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Processor Action  Statein Py StateinP; Statein P;  Bus Action  Data Supplied By

1. P; reads u E - - BusRd Memory
2, Py reads u Sc - Sc BusRd Memory
3. Py writes u Sc = 5 BusUpd Py cache
&, P; reads u 5a - 8m null -

2. Ps reads u Sc Se Sm BusRd Py cache

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in
Figure 5.3. The figure shows the state of the relevant memary block at the end of each processor
action, the bus transaction generated {if any), and the entity supplying the data.

3.4

atomic bus, a lot like they were in the write-through case. However, with both
invalidation- and update-based protecols, we must address many subtle implemen-
tation issues and race conditions, even with an atomic bus and a single-level cache.
We discuss this next level of protocol and hardware design in Chapter 6, as well as
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and
hardware techniques that can reorder the completion of memory operations. None-
theless, we can gquantify many protocol trade-olls even at the state diagram level that
we have been considering so far.

ASSESSING PROTOCOL DESIGN TRADE-OFFS

Like any other complex system, the design of a multiprocessor requires many inter-
related decisions to be made. Even when a processor has been picked, we must
decide on the maximum number of processors to be supported by the system, vari-
ous parameters of the cache hierarchy (e.g., number of levels in the hierarchy, and
for each level the cache size, associativity, block size, and whether the cache is write
through or write back), the design of the bus (e.g., width of the data and address
buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of internal buffers), and the design of the
/O subsystem. Many of the issues are similar to those in uniprocessors (Smith 1982}
but accentuated. For example, a write-through cache standing before the bus may be
a poor choice for multiprocessors because the bus bandwidth is shared by many pro-
cessors, and memory may need to be more greatly interleaved because it services
cache misses from multiple processors. Greater cache associativity may also be use-
ful in reducing conflict misses that generate bus tralfic,

The cache coherence protocel is a crucial new design issue for a multiprocessor.
It includes protocol class (invalidation or update), protocol states and actions, and
lower-level implementation trade-offs. Protocol decisions interact with all the other
design issues. On the one hand, the protocal influences the extent to which the
latency and bandwidth characteristics of system components are stressed; on the
other, the performance characteristics as well as the organization of the memory and
communication architecture influence the choice of protocols. As discussed in
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Chapter 4, these design decisions need to be evaluated relative to the behavior of
real programs. Such evaluation was very common in the late 19805, albeit using an
immature set of parallel programs as workloads (Archibald and Baer 1986; Agarwal
and Gupta 1988; Eggers and Katz 1988, 1989, 1989b).

Making design decisions in real systems is part art and part science. The ar
draws on the past experience, intuition, and aesthetics of the designers, and the sei-
ence is based in workload-driven evaluation. The goals are usually to meet a cost-
performance target and to have a balanced system, so that no individual resource is
a performance bottleneck yet each resource has only minimal excess capacity, This
section illustrates some key protocol trade-offs by putting the workload-driven
evaluation methodology from Chapter 4 into action.

Methodology

The basic strategy is as [ollows. The workload is executed on a simulator of a multi-
processor architecture, as described in Chapter 4. By observing the state transitions
encountered in the simulator, we can determine the frequency of various events
such as cache misses and bus transactions. We ean then evaluate the effect of proto-
col choices in terms of other design parameters such as latency and bandwidth
requirciments,

Choosing parameters according to the methodology ol Chapter 4, this section
first establishes the basic state transition characteristics generated by the set of appli-
cations [or the four-state llinois MES] protocol. It then illustrates how to use these
frequency measurements to obtain a preliminary quantitative analysis of the design
trade-offs raised by the example protocols above, such as the use of the exclusive
state in the MESI protocel and the use of BusUpar rather than BusRdX transactions
for the S — M transition. This section also illustrates more traditional design issues,
such as how the cache block size—the granularity of both coherence and communi-
cation—impacts the latency and bandwidth needs of the applications. To under-
stand this effect, we classilv cache misses into categories such as cold, capacity, and
sharing misses, examine the elfect of block size on each category, and explain the
results in light of application characteristics, Finally, this understanding of the appli-
cations is used to illustrate the wade-olls between invalidation-based and update-
based protocols, again in light of latency and bandwidth implications.

The analysis in this section is based on the frequency of various important events,
not on the absolute times taken or, therelore, the performance. This appreach is
common in studies of cache architecture because the results transcend particular
system implementations and technology assumptions, However, it should be viewed
as only a preliminary analysis since many detailed factors that might affect the per-
formance trade-olfs in real systems are abstracted away. For example, measuring
state transitions provides a means of calculating miss rates and bus traffic, but realis-
tic values for latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. To obtain an estimate ol
bandwidth requirements, we may artificially assume that every relerence takes a
fixed number of cycles to complete. However, the bandwidth requirements them-
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selves do not translate into performance directly but only indirectly by increasing
the cost of misses due 1o contention. Contention is very difficult 1o estimate because
it depends on the timing parameters used and on the burstiness of the tratfic, which
is not captured by the [requency measurements. Contention, timing, and hence per-
formance are also affected by lower-level interactions with hardware structures (like
quenes and buffers) and policies.

The simulations used in this section do not model contention. Instead, they use a
simple PRAM cost model: all memory operations are assumed to complete in the
same amount of time (here a single cyele) regardless of whether they hit or miss in
the cache. There are three main reasons [or this. First, the focus is on understanding
inherent protocol behavior and wade-offs in terms of event frequencies, not so much
on performance. Second, since we are experimenting with diflerent cache block sizes
and organizations, we would like the interleaving of references from application pro-
cesses on the simulator to be the same regardless of these choices; that is, all proto-
cols and block sizes should see the same trace of references. With the execution-
driven rather than trace-driven simulation we use, this is only possible if we make the
cost of every memory operation the same in the simulations. Otherwise, il a relerence
misses with a small cache block but hits with a larger one, for example, then it will be
delayed by different amounts in the interleaving in the twoe cases, [t would therefore
be difficult 1o determine which effects are inherently due to the protocol and which
are due to the particular parameter values chosen. Third, realistic simulations that
model contention take much more time. The disadvantage of using this simple model
even 10 measure frequencies is that the timing model may affect some of the frequen-
cies we ohserve; however, this effect is small for the applications we study,

