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Write &

Write B FIGURE 5.12 Preserving the orders in a sequential
program running on a uniprocessor. Only the orders

Read A corresponding to the two dependence arcs must be pre-

Read B served, The first two operations can be reordered with-
out a problem, as can the last two ar the middle twa,

that seen by the programmer. On the hardware side, we assume that the sufficient
conditions must be satisfied. To do this, we need mechanisms for a processor to
detect completion of its writes so it may proceed past them (completion of reads is
easy; a read completes when the data returns to the processor) and mechanisms to
satisfy the condition that preserves write atomicity. For all the protocols and systems
considered in this chapter, we see how they satisly coherence {including write serial-
ization), how they can satisfy sequential consistency (in particular, how write com-
pletion is detected and write atomicity is guaranteed), and what shorteuts can be
taken while still satislying the sulficient conditions.

For bus-based machines, the serialization imposed by transactions appearing on
the shared bus is very useful in ordering memory operations. It is easy to verily that
the two-state write-through invalidation protocol discussed previously actually pro-
vides sequential consistency—not just coherence—quite easily. The key observation
to extend the arguments made for coherence in that system is that writes and read
misses Lo all locations, not just to individual locations, are serialized in bus order.
When a read obtains the value of a write, the write is guaranteed to have completed
since it caused a previous bus ransaction, thus ensuring write atomicity. When a
write is performed with respect to any processor, all previous writes in bus order
have completed.

DESIGN SPACE FOR SNOOPING PROTOCOLS

The beauty of snooping-based cache coherence is that the entire machinery for sol-
ving a difficult problem boils down to applying a small amount of extra interpreta-
tion to events that naturally occur in the system. The processor is completely
unchanged. No explicit coherence operations must be inserted in the program. By
extending the requirements on the cache controller and exploiting the properties of
the bus, the reads and writes thart are inherent to the program are used implicitly to
keep the caches coherent, and the serialization provided by the bus maintains con-
sistency. Each cache controller observes and interprets the bus transactions gener-
ated by others to maintain its internal state. Our initial design point with write-
through caches is not very elficient, but we are now ready to study the design space
for snooping protocols that make efficient use of the limited bandwidth of the
shared bus. All of these use write-back caches, allowing processors to write to dil-
ferent blocks in their local caches concurrently without any bus transactions. Thus,
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extra care is required to ensure that enough information is transmitted over the bus
te maintain coherence.

Recall that with a write-back cache on a uniprocessor, a processor write miss
causes the cache to read the entire block from memory, update a word, and retain the
block in modified (or dirty) state so it may be written back Lo memory on replace-
ment. In a multiprocessor, this madified state is also used by the protocols to indi-
cate exclusive ownership of the block by a cache. In general, a cache is said to be the
owner of a block if it must supply the data upon a request for that block (Sweazey
and Smith 1986). A cache is said to have an exclusive copy of a black if it is the only
cache with a valid copy of the block (main memory may or may not have a valid
copy). Exclusivity implies that the cache may modify the block without notifying
anvone else. If a cache does not have exclusivity, then it cannot write a new value
into the block before first putting a transaction on the bus to communicate with
others. The writer may have the block in its cache in a valid state, but since a trans-
action must be generated, it is called a write miss just like a write to a block that is
not present or is invalid in the cache, If a cache has the block in modihed state, then
clearly it is the owner and it has exclusivity. (The need to distinguish ownership
from exclusivity will become clear soon.)

On a wrile miss in an invalidation protocol, a special form of transaction called a
read exelusive is used to tell other caches about the impending write and to acquire a
copy of the block with exclusive ownership. This places the block in the cache in
modified state, where it may now be written, Multiple processors cannot write the
same block concurrently since this would lead to inconsistent values. The read-
exclusive bus transactions generated by their writes will be serialized by the bus, so
only one of them can have exclusive ownership of the block at a time. The cache
coherence actions are driven by these two types of transactions: read and read exclu-
sive. Eventually, when a modified block is replaced from the cache, the data is writ-
ten back to memory, but this event is not caused by a memory operation to that
block and is almaost incidental to the protocol. A block that is not in modified state
need not be written back upon replacement and can simply be dropped since mem-
ory has the latest copy. Many protocals have been devised for write-back caches, and
we examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols,
whenever a shared location is written to by a processor, its value is updated in the
caches of all other processors holding that memory block . Thus, when these pro-
cessors subsequently access that block, they can do so from their caches with low
latency, The caches ol all other processors are updated with a single bus transac-
tion, thus conserving bandwidth when there are multiple sharers. In contrast, with
invalidation-based protocols, on a write operation the cache state of that memory
block in all other processors' caches is set to invalid, so those processors will have to
obtain the block through a miss and hence a bus transaction on their next read.

