alternatively, the array-based lock completely
climinates this extra read traffic upon a release by having every process spin on a
distinct location,

Array-Based Lock The idea here is to use a fetch&increment to obtain not a value
but a unique location on which to busy-wait. I there are p processes that might pos-
sibly compete [or a lock, then the lock data structure contains an array of p locations
that processes can spin on, ideally each on a separate memory block to avoid [alse
sharing. The acquire method then uses a feichérinerement operation to obtain the
next available location in this array (with wraparound), the waiting method spins on
this lacation, and the release method writes a value denoting “unlocked” 1o the nexi
location in the array (after the one that the releasing processor was itsell spinning
on). Only the processor that was spinning on that next location has its cache block
invalidated at the release; its consequent read miss tells it that it has obtained the
lock. As in the ticket lock, no test&rset is needed after the miss since only one pro-
cess is notified when the lock is released. This lock is clearly also FIFO and hence
[air. Tts uncontended latency is likely to be similar to that of the test-and-test&rset
lock (a fetch&rincrement followed by a read of the assigned array location), and it is
potentially more scalable than the ticket lock since only one processor incurs the

348

cHAPTER 5 Shared Memory Multiprocessors

read miss. For the same reason, unlike the ticket lock, it does not need any form of
backoff to reduce traffic. Its only drawback for a bus-based machine is that it uses
((p) space rather than O(1), but with both p and the proportionality constant being
small, this is usually not a very significant drawback. It has a potential drawback for
machines with distributed memory, but we shall discuss this drawback and lock
algorithms that overcome it in Chapter 7.

Performance

Let us briefly examine the performance of the different locks on the SGI Challenge,
as shown in Figure 5.30. All locks are implemented using LL-5C since the Challenge
provides only these and not atomic instructions. Results are shown for a somewhat
more parameterized version of the earlier microbenchmark code, in which a process
is allowed to insert a delay not only for the critical section but also between its
release of the lock and its next attempt to acquire it (as will happen in a real pro-
gram). That is, the code is a loop over the following body:

Tocki(L);

critical sectionic);:
unlock (L) ;

delay (d) ;

Let us consider three cases: (1 ¢=0,d=0;(2) ¢ =3.64 ys, d = 0; and (3} ¢ = 3.64
lis, d = 1.29 ps—called the null critical section case, the non-null critical section case,
and the non-null critical section with delay case, respectively. The delays ¢ and d are
inserted in the code as round numbers of processor eycles, which translates to these
microsecond numbers. Recall that in all cases, the delays ¢ and d (multiplied by the
number of lock acquisitions by each processor) are subtracted out of the total time,
which is supposed to measure only the total time taken for a certain number of lock
acquisitions and releases (see also Exercise 5.15),

Comsider the null critical section case. The first observation, comparing Figure
5.30 with Figure 5.29, is that all the other locks are indeed better than the test&rset
locks, as expected.” The second observation is that the simple LL-SC locks actually
seem to perform better than the more sophisticated ticket lock and array-based lock.
For these locks, which don't encounter as much contention as the tesi&set lock,
performance is largely determined by the number of bus transactions between a
release and a successful acquire, The reason that the LL-5C locks perform so well,
particularly at lower processor counts, is that they are not fair, and the unfairness is
exploited by architectural interactions! In particular, when a processor that releases
a lock with a write follows it immediately with the read (LL) [or its next acquire, its
read and the subsequent store-conditional are likely to succeed in its cache before

The test&rset is simulated using LL-5C as follows: every time a store-conditional fails, a write is per-
formed o another variable in the same cache block, causing invalidations as a testérset would. This
method of simulating testérser with LL-SC may lead 1o somewhat worse performance than a irue
testézset primitive, but it conveys the trend.