The illustrative workloads we use are the six parallel programs {from the
SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and
4. The parallel programs run in batch mode with exclusive access to the machine
and do not include operating system activity in the simulations, whereas the multi-
programmed workload includes operating system activity. The number of applica-
rions used is relatively small, but the applications are primarily for illustration as
discussed in Chapter 4; the emphasis here is on choosing programs that represent
important classes of computation and with widely varving characteristics, The fre-
quencies of basic operations for the applications appear in Table 4.1, We now study
them in more detail 1o assess design trade-offs in cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed
in Chapter 4. These are large enough to hold the important working sets for the
default problem sizes, which is a realistic scenario for all applications. We use four-
way set associativity (with LRU replacement) to reduce conllict misses and a 64-byte
cache block size for realism. Diriving the workloads through a cache simulator that
maodels the [llinois MESI protocol generates the state transition frequencies shown
in Table 5.1. The data is presented as the number of state transitions of a particular
type per 1,000 references issued by the processors. Note in the table that a new state,
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Table 5.1 State Transitions per 1,000 Data Memory References Issued by the_ Applications
To
Application NP I E 5 M
Barnes-Hut MP 0 0 0.0011 0.0362 0.0035
I 0.0201 0 0.0001 0.1856 0.0010
E E 0.0000 0.0000 0.0153 0.0002 0.0010
S 0.0029 0.2130 0 97.1712 0.1253
A 0.0013 0.00170 i) 0121/ 902,782
Lu MNP 0 0 (LOUOD0 0.6593 0.0011
I 0.0000 0 0 0.0002 0.0003
E E 0.0000 ] 0.4454 0.0004 0.2164
et 0.0339 0.0001 0 302.702 0.0000
I 0.0001 0.0007 B 0.2164 697.129
Qcean NP 0 0 1.2484 0.9565 1.6787
I 0.6362 0 0 1.8676 0.0015
E E 0.2040 ] 14.0040 0.0240 0.9955
G 0.4175 2.4994 0 134.716 2.2392
i 2.6259 0.0015 0 2.2996 843 565
Radiosity MNP 0 0 0.0068 0.2581 0.0354
I 0.0262 0 0 0.5766 0.0324
E E 0 0.0003 0.0241 0.0001 0.00e0
S 0.0082 0.7264 0 162.569 0.2768
il 0.0219 0.0305 { 0.3125 839.507
Radix MNP ) 0 0.004746 2524705 1141419
| 0.130988 ad a0 1.108079  4.57868
E E 0.000759 0,.002848 0.080301 0 0.00019
1 5 0.029804 1.120988 0 178.1932 0.817818
il 0.044232 1153127 a 4.03157 802.282

continued
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Table 5.1 State Transitions per 1,000 Data Memory References Issued by the Applications

Application
Raytrace

Multiprog
User Data
References

Multiprog
User
Instruction
References

hMultiprog
kernel Data
References

Multiprog
Kerne|
Instruction
References

From

From

From

From

From

To
NP | E 5 A

MP ] 0 1.3358 1.5486 0.0026
| (.0242 Q 0.0000 0.3403 0.0000
£ 0.8663 0 29.0187 0.3639 0.0175
5 13375 8 0.3740 0 310945 0.2894
Ml 0.0559 0.0001 0 0.2970 661.011
NP 4] 0 0.1675 0.5253 0.1843
I 0.2619 0 0.0007 0.0072 0.0013
E 0.0729 0.0008 11.6629 0.0221 0.0680
5 0.3062 0.2787 0 214.6523 0.2570
[l 0.2134 0.1196 0 0.3732 772.7819
MNP 0 O 3.2709 157722 0

I 0 O 0 0 o

E 1.3029 0 46. /8598 1.8967 0

5 16.9032 0 i 981.2618 0

il 0 0] 0 0 0
MNP O 0 1.0247 1.7209 4.0793
| 1.2950 Q 0.00749 1.1495 0.1153
E 0.5511 0.0063 55.7680 0.0959 0.3352
5 1.2740 2.0514 0 393.5066 1.7800
% 31827 0.3551 0 20732 5424318
MP 0 0 2.1799 26.5124 0

I 4] 0 0 0 0

E 0.8829 0 5.2156 1.2223 ]

5 24.6963 0 0 1,075.2158 0

% 0 0 O U 8]

The data assumes 16 processors (except for Multiprog, which is for 8 processors), 1-MB four-way set-
associative caches, 64-byte cache blocks, and the lllinois MESI coherence protocol.
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NP (not present), is introduced. This addition helps clarify transitions where, on a
cache miss, one block is replaced (creating a transition fromoneofl, E 5 or Mto
NP} and a new block is brought in (creating a transition from MPtooneol I, E, 5 or
M. The sum of state transitions can be greater than 1,000 even though we are pre-
senting averages per 1,000 references because some references cause multiple state
transitions. For example, a write miss can cause two transitions in the local proces-
sor's cache (e.g,, S — NP for the old block and NP = M for the incoming block), in
addition to transitions in other caches due to invalidations (I/E/S/M — 1), This state
transition frequency data is very useful for answering “what il” guestions. Example
5.8 shows how we can determine the handwidth requirement these workloads
would place on the memory system,

EXAMPLE 5.8 Suppose that the integer-intensive applications run at a sustained 200

MIPS per processor and the floating-point-intensive applications at 200 MFLOPS per
processor. Assuming that cache block transfers move 64 bytes on the data bus lines
and that each bus transaction involves 6 bytes of command and address on the
address lines, what is the traffic generated per processor?

Answer The first step is to calculate the amount of traffic per instruction. We

I_.,.'1

determine what bus action is taken for each of the possible state transitions and
therefore how much traffic is associated with each transaction. For example, an M
_s NP transition indicates that, due to a miss, a modified cache block needs to be
written back. Similarly, an 5 — M transition indicates that an upgrade request must
be issued on the bus. Flushing a modified block response to a bus transaction (e.g.,
the M — S or M — | transition) leads to a BusWE transaction as well. The bus
transactions for all possible transitions are shown in Table 5.2. All transactions
generate 6 bytes of address bus traffic and 64 bytes of data traffic, except BusUpgr,
which only generates address traffic. We can now compute the traffic generated.
Using Table 5.2, we can convert the state transitions per 1,000 memory references
in Table 5.1 to bus transactions per 1,000 memory references and convert this to
address and data traffic by multiplying by the traffic per transaction. Then, using
the frequency of memory accesses in Table 4.1, we can convert this to traffic per
instruction. Finally, multiplying by the assumed processing rate, we get the address
and data bandwidth requirement for each application. The result of this
calculation is shown by the leftmost bar for each application in Figure 5.18° H

For the Multiprog workload, to speed up the simulations, a 32-KB instruction cache is used as a filter
hefare passing the instrction references o the 1-MB unified instruction and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those relerences that missed
in the L instruction cache. This filiering docs not aflect how we compute data tralfic, bug it means that
instruction traffic is computed differently. In addition, for Multiprog we present data separately for kernel
instructions, kernel data references, user instructions, and user data references, A given relerence may
produce transitions of multiple wypes for user and kernel data. For example, if a kernel instruction miss
causes a madified user data block 1o be written hacle, then we will have one transition for kernel instruc-
tions from NP — E/S and another transition for the user data reference category from M — NE



5.4 Assessing Protocol Design Trade-offs 3711

Table 5.2 Bus Actions Corresponding to State Transitions in lllinois MESI Protocol

To
NP E 5 M

NP — — Busid BusRd BusRdx

| i — BusRd BusRd BusRdx

E
5 — — Mot possible — BusUpgr
% BusWEe EusWE Mot possible BuswWB —

5.4.3

The calculation in the preceding example gives the average bandwidth require-
ment under the assumption that the bus bandwidth is enough to allow the proces-
sors to execute at full speed. (In practice, bandwidth limitations may slow
processors and events down, which in trn would lead to lower traffic per unit
time.) This calculation provides a useful basis [or sizing the number of processors
that a system can support without saturating the bus. For example, on a machine
such as the 5GI Challenge with 1.2 GB/s of data bandwidth, the bus provides suffi-
cient average bandwidth to support 16 processors on all the applications other than
Radix for these problem sizes. A typical rule of thumb might be to leave 50% “head-
room” to allow for burstiness of data transfers. If the Ocean and Multiprog work-
loads were also excluded, the bus could support up to 32 processors. If the
bandwidth is not sufhcient to support the application, the application will slow
down. Thus, we would expect the speedup curve for Radix to flatten out quite
quickly as the number of processors grows. In general, a multiprocessor is used for a
variety of workloads, many with low per-processor bandwidth requirements, so the
designer will choose to support configurations of a size that would overcommit the
bus an the most demanding applications.