3. This is a write-broadcast scenario. Read-broadeast designs have also been investigated, in which the

cache containing the madified copy flushes it to the bus when it sees a read on the bus, at which point all
other copies are updated too.
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However, subsequent writes to that block by the same processor do not create fur-
ther traffic on the bus (as they do with an update protocol) until the block is
accessed by another processor. This is attractive when a single processor performs
multiple writes to the same memory block belore other processors access the con-
tents of that memory block. The detailed trade-olls are more complex, and they
depend on the workload offered to the machine; they will be illustrated quantita-
tively in Section 5.4. In general, invalidation-based strategies have been found to be
more tobust and are therefore provided as the default protocol by most vendors.
Some vendors provide an update protocol as an option to be used for blocks corre-
sponding to selected data structures or pages.

The choices made for the protocol (update versus invalidate) and the caching
strategies directly affect the choice ol states, the state transition diagram, and the
associated actions. Substantial flexibility is available to the computer architect in the
design task at this level. Instead of listing all possible choices, let us consider three
commaon coherence protocols that will illustrate the design options.

A Three-State (MSI) Write-Back Invalidation Protocol

The first protocel we consider is a basic invalidation-based protocol for write-back
caches. [t is very similar to the protocol that was used in the Silicon Graphics 4D
series multiprocessor machines (Baskett, Jermoluk, and Solomon 1988). The proto-
col uses the three states required for any write-back cache in order to distinguish
valid blocks that are unmodified (clean) from those that are modified (dirty). Specif-
ically, the states are modified (M), shared (S), and invalid (1). Invalid has the obvious
meaning. Shared means the block is present in an unmodified state in this cache,
main memory is up-to-date, and zero or more other caches may also have an up-to-
date (shared) copy. Modified, also called dirty, means that only this cache has a valid
copy of the block, and the copy in main memory is stale. Belore a shared or invalid
block can be written and placed in the modified state, all the other potential copies
must be invalidated via a read-exclusive bus transaction. This transaction serves to
order the write as well as cause the invalidations and hence ensure that the write
becomes visible to others (write propagation).

The processor issues two types of requests: reads (PrRd) and writes (Privr). The
read ar write could be to a memory block that exists in the cache or to one that does
not. In the latter case, a block currently in the cache will have to be replaced by the
newly requested block, and if the existing block is in the modified state, its contents
will have to be written back to main memory.

We assume that the bus allows the [ollowing transactions:

B Bus Read (BusRd): This transaction is generated by a PrRd that misses in the
cache, and the processor expects a data response as a result. The cache con-
troller puts the address on the bus and asks for a copy that it does not intend
to modify. The memory system (possibly another cache) supplies the data.

m Bus Read Exclusive (BusRdX): This transaction is generated by a Prwr to a
block that is either not in the cache or is in the cache but not in the modified
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state. The cache controller puts the address on the bus and asks for an exclu-
sive copy that it intends to modify. The memory system (possibly another
cache) supplies the data. All other caches are invalidated. Once the cache
abtains the exclusive copy, the write can be performed in the cache. The pro-
cessor may require an acknowledgment as a result of this transaction.

®m Bus Write Back (BusWB): This transaction is generated by a cache controller
on a write back; the processor does not know about it and does not expect a
response, The cache controller puts the address and the contents for the mem-
ory block on the bus. The main memory is updated with the latest contents.

The bus read exclusive (sometimes called read-to-own) is the only new transac-
tion that would not exist except for cache coherence. The new action needed to sup-
port write-back protocols is that, in addition to changing the state of cached blocks,
a cache controller can intervene in an ohserved bus transaction and flush the con-
tents of the referenced block from its cache onto the bus rather than allowing the
memory to supply the data, Of course, the cache controller can also initiate bus
transactions as described above, supply data for write backs, or pick up data sup-
plied by the memory system.