3.5 Synchronization 349

—8— Array-based

=M= LL-5C

—— LL-5C, exponential
—4— Ticket

—&— Ticket, proportional

Time (us)
Time {ps}
Time (us)

I"|IIIII||||| DIL']IIIIIIIII-

D \
TR e 1113 15 T i R e g TS |t ER o B P e e R 2 RN |
Number of processors Number of processors Number of processars
{a} Mull {c=0, d = 0} (b} Critical section {c = 3,64 s, d = 0) () Delay (¢ =3.64 ps, d = 1.29 us)

FIGURE 5.30 Performance of locks on the 5GI Challenge for three different scenarios

another processor can read the block across the bus. (The bias on the SGI Challenge
is actually more severe, since the releasing processor can satisfy its next read from its
write buller even belore the read exclusive corresponding to the releasing write gets
out on the bus.) Lock transfer is very quick, and performance is good, but the same
processor keeps acquiring the lock repeatedly. As the number of processors and the
competition for the bus increase, the likelihood of the last releasers store-condi-
tional successfully obtaining the bus decreases, and hence the likelihood of sell-
transiers decreases. In addition, bus trallic increases due to invalidations and read
misses, so the time per lock transier increases. Exponential backoff helps reduce the
burstiness of traffic and hence slows the rate of scaling, and a nonzero critical sec-
tion (¢ = 3.64, d = 0) helps this along further,

With delays both inside and outside the critical section (c = 3.64, d = 1.29), we
see the LL-5C lock not doing quite as well, even at low processor counts, This is
because a processor waits aller its release before trying to acquire the lock again,
making it much more likely that some other waiting processor will acquire the lock
before it. Self-transfers are unlikely, so lock transfers are slower even with two pro-
cessors. It is interesting that performance is particularly worse for the backeff case at
small processor counts when the delay d between unlock and lock is nonzero. This
is because it is quite likely that while the processor that just released the lock is wait-
ing for d to expire belore doing its next acquire, all the other processors are in a
backoff period and not even trying to acquire the lock. In the d = 0 case, the releas-
ing processor reacquires the lock right away, especially with a small number of pro-
cessors, Backoff must be used carefully for it to be successful.

350 cCHAPTER 3 Shared Memory Muliiprocessors

Consider the other locks, These are fair, so every lock transfer is to a different
processor and involves bus transactions in the critical path of the transler. Hence,
they all start off with a jump to about three bus transactions in the critical path per
lock transler even when two processors are used. Actual diflerences in time are due
to exactly which bus transactions are generated and how much of their latency can
be hidden [rom the processor. The ticket lock without backoll scales relatively
poorly: with all processors trying to read the now-serving counter, the expected
number of bus transactions between the release and the read by the correct proces-
sor is p/2, leading to the observed linear degradation in the lock transfer critical
path. With successiul proportional backoll, it is likely that the correct processor will
be the one te issue the read first after a release, so the time per transfer is constant
and does not scale with p. The array-based lock also scales well since only the cor-
recl processor issues a read,

The results illustrate the importance ol detailed architectural interactions in
determining the performance of locks. They also show that simple LL-5C locks per-
form quite well on buses that have sullicient bandwidth. On this particular machine,
performance for the unfair LL-5C lock becomes as bad as or a little worse than that
for the more sophisticated locks bevond 16 processors due to the higher traffic, but
not by much because bus bandwidth is quite high. When exponential backoll is
used to reduce tralfic, the simple LL-SC lock delivers the best average lock transfer
time in all cases. However, these results also illustrate the difficulty and the impor-
tance of sound experimental methodelogy in evaluating synchronization algorithms.
Mull critical sections display some interesting effects, but meaningful comparisons
depend on what the synchronization patterns look like in practice—in real applica-
tions. For example, the effect of critical section and delay size on the [requency of
self-transfers has a substantial impact on the comparison ol unfair locks with [air
locks. The nonrepresentativeness ol the null case in this regard is therefore an
important methodological consideration. An experiment to use LL-5C while guaran-
tecing round-robin acquisition among processors (faimess) by using an additional
variable showed performance very similar to that of the ticket lock, confirming that
unfairness and selt-transfers are indeed the reason for the better performance at low
processor counts. Especially if fairness is desired, the ticket lock with proportional
backoff and rthe array-based lock perform very well on bus-based machines.