Impact of Protocol Optimizations

Given this base design point, we can evaluate protocol trade-ofls under common
machine parameter assumptions, as illustrated in Example 5.9.

EXAMPLE 5.9 We have described two invalidation protocols in this chapter—the

basic three-state M5 protocol and the lllinois MES| protocol. The key difference is
that the MESI protocol includes the existence of the exclusive state. How large is
the bandwidth savings due to the E state?

Answer The main advantage of the E state is that no traffic need be generated

when going from E — M. A three-state protocol would have to generate a BusUpgr
transaction to acquire exclusive ownership for the memory block. To compute
bandwidth savings, all we have to do is put a BusUpagr for the E — M transition in
Table 5.2 and recompute the traffic as before. The middie bar in Figure 5.18 shows

the resulting bandwidth requirements. W
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Example 5.9 illustrates how an intuitive rationale for a more complex design may
not stand up to quantitative measurement of workleads. Contrary to expectations,
the E state offers negligible savings in traffic. This is true even lor the Multiprog
workload, which consists primarily ol sequential jobs and should have benefited
most. The primary reason [or this negligible gain is that the [raction of E — M wran-
sitions in Table 5.1 is quite small (i.e., blocks loaded in exclusive state by a read miss
are not olten written while still in that state), In addition, the BusUpgr (ransaction
that would have been needed [or the S — M ransition in a three-state protocol takes
only 6 bytes of address traffic and no data traffic. Example 5.10 examines the advan-
tage of the BusUpgr transaction.

EXAMPLE 5.10 Recall that even in the three-state M5 protocol, a write that finds the

memory block in shared state in the cache generates a BusUpgr request on the bus
rather than a BusRdX. This saves bandwidth, as no data need be transferred for a
BusUpgr, but it complicates the implementation, as we shall see. The question is,
how much bandwidth are we saving for taking on the extra complexity?

Answer To compute the bandwidth for the less complex implementation and a

three-state protocol, all we have to do is put in BusRdX in the E — M and 5 — M
transitions in Table 5.2 (these would all be 5§ — M transitions in the three-state MS|
protocol) and then recompute the bandwidth numbers. The results for all
applications are shown in the rightmost bar in Figure 5.18. While for most
applications the difference in bandwidth is small, Ocean and Multiprog kernel data
references show that it can be as large as 10-20% for some applications. W

The performance impact of these differences in bandwidth requirement depends
on how the bus transactions are actually implemented. However, this high-level
analysis indicates where more detailed evaluation is required.

Finally, as discussed in Chapter 4, for the input data set sizes we are using it is
important that we run the Ocean, Raytrace, and Radix applications [or smaller cache
sizes as well, to model the situation where an important working set does not fit in
the cache hierarchy. We use 64-KB caches here, which fit all but the largest working
set for these problem sizes. The raw state transition data for this case is presented in
Table 3.3, and the per-processor bandwidth requirements are shown in Figure 5.19.
As we can see, not having one of the critical working sets fit in the processor cache
can dramatically increase the bus bandwidth required due to capacity misses, A 1.2-
GB/s bus can now barely support 4 processors for Ocean and Radix and 16 proces-
sors for Raytrace.

Trade-Offs in Cache Block Size

The cache organization is a critical performance factor in all modern computers, b
it is especially so in multiprocessors. In the uniprocessor context, cache misses are
typically categorized into the “three Cs": compulsory, capacity, and conflict misses
(Hill and Smith 1989; Hennessy and Pattersan 1996}, Compulsory misses, or cold
misses, occur on the first reference to a memory block by a processor. Capacity
misses occur when all the blocks that are referenced by a processor during the execu-
tion of a program do not fit in the cache (even with full asseciativity), so some
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Table 5.3 State Transitions per 1,000 Memory References Issued by the Applications

with Smaller Caches

To
Application NP I E 5 M
Ocean MP 0 0 26,2491 2.6030 15.1458
| 1.3305 0 0 0.2012 0,0008
E E 21.1804 0.2976 452.580 0.4489 43216
B S 24632 13333 0 113.257 11112
Ml 19.0240 0.0015 B 1.5543 387.780
Radix MNP 0 o 0 440787 2.557865 27 36084
| 4.354862 0 Q.0005/7 0:157565 1.499903
E t 8.148377 0.001329 140.9295 0.0123=9 0. 126621
= 5 3.825407 0.481427 a 102.4144 0.454464
% 23.03084 5.628429 0 2.069604 717.1426
Ravytrace MP 0 0 7.2642 3.9742 0.1305%
I 0.0526 0 0.0003 0.2799 0.0000
= 64119 0 131,944 0.7973 0.0456
= 5 4.6768 0.3329 0 205854 0.2835
W 0.1812 0.0007 o 0.2837 660.753

The data assumes 16 processors, 54-KB four-way set-associative caches, 64-biyte cache blocks, and the
Minais MESI coherence protocol.

blocks are replaced and later accessed again. Conflict or collision misses occur in
caches with less than [ull associativity when the collection of blocks referenced by a
program that maps to a single cache set does not [fit in the set, They are misses that
wonld not have oecurred in a fully associative cache. Many studies have examined
how cache size, associativity, and block size allect each category of miss.

Architecturally, capacity misses are teduced by enlarging the cache. Contlict
misses are reduced by increasing the associativity or increasing the number of lines
to map to in the cache (by increasing cache size or reducing block size). Cold misses
can be reduced only by increasing the block size so that a single cold miss will bring
in more data that may be accessed thereafter as well. What malkes cache design chal-
lenging in uniprocessors is that these factors trade off against one another. For
example, increasing the block size for a fixed cache capacity will reduce the number
of blacks, so the reduced cold misses may come at the cost of increased conflict
misses, Also, variations in cache organization can alfect the miss penalty or the hit
time and, therelore, perhaps the processor cycle time,

Cache-coherent multiprocessors introduce a fourth category ol misses: coherence
misses. These occur when blocks of data are shared among multiple caches. There
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FIGURE 5.19 Per-processor bandwidth requirements for the various applications,
assuming 200-MIP5/MFLOPS processors and 64-KB caches. The traffic is split into data
traffic and address {including command) bus traffic, The leftmast bar shows traffic for the
Ilineis MESI protocal, the middle bar for the case where we use the hasic three-state invali-
dation protocol without the E state (as described in Section 5.3.1), and the rightmaost bar for
the three-state protocol when we use BusRdX instead of BusUpgr for S — M transitions.

are two types: true sharing and false sharing misses. True sharing occurs when a data
word produced (written) by one processor is used (read or written) by another,
False sharing occurs when independent data words accessed by different processors
happen to he placed in the same memory (cache) block, and at least one of the
accesses is a write. The cache block size is not only the granularity (or unit} of the
data fetched from the main memory, it is also typically used as the granularity of
coherence. That is, on a write by a processor, the whole cache block is invalidated in
other processors’ caches, not just the word that is written.