State Transitions

The state transition diagram that governs a block in each cache in this snooping pro-
tocol is as shown in Figure 5.13, The states are organized so that the closer the state
is to the top, the more tightly the block is bound to that processor. A processor read
to a block that is invalid (or not present) causes a BusRd transaction to service the
miss. The newly loaded block is promoted, moved up in the state diagram, lrom
invalid to the shared state in the requesting cache, whether or not any other cache
holds a copy. Any other caches with the block in the shared state observe the BusRd
but take no special action, allowing main memory to respond with the data. How-
ever, il a cache has the block in the madified state (there can only be one} and it
observes a BusRd transaction on the bus, then it must get involved in the transaction
since the copy in main memory is stale. This cache flushes the data ento the bus. in
lieu of memory, and demotes its copy of the block to the shared state (see
Figure 5.13), The memory and the requesting cache both pick up the block. This
can be accomplished either by a direct cache-to-cache transler across the bus during
this BusRd transaction or by signaling an error on the BusRd transaction and gener-
ating a write transaction to update memory. In the latter case, the original cache will
eventually retry its request and obtain the block from memory. (It is also possible to
have the flushed data picked up only by the requesting cache but not by memory,
leaving memory still out-of-date, but this requires more states [Sweazey and Smith
1986].)

Writing into an invalid block is a write miss, which is serviced by first loading the
entire block and then modilving the desired bytes within it. The write miss generates
a read-exclusive bus transaction, which causes all other cached copies of the block
to be invalidated, thereby granting the requesting cache exclusive ownership of the
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FIGURE 5.13 Basic three-state invalidation protocol. I, 8, and | stand for medified,
shared, and invalid states, respectively. The notation A/8 means that if the controller
observes the event A from the processor side or the bus side, then in addition to the state
change, it generates the bus transaction or action 8. "—" means null action. Transitions
due to observed bus transactions are shown in dashed arcs, while those due to local pro-
cessar actions are shown in bold arcs. If multiple A/B pairs are assaciated with an arc, it sim-
ply means that multiple inputs can cause the same state transition. For completeness, we
should specify actions from each state corresponding to each observable event. If such
transitions are not shown, it means that they are uninteresting and no action needs to be
taken. Replacements and the write backs they may cause are not shown in the diagram for
simplicity.

block. The block of data returned by the read exclusive is promoted to the modified
state, and the desired bytes are then written into it. If another cache later requests
exclusive access, then in response to its BusRdX transaction this block will be inval-
idated (demoted to the invalid state) after flushing the exclusive copy to the bus.
The most interesting transition occurs when writing into a shared block. As dis-
cussed earlier, this is treated essentially like a write miss, using a read-exclusive bus
transaction to acquire exclusive ownership; we refer to it as a write miss throughout
the book. The data that comes back in the read exclusive can be ignored in this case,
unlike when writing to an invalid or not present block, since it is already in the
cache, In lact, a common optimization to reduce data traffic in bus protocols is to
introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr obtains exclusive ownership just like a BusRdX, by causing other copies to
be invalidated, but it does not cause main memory or any cther device to respond
with the data lor the block. Regardless of whether a BusUpgr or a BusRdX is used
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(let us continue to assume BusRdX), the block in the requesting cache transitions to
the maodified state. Additional writes to the block while it is in the modified state
generate no additional bus transactions.

A replacement of a block from a cache logically demotes the block to invalid (not
present) by removing it from the cache. A replacement therefore causes the state
machines for two blocks to change states in that cache; the one heing replaced
changes from its current state to invalid, and the one being brought in changes from
invalid (not present) to its new state. The latter state change cannot take place
helore the former, which requires some care in implementation. 1f the block heing
replaced was in modified state, the replacement transition from M to [ generates a
write-back transaction. No special action is taken by the other caches on this trans-
action, If the block being replaced was in shared or invalid state, then it itself does
not cause any transaction on the bus. Replacements are not shown in the state dia-
gram [or simplicity.

Note that to specify the protocol completely, for each state we must have oul-
going arcs with labels corresponding to all observable events (the inputs from the
processor and bus sides) and must show the actions corresponding to them. Ol
course, the actions and state transitions can be null sometimes, and in that case we
may either explicitly specily null actions (see states 5 and M in Figure 5.13), or we
may simply omit those arcs from the diagram (see state I}, Also, since we treat the
nat-present state as invalid, when a new block is brought into the cache on a miss,
the state transitions are performed as if the previous state of the block was invalid.
Example 5.6 illustrates how the state transition diagram is interpreted.