Lock-Free, Nonblocking, and Wait-Free Synchronization

An additional set of performance concerns involving synchronization arises when
we consider that the machine running our parallel program is used in a multipro-
gramming environment, Other processes run lor periods of time or, even il we have
the machine to ourselves, background daemons run periodically, processes take page
faults, /O interrupts occur, and the process scheduler makes scheduling decisions
with limited information about the application requirements. These events can
cause the rate at which processes make progress to vary considerably. One important
question is how the parallel program as a whole slows down when one process is
slowed. With traditional locks, the problem can be serious: if a process holding a

3.3 Synchronization 357

lock stops or slows while in its critical section, all ether processes may have 1o wait.
This problem has received a good deal of attention in work on operating system
schedulers. In some cases, attempts are made to avoid preempling a process that is
holding a lock. Another line ol research takes the view that lock-based operations
are not very robust and should be avoided; [or example, il a process dies while hold-
ing a lock, other processes hang. It has been observed that most lock-unlock opera-
tions are used to support operations on a well-delined data structure or object that is
shared by several processes, for example, updating a shared counter or manipulating
a shared quene, These higher-level operations on the data structure can be imple-
mented directly using atomic primirives without actually using locks, as discussed
for LL-SC earlier.

A shared data structure is said to be lock-free if the operations defined on it do not
require murual exclusion over multiple instructions. If the operations on the data
structure guarantee that some process will complete its operation in a finite amount
of time, even if other processes halt, the data structure is nonblocking. 1 the opera-
tions can guarantee that every (nonfaulting) process will complete its operation in a
finite amount of time, the data structure is wait-free (Herlihy 1993). A body of liter-
ature is available that investigates the theory and practice of such data structures,
including requirements placed on the basic atomic primitives to implement them
{Herlihy 1988), general-purpose techniques for translating sequential operations Lo
nonblocking concurrent operations (Herlihy 1993}, specific useful lock-free data
structures (Valois 1995; Michael and Scott 1996), operating system implementations
{Massalin and Pu 1991; Greenwald and Cheriton 1996}, and propesals for architec-
tural support (Herlihy and Moss 1993). The basic approach is to implement updates
o a shared object by reading a portion of the object to make a copy, updating the
copy, and then performing an operation to commit the change only if no conflicting
updates have been made (reminiscent of LL-5C). As a simple example, consider a
shared counter. The counter is read into a register, a value is added to the register
copy, and the result is put in a second register. Next, a compare&swap updates the
shared counter only if its value is still the same as the copy. For more sophisticated,
linked-list data structures, a new element is created and then linked into the shared
list if the insert is still valid. These techniques serve 1o limit the window in which
the shared data structure is in an inconsistent state, so they improve robustness,
although it can be difficult to make them efficient.

Theoretical research has identified the properties of different atomic exchange
operations in terms of the time complexity of using them 1o implement synchro-
nized access to variables. In particular, it has been lound that simple operations like
testérset and fetch&rop are not powerlul enough to guarantee that the time taken by
a processor to access a synchronized variable is independent of the number of pro-
cessors, whereas more sophisticated atomic operations like compare&zswap and
swapping the values of two memory locations are powerful enough to make this
guarantee (Herlihy 1988).

Having discussed the options for mutual exclusion on bus-based machines, let us
move on to point-to-point, and then barrier, event synchronization.

352 cHarter 3 Shared Memory Multiprocessors

3.

B

4

Point-to-Point Event Synchronization

Point-to-point synchronization within a parallel program is often implemented by
husy-waiting on ordinary variables, using them as flags. If we want to use blocking
instead of busy-waiting, we can use semaphores, just as they are used in concurrent
programming and operating systems {Tanenbaum and Woodhull 1997).

Software Algorithms

Flags are control variables, typically used to communicate the occurrence of a syn-
chronization event rather than to transfer values, If two processes have a producer-
consumer relationship on the shared variable a, then a flag can be used 1o manage
the synchronization as follows:

Py P2
a = fix}; [Mseta* while [flag iz 0) do nething;
flag = 1; bi= gi{a); fusea

If we know that the variable a is initialized to a certain value (say, 0), which will be
changed to a new value we are interested in by this production event, then we can
use a itself as the synchronization [lag, as follows:

P P2

a = E(x); Mseta*f while (a is 0) do nothing;

b = gla); [ffusea*

This eliminates the need for a separate [lag variable and saves the write to and read
of that variable at perhaps some cost in readability and maintainability.