Maore precisely, a true sharing miss occurs when one processor writes some words
in & cache block, invalidating that block in another processor’s cache, after which the
second processor reads one of the modified words. It is called a “true” sharing miss
because the miss truly communicates newly delined data values that are used by the
second processor; such misses are essential to the correctness of the program,
regardless of interactions with the machine organization or granularities. On the
other hand, when one processor writes a word in a cache block and then another
processor reads (or writes) a different word in the same cache block, the invalidation
of the block and subsequent cache miss occurs as well, even though no uselul values
are being communicated between the processors. These misses are thus called false
sharing misses (Dubois et al. 1993). As cache block size is increased, the probability
of distinct variables being accessed by different processors but residing on the same
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cache block increases. If at least some of these variables are written, the likelihood of
false sharing misses increases as well. False sharing misses would not occur with a
one-word cache block size, while true sharing misses would, Technology pushes in
the direction of large cache block sizes (e.g., DRAM organization and access modes
and the need to ohtain high-bandwidth data transfers by amortizing overhead), so it
is important to understand the potential impact of false sharing misses and how they
may be avoided.

True sharing misses are inherent to a given parallel decomposition and assign-
ment, so, like cold misses, the only way to reduce them is by increasing the block
size and increasing spatial locality of communicated data, False sharing misses, on
the other hand, are an example of the artifaciual communication discussed in
Chapter 3 since they are caused by interactions with the architecture. In conirast to
trie sharing and cold misses, false sharing misses can be decreased by reducing the
cache block size, as well as by a host of other optimizations in software (orchestra-
tion) and hardware that we shall discuss later. Thus, a flundamental tension exists in
determining the best cache block size. which can only be resolved by evaluating the
options against real programs,

A Classification of Cache Misses

The flowchart in Figure 5.20 gives a detailed algorithm for classifying cache misses
in cache-coherent multiprocessors.” Understanding the details is not critical [or
now—it is enough for the rest of the chapter to understand only the preceding defi-
nitions—but it adds insight and is a useful exercise. In the algorithm, the lifetime of
a black in a cache is defined as the time interval during which the block remains
valid in the cache, that is, the time from the occurrence of the miss that loads the
block in the cache until its invalidation, replacement, or the end of the program. We
cannot classily a cache miss when it occurs but only when the fetched memory
block is replaced or invalidated in the cache, because it is only then that we know
whether true sharing or only false sharing occurred during that lifetime. Let us con-
sider the simple cases first. Cases | and 2 are straightforward cold misses occurring
on previously unwritten blocks. Cases 7 and 8 reflect lalse and true sharing on a
block that was previously invalidated in the cache but yet replaced by another. The
type of sharing is determined by whether the specific word or words modified since
the invalidation are actually used during the current lifetime. Case 9 is a straightfor-
ward capacity (or conflict) miss since the block was previously replaced [rom the
cache and the words in the black have not been modified since last accessed. All of
the other cases refer to misses that occur due to a combination of factors. For exam-
ple, cases 4 and 5 are cold misses because this processor has never accessed the
black before; however, some other processor had written the block, so there is also

6. In this classification, we do not distingnish conflict from capacity misses since both are a result of the
availahle resources (se1 or entire cache) becoming full and the difference between them does not shed
additienal light on mulliprocessor issues.



3.4  Assessing Protocol Design Trade-offs 317

hiss classification

First refarence 1o
memory block by processor

EA%0n
Or miss

Yes Other

Reasan for
elimination of
last copy

Replacement

Invalidation

- Old copy
with state = jnvali
still thera

e

wiardls) accessed
during lifetime

3. False-sharing-
cold

ki

Has block
gen rmadified sing
repreEcement

5. False-sharing- M

inval-cap

B, True-sharing-

myal-cap 7. Pure-
ialse-sharing &, Fure-

frug-sharing

No_~ord

s

wordis] aooesse
dring lifetim

9. Pure- 10 Trug-sharing-
capacity Capacily

11. Falsesharing- 12 True-sharing-
cap-inval cap-inval

FIGURE 5.20 A classification of cache misses for shared memory multiprocessors. The four
basic categories of cache misses in this classification are cold, capacity, true sharing, and false sharing
misses (conflict misses are considered to be capacity misses for this purpose). Many mixed categories
arise because there may be multiple causes for a miss. For example, a block may be first replaced from
processor A's cache, then written to by processor 8, and then read back by processor A, making it a
capacity-cum-invalidation falseftrue sharing miss. This would be labeled “falseftrue sharing cap-inval” in
the classification since sharing takes priority and since the replacement happened before the invalida-
tion (cases 11 and 12 in the figure). If the block were first invalidated in A% cache, then the invalid block
replaced, and then read again by A, it would be labeled “falseftrue sharing inval-cap” (cases 6 and 7). In
terms of the four majer categories, these misses all fall into true or false sharing misses, as appropriate.
Note: the guestion “modified wordis) accessed during lifetime?” asks whether accesses are made by
this processor in the current lifetime to word(s) within the cache block that have been modified since
the last "essential coherence” miss ta this block by this processor, where essential coherence misses cor-
respond to categories 4, 6, 8, 10, and 12. This can only be determined when the current lifetime of the
block ends.
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sharing (false or true). Similarly, we can have false or true sharing on blocks that
were previously replaced due to capacity or conflicts. Solving only one of the prob-
lems in these cases may not necessarily eliminate such misses, For example, if a miss
accurs due to both false sharing and capacity problems, then eliminating the false
sharing problem by reducing block size will likely not eliminate that miss. On the
other hand, sharing misses are in a sense more fundamental than capacity misses
since they will remain even if the size of cache is increased to infinity, so we give
them priority in the classilication of multiple-cause misses. All misses with true
sharing in their names in the resulting classification are called essential coherence
misses. They would occur even with infinite caches, single-word blocks, and all data
preloaded into all caches (i.e., no cold misses). Example 5.11 illustrates these defini-
tions of miss categories.

EXAMPLE 5.11 Suppose three processors, Py, P3, and P, issue the memory operations

shown in the first few columns of Table 5.4 (the first column indicates virtual time
or steps). Use the miss classification algerithm to classify the misses in the last col-
umn. Assume that each processor's cache consists of only a single four-werd cache
block and that all the caches are initially empty.

Answer The results are shown in Table 5.4. W

Impact of Block 5ize on Miss Rate

Applying the classification algorithm of Figure 5.20 to simulated runs ol a workload,
we can determine how frequently the various kinds of misses occur in programs and
how the [requencies change with variations in cache organization, such as block
size. Figure 5.21 shows the decomposition of the misses for the example applica-
tions running on 16 processors, with 1-MB [our-way set-associative caches each, as
the cache block size is varied from 8 bytes to 256 bytes. The bars show the four hasic
types of misses: cold misses {cases 1 and 2), capacity—including conflict—misses
(case 9), true sharing misses, (cases 4, 6, 8, 10, 12}, and false sharing misses (cases
3.5, 7.and 11). In addition, they show the frequency of upgrades—writes that find
the block in the cache but in the shared state. Upgrades are different [rom the other
types of misses since the cache already has the valid data and only needs exclusive
ownership. While they are not included in the classification scheme ol Figure 5.20,
they are still usually considered to be misses since they generate trallic on the inter-
connect and can stall the processor,