EXAMPLE 5.6 Using the M5l protocol, show the state transitions and bus transactions

for the scenario depicted in Figure 5.3.

Answer The results are shown in Figure 5.14. W

With write-back protocels, a block can be written many times before the memaory
is actually updated, A read may obtain data not from memory but rather from a
writer's cache, and in fact it may be this read rather than a replacement that causes
memory to be updated. In addition, write hits do not appear on the bus, so the con-
cept of a write being performed with respect to other processors is a little different.
In fact, to say that a write is being performed means that the write is being “made
visible." A write to a shared or invalid block is made visible by the bus read-exclu-
sive transaction it triggers. The writer will “observe” the data in its cache after this
transaction. The write will be made visible to other processors by the invalidations
that the read exclusive generates, and those processors will experience a cache miss
helore actually observing the value written. Write hits to a modified block are visible
to other processors but again are observed by them only after a miss through a bus
transaction. Thus, in the MSI protocol, the write to a nonmodified block is per-
formed or made visible when the BusRdX transaction occurs, and the write to a
maodified block is made visible when the block is updated in the writer’s cache.
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Processor Action  Statein Py Statein P, 5State in Py Bus Action Data Supplied By

1. B, reads u 5 = T Bushd Memory
2. P2 reads u 5 — = BusRd Memory
3. P; writes u I = M BusHdX Memory
i Py reads u g — g BuzhRd P4 cacha
5. P; reads u 5 S 3 BusRd Memoxry

FIGURE 5.14 The three-state invalidation protocol in action for processor transactions
shown in Figure 5.3. The figure shows the state of the relevant memaory block at the end of 2ach pro-
cessor action, the bus transaction generated {if any), and the entity supplying the data.

Satisfying Coherence

Since both reads and writes can take place withour generating bus transactions in a
write-back protocol, it is not obvious that it satisfies the conditions for coherence,
much less sequential consistency. Let’s examine coherence first. Write propagation is
clear from the preceding discussion, so let us focus on write serialization. The read-
exclusive transaction ensures that the writing cache has the only valid copy when
the block is actually written in the cache, just like a write transaction in the write-
through protocol. It is followed immediately by the corresponding write being per-
[ormed in the cache before any other hus transactions are handled by that cache
controller, so it is ordered in the same way for all processors (including the writer)
with respect to other bus transactions. The only difference from a write-through pro-
tocol, with regard to ordering operations to a location, is that not all writes generate
bus transactions. However, the key here is that between two transactions for that
block that do appear on the bus, only one processor can perform such write hits;
this is the processor (say, P} that performed the most recent read-exclusive bus
transaction w for the block. In the serialization, this sequence of write hits therelore
appears (in program order) between w and the next bus transaction for that block.
Reads by processor P will clearly see them in this order with respect to other writes.
For a read by another processor, there is at least one bus transaction for that block
that separates the completion ol that read from the completion of these write hits.
That bus transaction ensures that that read also sees the writes in the consistent
serial order. Thus, reads by all processors see all writes in the same order.

Satislying Sequential Consistency

To see how SC is satisfied, let us first appeal to the definition itsell and see how a
consistent global interleaving of all memory operations may be constructed. As with
write-through caches, the serial arbitration lor the bus in fact defines a total order on
bus transactions for all blocks, not just those for a single block. All cache controllers
observe read and read-exclusive bus transactions in the same order and perform
invalidations in this order. Between consecutive bus transactions, each processor
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performs a sequence of memory operations (read and write hits) in program order.,
Thus, any execution of a program defines a natural partial order;

A memory operation M, is subsequent to operation M, it (1) the operations are issued by
the same processor and M; lollows M; in program order, or {2} M, generates a bus transac-
tion that [ollows the memory operation for M;.

This partial order looks graphically like that of Figure 5.6, except the local sequence
within a segment has writes as well as reads and both read-exclusive and read bus
transactions play important roles in establishing the orders. Between bus transac-
tions, any interleaving of the sequences of local operations (hits) from different pro-
cessors leads to a consistent total order. For writes that occur in the same segment
between bus transactions, a processor will observe the writes by other processors
ordered by bus transactions that it generates, and its own writes ordered by program
order.