Hardware Support: Full- Empty Bits

This idea of special flag values has been extended in some research machines (al-
though mostly in machines with physically distributed memory) to provide hard-
ware support for fine-grained producer-consumer synchronization. A bit, called a
full-empty bit, is associated with every word in memory, This bit is set when the word
is “full” with newly produced data (i.e., on a write) and unset when the word is
“emptied” by a processor consuming that data (i.e., on a read). Word-level producer-
consumer synchronization is then accomplished as follows. When the producer pro-
cess wants to write the location, it does so only if the full-empty bit is set to empty
and then leaves the bit set to full. The consumer reads the location only if the bit is
Full and then sets it to empty. Hardware preserves the atomicity of the read or write

5.5.5

5.3 Synchronization 353

with the manipulation of the full-empty bit. Given full-empty hits, our preceding ex-
ample can be written without the spin loop as

F‘1 Ps

g = L) eetats B o= gilal s o Muse atf

Full-empty bits raise concerns about [lexibility. For example, they do not lend
themselves easily to single-producer-multiple-consumer synchrenization or to the
case where a producer updates a value multiple times before a consumer consumes
it, Also, should all reads and writes use full-empty bits or only those that are com-
piled down to special instructions? The latter method requires support in the lan-
guage and compiler, but the former is too restrictive in imposing synchronization on
all accesses to a location (for example, it does not allow asynchronous relaxation in
iterative equation solvers; see Chapter 2). For these reasons, and the hardware cost,
full-empty bits have not found favor in most commercial machines.

Interrupts

Another important kind of event is the interrupt conveyed from an /O device need-
ing attention to a processor. In a uniprocessor machine, there is no question where
the interrupt should go, but in an SMP any processor can potentially take the inter-
rupt. In addition, there are times when one processor may need to issue an interrupt
ta another. In early SMP designs, special hardware was provided to monitor the pri-
ority of the process on each processor and to deliver the IO interrupt to the proces-
sor running at lowest priority. Such measures proved to be of small value, and most
modern machines use simple arbitration strategies. In addition, a memory-mapped
interrupt control region usually exists, so at kernel level any processor can interrupt
any other by writing the interrupt information at the associated address.

Global (Barrier) Event Synchronization

Finally, let us examine barrier synchronization on a bus-based machine. Software
algorithms for barriers are typically implemented using locks, shared counters, and
Hags. Let us begin with a simple barrier among p processes, which is called a central-
ized barrier since it uses only a single lock, a single counter, and a single [lag,

Centralized Software Barrier

A shared counter maintains the number of processes that have arrived at the barrier
and is therefore incremented by every arriving process. These increments must be
mutually exclusive. After incrementing the counter, a process checks to see if the
counter equals p, that is, if it is the last process to have arrived. If not, it busy-waits

354 CHAPTER 5 Shared Memory Multiprocessors

on the flag associated with the barrier; if so, it writes the Hag to release the p — |
wailing processes, A simple attempt at a barrier algorithm may therefore look like

struct: bar_type {
int counter;
struct lock_type lock;
int flag = 0;

} bar_ name;

BARRIEE {(bar name, p)

i

LOCK (bar_name: lock) :

if dbar name.counter == 0)
bar_name.flag = 0; M*reset flag if first to reach®/

mycount = bar name.counter:+; {Fmycount is a private variable®/

UNLACK (bar _name. lock] ;

i imycount ==-p) Flast to arrive™/
bar_name.counter = 0; fresel counter for next barrier®/
bar name.flag = 1; [release waiting processes™/

}

else
while (bar name.flag == 0) {1}; /*busy-wait for release®/

'

Centralized Barrier with Sense Reversal

Can you sce a problem with the preceding barrier? There is one. 1t occurs when the
barrier operation is performed consecutively using the same barrier variable—for
example, if each processor executes the following code:

some computation...
BARRIER |bharl; p);

some more computation. ..
BARRIER {(barl, pl;

The first process to enter the barrier the second time reinitializes the barrier counter,
so that is not a problem. The problem is the flag. To exit the first barrier, processes
spin on the flag until it is set 1o 1. Processes that see the llag change to 1 will exit the
barrier, perform the subsequent computation, and enter the barrier again. However,
suppose one processor P, does not see the flag change [rom the first barrier before
others have reentered the barrier for the second time; for example, it gets swapped
out by the operating system because it has been spinning too long. When it is
swapped back in, it will continue to wait for the flag to change ro 1. In the mean-
time, other processes may have already entered the second instance of the barrier,
and the first of these will have reset the flag to 0. Now the [lag can only get set to 1

5.5 Synchronization 335

again when all p processes have registered at the new instance of the barrier; which
will never happen since P, will never leave the spin loop from the first barrier.