For each individual application, the miss characteristics change with block size
much as we would expect from our understanding of the program and the miss cat-
egories. Cold, capacity, and true sharing misses tend to decrease with increasing
hlack size because the additional data brought in with each miss is accessed hefore
the block is replaced, due to spatial locality. However, false sharing misses tend to
increase with block size. In all cases, true sharing is a significant fraction of the
misses. so even with ideal, infinite caches, the miss rate and bus bandwidth will not
go to zero. However, the overall characteristics differ widely across programs. For
example, the size of the true sharing compenent varies significantly. Some applica-
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Table 5.4 Classifying Misses in an Example Reference Stream from Three

Processors e
Time Py Ps P3 Miss Classification
1 Id wO f[d w2 Py and Py miss; but we will classify later an replace/finval
2 stwZ Py 4 pure cold miss; Py 5: upgrade
3 |cd ] P5 misses, but we will classity later on replacefinval
4 ld w2 ld w7 P hits; Py misses; Py 4 cold miss
g Id wS Py misses
6 I wit Py misses; Py 5: cold true sharing miss (w2 accessed)
7 stwb Fy 5: cald miss; Fs : upgrade; P5 4: pure cold miss
& I ws Py misses
9 |l ws ld w2 Py hits; P35 misses
10 ldw2 |dwil P+. P2 miss; Py gt pure true share miss; P; ¢ cold miss
11 st wh Py misses; Py 4 pure true sharing miss
12 st wd Py g0 capacity miss; Pg 4. upgrade
13 ld w7 P3 misses; P3 o capacity miss
14 Id w2 Pz misses; P q3: inval cap false sharing miss
15  IdwO Py misses; Py 44: capacity miss

R
If multiple references are listed in the same row, we assume that P, issuss before P; and P,
issues before Py, The notation Id/st wi refers to load/store of word /. W1 through wd are on
the samne cache block, and so an. The notation Py points to the memory reference issued by
pracessor rat row [

tions show a substantial increase in false sharing with block size, whereas others
show almost none. Furthermore, the figure shows data only for the default data sets.
In practice it is very important to examine the results as the input data set size and
number of processors are scaled before drawing conclusions about the false sharing
or spatial locality of an application (see Chapter 4). Let us investigate the properties
ol the applications that give rise to differences in miss characteristics ohserved at the
machine level and that allow us to understand scaling qualitatively,

Relation to Application Structure

Multiword cache blocks exploit spatial locality by prefetching data swrounding the
accessed address. Of course, beyond a point, larger cache blocks can hurt perfor-
mance by (1) prefetching unneeded data, (2) causing increased conflict misses as
the number of distinct blocks that can be stored in a hnite cache decreases with
increasing block size, and (3) causing increased false sharing misses, Spatial locality
in parallel programs tends to be lower than in sequential programs because, when a
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FIGURE 5.21(a) Breakdown of application miss rates as a function of cache block size for 1-MB
caches per processor for Barnes-Hut, LU, and Radiosity applications. Conflict misses are included in
capacity misses. The breakdown and behavior af misses vary greatly across applications, but we can
observe some commaon trends. Cold misses and capacity misses tend to decrease quite quickly with
block size as a result of spatial locality. True sharing misses also tend to decrease, whereas false sharing
misses increase. While the false sharing campanent is usually small for small block sizes, it sometimes
remains small and sometimes increases very guickly. Upgrades are shown at the top of the bars and
without shading, so they can be ignored it desired.

memory block is brought into the cache, some of the data therein may belong to
another processor and will not be used by the processor performing the miss. As an
extreme example, some parallel programs assign adjacent elements of an array to
different processors in order to ensure good load balance and in the process substan-
tially decrease the spatial locality of the program.

The data in Figure 5.21 shows that LU and Ocean have good spatial locality and
litile false sharing even in the parallel case: The miss rates for many components
drop proportionately to increases in cache block size, and [alse sharing misses are
essentially nonexistent. This is in large part because these array-based codes use
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FIGURE 5.21(b) Breakdown of application miss rates as a function of cache block size for 1-MB
caches per processor for Ocean, Radix, and Raytrace applications.

architecturally aware data structures, as discussed in Chapters 3 and 4. For example,
a grid in Ocean is not represented as a single 2D array (which can introduce sub-
stantial false sharing at column-oriented partition boundaries) but as a 4D array: a
2D array of blocks, each of which is itself a 2D array. Such structuring, by program-
mers or compilers, ensures that most accesses are unit stride and over substantial,
contiguous blocks of data, thus the nice behavior,

In Ocean, capacity misses are significant, but they are 1o the interior elements of a
processs partition, so they have very pood spatial locality. One difference with LU is
that true sharing misses in Ocean do not exhibit such good spatial locality. Most of
the true sharing misses are to elements at the borders of neighboring partitions,
These exhibit good spatial locality ar row-oriented borders where the data to be
fetched is contiguous in the address space. However, when a processor accesses an
clement at a column-oriented border, it fetches an entire cache block of interior ele-
ments of its neighbor’s partition, which it will not use and therefore wastes, Since
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capacity misses are not very large with this problem and machine configuration,
overall spatial locality is limited by that of true communication. In LU, even true
communication is of B-by-B contiguous blocks at a time, so spatial locality is excel-
lent even on true sharing misses,

As for scaling, the spatial locality for these two applications is expected to remain
good with no false sharing as both the problem size and the number of processors are
increased (at least until partitions become unrealistically small). This should be true
even for cache blocks larger than 256 bytes, at least [or LU, In Ocean, how capacity
versus trie communication misses (and hence spatial locality) scale depends strongly
on the relative scaling of data set size and processor count.

The graphics application Raytrace also shows negligible [alse sharing but displays
sommewhat worse spatial locality, False sharing is small becanse the main data struc-
ture (the collection of polygons constituting the scene) is read-only. The only read-
write sharing happens on the image plane data structure and the task queues, but
that is well controlled and small [or large enough problems. This true sharing miss
rate is reduced by increasing cache block size. The reason for the poor spatial local-
ity of capacity misses (although the overall magnitude is small in this configuration)
is that the access pattern to the collection ol polygons is quite arbitrary since the set
ol ohjects that a ray will bounce off ol is unpredictable. As for scaling, as problem
size is increased (most likely in the form of more polygons), the primary elfect is
likely ta be larger capacity miss rates; the spatial locality within individual compo-
nents should not change. A larger number of processors is in many ways similar to
having a smaller problem size, except that we may see more sharing in the image
plane and task queue data structures,

The Barnes-Hut and Radiosity applications show moderate spatial locality and
false sharing. These applications employ complex data structures, including (rees
encading spatial information and arrays in which the records assigned Lo each pro-
cessor are not contiguous in memory. For example, Barnes-Hut operates on particle
records stored in an array. As the application proceeds and particles move in physical
space, particle records get reassigned to different processors, with the result that
alter some time adjacent particles in the array most likely belong to dillerent proces-
sors. Spatial locality is exploited well within a particle record but not very well
across records. False sharing becomes a problem at large block sizes [or different rea-
sons, First, different processors may write to different records that share a cache
black. Second, a particle data structure (record) contains both lields that are being
modified by the owner of that particle in a phase (e.g., the current force on this par-
ticle in the force calculation phase) and fields that are read by other processors and
are nol being modilied in this phase (e.g., the current position of the particle}. Since
these two fields may [all in the same cache block for large block sizes, false sharing
results. It is possible to eliminate such false sharing by splitting the particle data
stricture according to the access patterns of the fields, but that is not done in this
program since the absolute magnitude of the miss rate is small, As problem size and
the number of processors are scaled, the miss rate behavior of Barnes-Hut is
expected to change little, This is because the working set size changes very slowly
{as the log of the number of particles, unlike Ocean and Raytrace), spatial locality is
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determined by the size of one particle record and thus remains the same, and the
sources of false sharing are not very sensitive to the number ol processors. Radiosity
is a much more complex application whose behavior is difficult 1o reason about with
larger data sets or more processors; the only option is to gather empirical data show-
ing the growth trends.