We can also see how SC is satisfied in terms of the sufficient conditions, Write
completion is detected when the read-exclusive bus transaction occurs on the bus
and the write is performed in the cache. The read completion condition, which pro-
vicles write atomicity, is met because a read either (1) causes a bus transaction that
follows that of the write whose value is being returned, in which case the write must
have completed globally before the read; (2) follows such a read by the same proces-
sor in program order; or {3) follows in program order on the same processor that
performed the write, in which case the processor has already waited for the write to
complete (become visible} globally. Thus, all the sufficient conditions are easily
guaranteed. We return to this topic when we discuss implementing protocols in
Chapter 6.

Lower-Level Design Choices

To illustrate some of the implicit design choices that have been made in the protocol,
let us examine more closely the transition from the M state when a BusRd for that
block is ohserved. In Figure 5.13, we transition to state S and flush the contents of
the memory block to the bus. Although it is imperative that the contents are placed
on the bus, we could instead have transitioned to state 1, thus giving up the block
entirely. The choice of going to § versus 1 reflects the designers assertion that the
original processor is more likely to continue reading the block than the new proces-
sor is to write to the memory block. Intuitively, this assertion holds for mostly read
data, which is common in many programs. However, a common case where it does
not hold is for a flag or buffer that is used to transfer information back and forth
between processes: one processor writes it, the other reads it and modifies it, then
the first reads it and modibes it, and so on. Accumulations into a shared counter
exhibit similar migratory behavior across multiple processors. The problem with
betting on read sharing in these cases is that every write has to first generate an
invalidation, thereby increasing its latency. Indeed. the coherence protocol used in
the early Synapse multiprocessor made the alternate choice of going directly [rom M
1o I state on a BusRd, thus betting the migratory pattern would be more frequent.
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Some machines (Sequent Symmetry model B and the MIT Alewife) attempt to adapt
the protocol when such a migratory access pattern is observed (Cox and Fowler
1993: Dahlgren, Dubois, and Stenstrom 1994 ), These choices can allect the perlor-
mance ol the memory system, as we see later in the chapter.

A Four-State (MESI) Write-Back Invalidation Protocol

A concern arises with our MSI protocol if we consider a sequential application run-
ning on a multiprocessor. Such multiprogrammed use in fact constitutes the most
common workload on small-scale multiprocessors. When the process reads in and
modifies a data item, in the M5] protocol two bus transactions are generated even
though there are never any sharers. The first is a BusRd that gets the memory block
in 5 state, and the second is a BusRdX (or BusUpgr) that converts the block from 5
to M state. By adding a state that indicates that the block is the only (exclusive) copy
but is not modified and by loading the bleck in this state, we can save the later
transaction since the state indicates that no other processor is caching the block.
This new state, called exclusive-clean or exclusive-unowned (or even simply “exclu-
sive”), indicates an intermediate level of binding between shared and modihed. It is
exclusive, so unlike the shared state, the cache can perform a write and move to the
maodified state without further bus transactions; but it does not imply ownership
(memory has a valid copy), so unlike the modified state, the cache need not reply
upon observing a request for the block. Variants of this MESI protocol are used in
many modern microprocessors, including the Intel Pentium, PowerPC 601, and the
MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. It was first
published by researchers at the University of llinois at Urbana-Champaign (Papa-
marcos and Patel 1984) and is often referred to as the Illinois protocol (Archibald
and Baer 1986).

The MESI protocol thus consists of four states: modified (M) or dirty, exclusive-
clean (E). shared (S), and invalid (1). M and 1 have the same semantics as belore, E,
the exclusive-clean or exclusive state, means that only one cache (this cache) has a
copy of the block and it has not been modified (i.e., the main memory is up-to-date).
S means that potentially two or more processors have this block in their cache in an
unmaodified state. The bus transactions and actions needed are very similar to those
for the MSI protocol.