How can we solve this problem? What we need to do is prevent a process from
entering a new instance of a barrier uniil all processes have exited the previous
instance of the same barrier. One way is to use another counter to count the pro-
cesses that leave the barrier and to not let a process reset the lag in a new barrier
instance until this counter has turned to p for the previous instance. Flowewver,
manipulating this counter incurs further latency and contention. On the other hand,
with the current setup we cannot wait for all processes to reach the barrier before
resetting the flag to 0, since that is when we actually set the {lag o 1 for the release.
A better solution is to avoid explicitly resetting the flag value altogether and rather
have processes wail for the flag to obtain a dillerent release value in consecutive
instances of the barrier. For example, processes may wait lor the flag to turn to 1 in
one instance and to turn to 0 in the next instance. A private variable is used per pro-
cess to keep track of which value to wait [or in the current barrier instance. Since by
the semantics of a barrier a process cannot get more than one barrier ahead of
another, we only need two values (0 and 1) that we toggle between each time. Hence
we call this method sense reversal. Now, in the previous example, the flag need not
be reset when the first process reaches the barrier; rather, the process stuck in the
old barrier instance still waits for the llag to reach the old release value while pro-
cesses that enter the new instance wait for the other (toggled) release value. The
value of the flag is only changed once when all processes have reached the (new)
harrier instance, so it will not change belore processes stuck in the old instance see
it. Here is the code [or a simple barrier with sense reversal:

BARRIER (bar_ name, D)

local_sense = !l(local sense); M rogale private sense variable®/
LOCK (bar_name.lock);
mycount = bar_name.counter++; Mmycount is a private variable®/
if (bar_name.counter == pli | f=last to arrive®/
NLOCK (har_name. lock] ;
bar_name.counter = 0; {Freset counter for next barrier®/
bar_name.flag = local_sense /release waiting pracesses®/
b
alse |
UNLOGCK (bar_name. lock] ;
while (bar_name.flag != lecal_sense) (}: /busy-wait for
release™/
1

3

Mote that the lock is not released immediately after the increment of the counter
but only after the condition is evaluated; the reason for this is revealed in an exercise
(see Exercise 5.18). We now have a correct barrier that can be reused any number of
times consecutively. The remaining issue is perlormance, which we examine next.

356 cHArTER 3 Shared Memory Multiprocessors

(Note that the LOCK/UNLOCE protecting the increment of the counter can be
replaced more efficiently by a simple LL-5C or atomic increment operation.)

Performance

The major performance goals for & barrier are similar to those for locks. They
include the following:

m Low latency (small critical path length). The chain of dependent operations and
bus transactions needed for p processors to pass the barrier should be small.

m Low traffic. Since barriers are global operations, it is quite likely that many pro-
cessors will try to execute a barrier at the same time. The barrier algorithm
should reduce the total number of bus transactions (whether in the critical
path or not) and hence the possible contention.

m Scalability. Latency and traffic should increase slowly with the number of

Processors.

Low storage cost. We would, of course, like to keep the storage cost low.

B Fairness. We should ensure that the same processor does not always become
the last one to exit the barrier (or we may wanlt to preserve FIFO ordering).

In the centralized barrier described previously, each processor accesses the lock
once, hence the critical path length is at least proportional to p. Consider the bus
traffic. To complete its operation, a centralized barrier involving p processors per-
forms 2p bus transactions for processors to obtain the lock and increment the
counter, two bus transactions for the last processor to reset the counter and write the
release flag, and another p— 1 bus transactions to read the flag after it has been inval-
idated, Note that this is better than the traffic for even a test-and-test&eset lock to be
acquired by p processes because, in that case, each of the p releases causes an invali-
dation that results in O(p) processes trying to perform the test&set again, thus
resulting in O(p®) bus transactions. However, the contention resulting from these
competing bus transactions can be substantial if many processors arrive at the bar-
rier simultanecusly, so barriers can be expensive.