The poorest sharing behavior is exhibited by Radix, which not only has a very
high miss rate even with 1-MB caches (due to cold and true sharing misses) but
which gets significantly worse due to false sharing misses for block sizes of 128
bytes or more. The effect of false sharing in Radix was illustrated in Chapter 4. Let
us now examine how it is poverned. Consider sorting 256-K kevs, using a radix of
1,024 and 16 processors. On average, this results in 16 keys per radix per processor
(64 bytes of data), which are then written to a contiguous portion of a global array at
an unpredictable starting point. Adjacent 64-hyte chunks in this array are written by
different processars, If the cache block size is larger than 64 bytes, the high potential
for false sharing is clear. As the problem size is increased we will clearly see much
less false sharing. The effect of increasing the number of processors is exactly the
opposite. Radix illustrates quite dramatically that it is not sufficient to look at a
given problem size and number ol processors and, based on that, draw conclusions
of whether or not false sharing or spatial locality is a problem. 1t is very important to
understand how the results are dependent on the key parameters chosen in the
experiment and how these parameters may vary in reality,

Data for the Multiprog workload for 1-MB caches is shown in Figure 5.22. The
data is shown separately for user code, user data, kernel code, and kernel data. For
code, there are only cold and capacity misses. Furthermore, we see that the spatial
locality in operating system data references is not very good. This is true, to a some-
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what lesser extent, for the application data misses as well, because goc (the main
application causing misses in Multiprog) uses a large number of linked lists, which
do not offer good spatial locality. 1t is interesting that we have an observable fraction
of application true sharing misses, although we are running only sequential appli-
cations. These misses arise due to process migration and are incurred when a se-
quential process migrates from one processor to another (a decision made by the
operating system for resource management) and then relerences memory blocks that
it wrote while it was executing on the other processor. While the spatial locality in
cold and capacity misses is quite reasonable, the true sharing misses do not decrease
at all for kernel data, One reason for this may be that the operating system has not
been well structured as a parallel program.

Finally, let us examine the behavior of Ocean, Radix, and Raytrace for smaller 64-
KB caches. The miss rate results are shown in Figure 5.23. As expected, the overall
miss rates are higher, and capacity misses have increased substantially. The effects of
cache block size for true sharing and false sharing misses are not significantly differ-
ent from the results for 1-MB caches because these properties are quite fundamental
to the assignment and orchestration used by a program and are not too sensitive to
cache size. However, the behavior of capacity misses has a much larger effect on the
behavior of the overall miss rate. For example, in Ocean, capacity misses now domi-
nate sharing misses; since they have much better spatial locality, the overall miss rate
decreases much more quickly with increasing block size than it did with 1-MB
caches. (Very large blocks in a small cache can have the problem that blocks may be
replaced from the cache due to conflicts before the processor has had a chance to ref-
erence all of the words in them.) In Raytrace, capacity misses have somewhat worse
spatial locality than true sharing misses, so the overall benefits of large blocks look
worse with smaller caches. Results [or false sharing and spatial locality for other
applications can be found in the literature (Torrellas, Lam, and Hennessy 1994; Jere-
miassen and Eggers 1991; Woo et al. 1995),

While larger cache blocks reduce the miss rate for most of our applications,
within the range of block sizes we consider they have two important potential disad-
vantages. First, they can increase the cost of each miss since more data has to be
rransferred across the bus (although techniques like only waiting for the relerenced
word to arrive belore allowing the processor to proceed, called a critical word restart
approach, can alleviate this). Second, they increase traffic, and hence contention, if
the whole block is not useful.

Impact of Block Size on Bus Traffic

Let us briefly examine the impact of cache block size on bus traffic rather than miss
rate. While the number of misses and total traffic generated are clearly related, their
impact on observed performance can be quite different. Misses have a cost that may
contribute directly to performance, even though modern microprocessors try hard
to hide the latency of misses by overlapping it with other activities. Tralfic, on the
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FIGURE 5.23 Breakdown of application miss rates as a function of cache block size for 64-KB

caches. Capacity misses are now a much larger fraction of the overall miss rate. Capacily miss rates
decrease differently with block size for different applications.

other hand, affects performance indirectly by causing contention and hence increas-
ing the cost of other misses. For example, if an application program’s misses are
reduced significantly by increasing the cache block size, but the bus traffic is
increased by 50%, this might be a reasonable trade-off if the application was origi-
nally using only 10% of the available bus and memory bandwidth. Increasing the
bus and memory utilization to 15% is unlikely to increase the miss latencies signifi-
cantly. However, if the application was originally using 75% of the bus and memory
bandwidth, then increasing the block size is probably a bad idea,

Figure 5.24 shows the total bus traffic for our applications in bytes/instruction or
bytes/FLLOT as the cache block size is varied. Three key points can be ohserved from
this graph. First, traffic behaves very differently than miss rate. Only LU shows
monotonically decreasing total trathe for the block sizes used. Most other applica-
tions see a doubling or tripling of traflic as block size becomes large. Second, the
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FIGURE 5.24 Traffic (in bytes/instruction or bytes/FLOP) as a function of cache block size
with 1-MB caches per processor. Data traffic increases guite quickly with block size when communi-
cation misses dominate, except for applications like LU that have excellent spatial locality on all types of
misses. Address (including command) bus traffic tends to decrease with block size since the miss rate
and, hence, number of blocks transferred decrease.
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FIGURE 5.25 Traffic in bytes/instruction as a function of cache block size for Mul-
tiprog with 1-ME caches. Traffic increases quickly with block size for data references from
the O5 kernal.

overall maffic requirements for the applications are still small, even [or 256-byte
block sizes, with the exception of Radix. Radix’s large bandwidth requirements
(approximately 630 MB/s per processor for 128-byte cache blocks, assuming a sus-
tained 200-MIPS processor) reflect its false sharing problems at large block sizes.
Third, the constant address and command traffic overhead for each bus transaction
or miss comprises a significant fraction of total traffic for small block sizes. Hence,
although actual application data traffic usually increases as we increase the block
size due to poor spatial locality, the total traffic is often minimized at 16-32 bytes
rather than 8 bytes due to the amortization of the overhead with improved miss
rates.