State Transitions

When the block is first read by a processor, il a valid copy exists in another cache,
then it enters the processor’s cache in the 5 state, as usual. However, if no other
cache has a copy at the time (for example, in a sequential application), it enters the
cache in the E state. When that block is written by the same processor, it can directly
transition from E to M state without generating another bus transaction since no
other cache has a copy. If another cache had obtained a copy in the meantime, the
state of the block would have been demoted from E to 5 by the snooping protocol.
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This protocel places a new requirement on the physical interconnect of the bus.
An additional signal, called the shared signal (S), must be available to the controllers
in order to determine on a BusRd if any other cache currently holds the data. During
the address phase of the bus transaction, all caches determine if they contain the
requested block and, if so, assert the shared signal. This signal is a wired-OR line, so
the controller making the request can observe whether any other processors are
caching the referenced memory block and can thereby decide whether to load a
requested block in the E state or the 5 state.

Figure 5.15 shows a state transition diagram for a MESI protocol, still assuming
that the BusUpgr transaction is not used. The notation BusRd(S5) means that the bus
read transaction caused the shared signal § to be asserted; BusRd(S) means S was
unasserted. A plain BusRd means that we don't care about the value of 5 [or that
transition. A write to a block in any state will promote the block to the M state, but
if it was in the E state, then no bus transaction is required. Observing a BusRd will
demaote a block from E 1o S since now another cached copy exists. As usual, ohserv-
ing a BusRd will demote a block from M to S state and will also cause the block to be
flushed onto the bus; here too, the block may be picked up only by the requesting
cache and not by main memory, but this may require additional states beyond MESL
(A fifth, owned state may be added, which indicates that even though other shared
copies of the block may exist, this cache [instead of main memory] is responsible for
supplying the data when it observes a relevant bus transaction. This leads to a five-
state MOESI protocol [Sweazey and Smith 1986].) Notice that it is possible for a
block to be in the 5 state even if no other copies exist since copies may be replaced
(S —+ 1} without notilying other caches. The arguments [or satislying coherence and
sequential consistency are the same as in the MS5I protocol.

Lower-Level Design Choices

An interesting question for bus-based protocols is who should supply the block for a
BusRd transaction when both the memory and another cache have a copy of it. In
the original (Illinois) version of the MESI protocol, the cache rather than main
memory supplied the data—a technique called cache-to-cache sharing, The argument
[or this approach was that caches, being constructed out of SRAM rather than
DRAM, could supply the data more quickly. However, this advantage is not necessar-
ily present in modern bus-based machines, in which intervening in another proces-
sor's cache to obtain data may be more expensive than obtaining the data from main
memory. Cache-to-cache sharing also adds complexity to a bus-based protocol: main
memory must wait until it is certain that no cache will supply the data before driving
the bus, and if the data resides in multiple caches, then a selection algorithm is
needed to determine which one will provide the data. On the other hand, this
technique is useful for multiprocessors with physically distributed memory (as we
sce in Chapter 8) because the latency to obtain the data from a nearby cache may be
much smaller than that for a faraway memory unit. This effect can be especially
important for machines constructed as a network of SMP nodes because caches
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FIGURE 5.15 State transition diagram for the lllinois MESI protocol. MESI stands
for the modified (dirty}, exclusive, shared, and invalid states, respectively. The notation is
the same as that in Figure 5.13. The E state helps reduce bus traffic for sequential programs
where data is not shared. Whenever feasible, the [llinois version of the MESI protocol makes
caches, rather than main memory, supply data for BusRd and BusRdX tranmsactions. Since
multiple processors may have a copy of the memory block in their cache, we need to select
only one to supply the data on the bus. Flush’ is true only for that processor; the remaining
pracessors take their usual action {invalidation or no action). In general, Flush® in a state
diagram indicates that the block is flushed only if cache-to-cache sharing is in use and then
only by the cache that is responsible for supplying the data,

within the requestor’s SMP node may supply the data. The Stanford DASH multipro-
cessor (Lenoski et al. 1993) used such cache-to-cache transfers for this reason.

A Four-State (Dragon) Write-Back Update Protocol

Let us now examine a basic update-based protocol for write-back caches, This proto-
col was hirst propesed by researchers at Xerox PARC [or their Dragon multiprocessor
system (McCreight 1984; Thacker, Stewart, and Satterthwaite 1988), and an
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enhanced version of it is used in the Sun SparcServer multiprocessors (Catanzaro
1997).