Improving Barrier Algorithms for a Bus

One part of the problem in the centralized barrier is that all processors contend for
the same lock and flag variables. To address this, we can construct barriers that
cause fewer processors to contend for the same variable. For example, processors
can signal their arrival at the barrier through a software combining tree (see Section
3.3.2). In a binary combining tree, for example, only two processors notify each
other of their arrival at each node of the tree, and only one of the two moves up to
participate at the next higher level of the tree. Thus, only two processors ever access
a given variable. In a distributed network with multiple parallel paths, such as those
found in scalable machines, a combining tree can perform much better than a cen-
tralized barrier since different pairs of processors can communicate with each other

5.5 Synchronization 357

—8— Cantralized
35 | —— Combining tree [~=======---
—b— Tournament
—B— Dissemination

|
1 2 3 4 5 b) (5]

Mumber of processors

FIGURE 5.31 Performance of some barriers on the 5Gl Challenge. Performance is
measured as average time per barrier over a loop of many consecutive barriers (with no
work or delays between them). The higher critical path latency of the combining tree bar-
rier hurts it an a bus, where it has no traffic and contention advantages.

in different parts of the network in parallel. However, with a centralized intercon-
nect like a bus, even though pairs of processors communicate through different vari-
ables, they all generate bus transactions and hence serialization and contention on
the same bus. Since a binary tree with p leaves has approximately 2p nodes, a com-
hining tree requires a similar total number of bus transactions to the centralized bar-
rier, It also has higher latency since, while it too requires O(p) serialized bus
transactions in all, even without bus serialization each processor must wait at least
log p steps to get [rom the leaves to the root of the tree, each with significant work.
The advantage of a combining tree for a bus is that it does not use locks but, rather,
simple read and write operations, which may compensate for its larger uncentended
latency if the number of processors on the bus is large. However, the simple central-
ized barrier performs quite well on a bus, as shown in Figure 5.31. Some of the other
barriers shown in the figure for illustration will be discussed along with tree barriers
in the context of scalable machines in Chapter 7.

Hardware Primitives

Since the centralized barrier uses locks and ordinary reads and writes, the hardware
primitives needed depend on which lock algorithms are used. 1f a machine does not
support atomic primitives well, combining tree barriers can be useful for hus-hased
machines as well.

A special bus primitive can be used to reduce the number of bus transactions for
read misses in the centralized barrier (as well as for highly contended locks in which

358 CHAPTER 3 Shared Memory Muliiprocessors

5.5.06

processors spin on the same variable). This optimization takes advantage of the fact
that all processors issue a read miss for the same value of the flag when they are
invalidated at the release. Instead of all processors issuing a separate read-miss bus
transaction, 4 processor can monitor the bus and abort its read miss belore putting it
on the bus, il it sees the response to a read miss to the same location (issued by
another processor that happened to get on the bus first), and simply take the return
value from the bus. In the best case, this piggybacking can reduce the number of
read-miss bus transactions from p (o 1.

Hardware Barriers

If a separate synchronization bus is provided, as discussed for locks, it can be used
to support barriers in hardware too. This takes the traffic and contention ol the
main system bus and can lead o higher-performance barriers. Conceptually, a single
wired-AND line is enough. A processor sets its input high when it reaches the bar-
rier and waits until the output goes high before it can proceed. (In practice, reusing
barriers requires that more than a single wire be used.) Such a separate hardware
mechanism for barriers can be particularly useful if the frequency ol barriers is very
high, as it may be in programs that are automatically parallelized by compilers at the
inner loop level and that need global synchronization after every innermost loop.
However, its value in practice is unclear, and it can be difficult to manage when only
a portion of the processors on the machine participate in the barrier. For example, it
is difficult to dynamically change the number of processors participating in the
barrier or to adapt the configuration of participating processors when processes are
migrated among processors by the operating system. Having multiple participating
processes running on the same processor also causes complications. Current bus-
based multiprocessors therefore do not tend to provide special hardware support but
build barriers in software out of locks and shared variables.

Synchronization Summary

Some bus-based machines have provided full hardware support for synchronization
operations such as locks and barriers. However, concerns about flexibility have led
most contemporary designers to provide support for only simple atomic operations
in hardware and to synthesize higher-level synchronization operations from them in
software libraries. The application programmer generally uses the libraries and can
be unaware ol the low-level atomic operations supported on the machine. The
atomic operations may be implemented either as single instructions or through
speculative read-write instruction pairs like load-locked and store-conditional. The
greater [lexibility of the latter is making them increasingly popular. We have already
seen some of the interplay between synchronization primitives, algorithms, and
architectural details. This interplay will be much more pronounced when we discuss
synchronization for scalable shared address space machines in the coming chapters.