Figure 5.25 shows the tralfic data for Multiprog, While the increase in wrallic from
64-byte cache blocks te 128-byte blocks is small, the jump at 256-byte blocks is
much more substantial (primarily due to kernel data references). Finally, Figure 5.26
shows the traffic results for 64-KB caches for the three relevant applications. For
Ocean, even 64- and 128-byte cache blocks don't look so bad, due to the dominance
of capacity misses that have good spatial locality.
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FIGURE 5.26 Traffic (in bytes/instruction or bytes/FLOP) as a function of cache block size
with 64-KB caches per processor. Traffic increases maore slowly now for Ocean than with 1-ME caches
since the capacity misses that now dominate exhibit excellent spatial locality (traversal of a process’s
assigned subgrid). However, traffic in Radix increases quickly once the threshold biock size that causes
false sharing 15 exceeded,

Alleviating the Drawbacks of Large Cache Blocks

The trend toward larger cache block sizes is driven by the increasing gap between
processor performance and memory access time. The larger block size amortizes the
cost of the bus transaction and memory access across a greater amount of data. The
increasing density of processor and memory chips makes it possible to employ large
first-level and second-level caches so that the prefetching of data obtained through a
larger block size dominates the small increase in conlflict misses. However, this trend
may bode poorly for multiprocessor designs because false sharing becomes a larger
problem. Fortunately, hardware and sofltware mechanisms can be employed to
counter the effects of large hlock size.

Software techniques to reduce false sharing and improve locality on coherence
misses are discussed in detail later in the chapter. They essentially involve organiz-
ing data structures or work assignments so that data accessed by different processes
is not interleaved finely in the shared address space. One example is the use ol
higher-dimensional arrays so blocks or partitions are whelly contiguous. Compiler
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techniques have also been developed to automate some methods ol laying out data
to reduce false sharing (Jeremiassen and Eggers 1991).

Since false sharing is caused by a large granularity of coherence, the way to re-
duce it while still exploiting spatial locality is to use large blocks [or data transfer
but a smaller unit of coherence. A natural hardware mechanism is the use of sub-
blocks. Each cache block has a single address tag but distinet state bits for each of
several subblocks, One subblock may be valid while others are invalid or dirty. This
technique is used in many uniprocessor systems to reduce the amount of data that is
copied back to memory on a replacement or to reduce the memory access time on a
read miss by resuming the processor when the accessed subblock is present (critical
word restart), To avoid false sharing, a write by one processor may invalidate the
subblock in another processor’s cache while leaving the other subblocks valid. Alter-
natively, small cache blocks can be used, but on a miss the system can prefetch
blocks bevond the accessed block. Proposals have also been made for caches with
adjustable block sizes (Dubnicki and LeBlanc 1992). The disadvantage of these ap-
proaches is increased state and complexity beyond a commodity cache design.

A more subtle hardware technique is to delay propagating or applying invalida-
tions from a processor until it has issued multiple writes. Delaying invalidations and
performing them all at once reduces the occurrence of intervening read misses to
those blocks, However, this sort of technique can change the memory consistency
maodel in subtle ways, so further discussion is deferred until Chapter 9 where we
consider weaker consistency models in the context of scalable machines. Another
hardware technique to reduce false sharing is the use of update- rather than invali-
dation-based protocols.

Update-Based versus Invalidation-Based Protocols

Whether writes should cause other cached copies to be updated or invalidated has
been the subject of considerable debate. Various vendors have taken different stands
and, in fact, have changed their position from one design to the next. The contro-
versy arises because the relative performance of update-based versus invalidation-
based protocols depends strongly on the sharing patterns exhibited by the workload
and on the cost of various underlying operations. Intuitively, if the processors that
were using the data before it was updated (written) are likely to want to see the new
values in the future, updates should perform better than invalidations. However, if
the processors holding the old data are never going to use it again, the update traffic
is useless and just consumes interconnect and controller resources. Invalidations
would clean out the old copies and eliminate the apparent sharing. This “pacl rat”
phenomenon with update protocols is especially irritating under multiprogrammed
use of a machine, when sequential processes migrate from processor to processor
under 05 control so that useless updates are performed in caches of processors that
are no longer running that process. It is easy to construct cases in which either
scheme does substantially better than the other, as illustrated by Example 5.12.
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EXAMPLE 5.12 Consider the following two program reference patterns:

m Patfern 1: Repeat k times; processor 1 writes a new value into variable V and
processors 2 through P read the value of V. This represents a one-producer-
many-consumer scenario that may arise, for example, when processors are
accessing a highly contended flag for one-to-many event synchronization.

m Pattern 2: Repeat & times; processor 1 writes M times to variable V and then
processor 2 reads the value of V. This represents a sharing pattern that may
occur between pairs of processors, where the first successfully computes and
accumulates values into a variable and then when the accumulation is com-
plete, another processor reads the value.

VWhat is the relative cost for update- and invalidation-based protocels in terms
of the number of cache misses and bus traffic? Assume that an invalidation/
upgrade transaction consumes & bytes (5 bytes for address plus 1 byte for com-
mand), an update takes 14 bytes (6 bytes for address and command and 8 bytes of
data for the updated word), and a regular cache miss takes 70 bytes (6 bytes for
address and command plus 64 bytes of data corresponding to cache block size).
Also assume that P= 16, M = 10, k = 10, and that all caches initially are empty.

Answer With an update scheme in pattern 1, the first iteration on all P processors
will incur a regular cache miss (including processor 1 when it writes) plus an update
due to the write. In subsequent k = 1 iterations, no more misses will occur and only
one update per iteration will be generated. Thus, overall we will see misses = P =
16; traffic = P = RdMiss + (kK — 1) x Update = 16 x 70 + 10 x 14 = 1,260 bytes.

With an invalidate scheme, all P processors will incur a regular cache miss in the
first iteration. In subsequent k — 1 iterations, precesser 1 will generate an upgrade,
but all others will experience a read miss. Thus, counting upgrades as misses, over-
all we will see misses = P+ (k= 1) x P=16 + 9 x 16 = 160, of which 151 are read
misses and 9 are upgrades; traffic = read misses x RdMiss + (k —= 1) = Upgrade = 151
* 70+ 9% b=100624 bytes.

VWith an update scheme on pattern 2, the first iteration will incur two regular
cache misses, one for processor 1 and the other for processor 2. In subsequent k — 1
iterations, no more misses will be generated, but A updates will be generated in
each iteration. Thus, overall we will see misses = 2; traffic = 2 x RdMiss + M =< (k- 1)
» Update =2 = 70 + 10 % 9 x 14 = 1,400 bytes.

With an invalidate scheme, two regular cache misses will occur in the first
iteration. In subsequent k - 1 iterations, one upgrade (for the first write only) plus
one regular read miss will be generated in each iteration. Thus, counting upgrades
as misses, overall we will see misses =2 + (k- 1) % 2 =2 + 9 = 11; traffic = misses x
RdMiss + (k— 1) = Upgrade = 11 x 70 + 9 x 6 = 824 bytes. B

These example patterns suggest that it might be possible o design schemes that
capture the advantages of both update and invalidate protocols. The success of such
schemes will depend on their costs and en the sharing patterns for real parallel pro-
grams and workloads. Let us briefly explore the design options and then employ
warkload-driven evaluation.

Combining Update- and Invalidation-Based Protocols

One way to take advantage of both update and invalidate protocols is to support
bath in hardware and to decide dynamically at page granularity whether coherence
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for a given page is to be maintained using an update or an invalidate protocol. The
decision about the cheice of protocol can be indicated by making a system call, The
main advantage of such schemes is that they are relatively easy to support; they uti-
lize the TLB 1o indicate to the rest of the coherence subsystem which of the two pro-
tocols 1o use. The main disadvantage of such schemes is the burden they put on the
programmer to choose protocols for pages or data structures. The decision task is
also made difficult because of the coarse granularity at which control is made avail-
able; data structures that desire different protocols may fall on the same page.

An alternative is to choose the protocol at a cache block granularity, by observing
the sharing behavior at run time. Ideally, for each write, we would like 1o he able to
peer into the future references that will be made to that cache block by all processors
and then decide whether to invalidate other copies or to do an update. Since this
information is obviously not available, and since there are substantial perturbations
due to cache replacements and lalse sharing, a more practical scheme is needed.

So-called competitive schemes change the protocol for a block between invalidate
and update in hardware based on observed patterns at run time. The key attribute of
such schemes is that if a wrong decision is made once for a cache block, the losses
due to that wrong decision should be kept bounded and small (Karlin et al. 198a).
For instance, if a block is currently using update mode, it should not remain in that
maode if one processor is continuously writing to it hut none of the other processors
are reading values [rom it

One class of schemes that has been proposed to bound the losses of update proto-
cols works as follows (Grahn, Stenstrom, and Dubois 1995). Starting with the base
Dragon update protocol described in Section 5.3.3, associate a countdown counter
with each block. Whenever a cache block is accessed by the local processor, the
counter value for that block is reset to a threshold value k. Every time an update is
received for a block, the counter is decremented. If the counter goes to zero, the
block is locally invalidated. The consequence of the local invalidations is that the
next time an update is generated on the bus, it may find that no other cache has a
valid copy; in that case, that block will switch to the modified state (as per the
Dragon protocol) and will stop generating updates. If some other processor now
accesses that block, the block will again switch to shared state and this mixed proto-
col will again start generating updates.

A related approach implemented in the Sun SparcCenter 2000 is to selectively
invalidate rather than update with some probability that is a parameter set when
configuring the machine (Catanzaro 1997). Other mixed approaches may also be
used. For example, one approach uses an invalidation-based protocol for first-level
caches and, by default, an update-based protocol for second-level caches. However,
il the I; cache receives a second update for the block while the block in the L; cache
is still invalid, then the block is invalidated in the 1; cache as well. When the block
is thus invalidated in all other L; caches, writes to the block nao longer cause
updates.
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FIGURE 5.27 Miss rates and their decompesition for invalidate, update, and hybrid proto-
cols. The data assumes 1-MB caches, 64-byte cache blocks, four-way set associativity, and threshold
k = 4 for hybrid protocal,

Workload-Driven Evaluation

To assess the trade-olls among invalidate, update, and the mixed protocols just
described, Figure 5.27 shows the miss rates by category for four applications using
the default 1-MB four-way set-associative caches with a 64-byte block size. The
mixed protocol used is the threshold-based scheme just described. We see that for
applications with significant capacity miss rates, the misses sometimes increase with
an update protocol, This makes sense because the protocol (with LRU replacement
in a set) keeps data in processor caches that would have been removed by an invali-
dation protocol. For applications with significant true sharing or false sharing miss
rates, these categories decrease with an update protocol: after a write update, the
other caches holding the blocks can access them without a miss. Overall, the update
protocol appears to be advantageous for the sum of these three categories and the
mixed protocol falls in between. The category that is not shown in this figure, how-
ever, is the upgrade or update operations for these protocols. This data is presented
in Figure 5.28. Note that the scale of the graphs has changed because update opera-
tions are roughly four times more prevalent than misses. It is useful to separate these
operations from other misses becanse the way they are handled in the machine is
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FIGURE 5.28 Upgrade and update rates for invalidate, update, and mixed protocols. The data
assurnes 1-ME caches, 64-byte cache blocks, four-way set associativity, and threshold k = 4 for hybrid
protocol. Rates are measured relative to total memaory references.

likely to be different. Updates are a single-word write rather than a full cache block
transler. Because the data is being pushed from where it is being produced, it may
arrive at the consumer before it is needed. Even for the producer, the latency of
update and upgrade operations may be less critical than that of misses since it is
quite easily hidden from the processors critical path (see Chapter 11).

Unlortunately, the traffic associated with updates is quite substantial. In large
part, this occurs because multiple writes are made by a processor to the same block
belore a read, all generating updates. With the invalidate protocol, the first of these
writes may cause an invalidation, but the rest can simply accumulate locally in the
block and be transferred in one bus transaction on a flush or a write back (sce
Example 5.12). The increased traffic canses contention and can greatly increase the
cost of misses. Sophisticated update schemes might attempt 1o delay the update to
achieve a similar effect (by merging writes in the write buffer) or use other tech-
niques to reduce traffic and improve performance (Dahlgren 1995). However, the
increased bandwidth demand, the complexity of supporting updates, the trend
toward larger cache blocks, and the pack rat phenomenon with the important case of
multiprogrammed sequential workloads underlie the trend away from update-hased
protocols in the industry. We see in Chapter 8 that update protocols also have some
other problems for scalable cache-coherent architectures, making it less attractive
for microprocessors to support these protocols.
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3.5

Having discussed how 1o keep data coherent, let us now consider how synchroni-
zation is managed in bus-based multiprocessors.

SYNCHRONIZATION

A critical interplay of hardwaure and soltware in multiprocessors arises in supporting
synchronization operations: mutual exclusion, point-to-point events, and global
events, There has been considerable debate over the years about how much hard-
ware support and exactly what hardware primitives should be provided to suppor
these synchronization operations. The conclusions have changed {rom time to time
with changes in technology and design style. Hardware support has the advantage of
speed, but moving lunclionality o software has the advantages of cost, flexibility,
and adaptability o different situations. The classic works of Dijkstra (1965} and
Knuth (1966} show that it is passible to provide mutual exclusion with only atomic
read and wrile operations (assuming a sequentially consistent memory). However,
all practical synchronization methods rely on hardware support for some sort of
atomic read-modify-write operation, in which the value of a memory location is
ensured 1o be read, modified, and written back atomically without intervening
accesses 10 the location by ather processors. Simple or sophisticated synchroniza-
tion algorithms can be built in software using these primitives,

The history of instruction sets offers a glimpse into the evolving hardware sup-
port for synchronization. One of the key instruction sel enhancements in the 1BM
370 was the inclusion of a sophisticated atomic instruction, the compareswap
instruction, 0 support synchronization in concurrent Progranuming on uniproces-
sor or multiprocessor systems, The compare&rswap compares the value in a memory
location with the value in a specified register and, if they are equal, swaps the value
in the memory location with the value in a second specilied register. The Intel x86
allows any instruction to be prefixed with a lock modifier to make it atomic; since
the source and destination operands are memory locations, much ol the instruction
set can be used 1o implement various atomic operations involving even more than
one memory location. Advocates of high-level language architecture have proposed
that the user-level synchronization operations, such as locks and barriers, should be
supported directly ac the machine level, not just atomic read-modify-write
primitives; that is, the synchronization “algorithm” itsell should be implemented in
hardware. This issue became very active during the reduced instruction set debates
since the operations that access memory were scaled back to simple loads and stores
with only one memory operand. The Sparc approach was 1o provide atomic opera-
tions involving a register or registers and a memory location using a simple swap
{atomically swapping the contenis of the specilied register and memory location)
and a compare&swap, MIPS left off atomic primitives in the early instruction sets, as
did the 1BM Power architecture used in the RS6000. The primitive that was eventu-
ally incorporated in MIPS was a novel combination of a special load and a condi-
tional store, described later in this section, which allows a variety of higher-level
read-modily-write operations to be constructed withour requiring the design 1o
implement them all. In essence, the pair of instructions can be used instead of a sin-