The Dragon protocol consists of four states: exclusive-clean (E), shared-clean
(5¢). shared-modified (Sm), and modified (M), Exclusive-clean (or exclusive) has
the same meaning and the same motivation as before: enly one cache (this cache)
has a copy of the block, and it has not been modified (i.e., the main memory is up-
to-date). Shared-clean means that potentially two or more caches (including this
one) have this block, and main memory may or may not be up-to-date, Shared-
modificd means that potentially two or more caches have this block, main memory is
not up-to-date, and it is this cache’s responsibility to update the main memory at the
time this block is replaced from the cache (ic., this cache is the owner). A block
may be in Sm state in only one cache at a time. However, it is quite possible that one
cache has the block in Sm state, while others have it in Sc state. Or it may be that no
cache has it in Sm state, but some have it in Sc state. This is why, when a cache has
the block in Sc state, memory may or may hot be up-to-date; it depends on whether
some other cache has it in Sm state. M signifies exclusive ownership as before: the
hock is modified (dirty) and present in this cache alone, main memory is stale, and
it is this caches responsibility to supply the data and to update main memory on
replacement. Note that there is no explicit invalid (I} state as in the previous proto-
cols. This is because Dragon is an update-based protocol; the protocol always keeps
the blocks in the cache up-to-date, so it is always okay to use the data present in the
cache if the tag match succeeds. However, if a block is not present in a cache at all, it
can be imagined in a special invalid or not-present state.?

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the [llineis MES] protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWwr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two maore request types: processor
read miss (PrRdMiss) and write miss (FrWwrMiss). As [or bus mransactions, we have
hus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The
BusUpd transaction takes the specific word (or bytes) written by the processor and
broadeasts it on the bus so that all other processors’ caches can update themselves.
By broadcasting only the contents of the specific modified word rather than the
whaole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state, a shared signal (5) is available to the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
locally cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

4. Logically, there is another state as well, but it is rather crude and is used o bootstrap the protacol. A
“miss mode” bit is provided with each cache line 10 force 3 miss when that block is accessed. Initializa-
tion software reads data into every line in the cache with the miss moede bit amed on o ensure that the
processor will miss the first time it references a block that maps to that line, After this first miss, the miss
moede bit is turned oll and the cache operates normally,
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Prid/—
Prid/— BusUpd/Update
; BusRdi—
PrRdMiss/BusRdis) - Pridhiss/BusRd(s)
Pritri—
Prvr/Buslpd(S)

Priériviissf(BusRd(S); BusUpd} Prvrivliss/BusRd(S)

PrindriBusUpdis)
BusUpel/Update |
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FritdrBusUpd(s) PrRd/—
BusRd/Flush P/ —

FIGURE 5.16 State transition diagram for the Dragon update protocol. The four states are
exclusive (E), shared-clean (5c), shared-maodified (Sm), and modified (M), There is no invalid () state
because the update protocol always keeps blocks in the cache up-to-date.

State Transitions

Figure 3.16 shows the state transition diagram lor the Dragon update protocol. To
take a processor-centric view, we can explain the diagram in terms of actions taken
when a cache incurs a read miss, a write (hil or miss), or a replacement (no action is
ever taken on a read hit).

m Read miss: A BusRd transaction is generated. Depending on the status of the
shared signal (S), the block is loaded in the E or Sc state in the local cache. TF
the hlock is in M or Sm states in one of the other caches, that cache asserts the
shared signal and supplies the latest data for that block on the bus, and the
block is loaded in the local cache in Sc state. If the other cache had it in state
M, it changes its state to Sm. If the block is in Sc state in other caches, memory
supplies the data, and it is loaded in Sc state. If no other cache has a copy, then
the shared line remains unasserted, the data is supplied by the main memory,
and the black is loaded in the local cache in E state.

m Write: If the block is in the M state in the local cache, then no action needs to
be taken. If the block is in the E state in the local cache, then it changes to M
state and again no further action is needed. If the block is in Sc or Sm state,
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however, a BusUpd transaction is generated. 1f any other caches have a capy of
the data, they assert the shared signal, update the corresponding bytes in their
cached copies, and change their state to 5c il necessary. The local cache also
updates its copy of the block and changes its state to Sm il necessary. Main
memory is not updated. If no other cache has a copy of the data, the shared
signal remains unasserted, the local copy is updated, and the state is changed
to M. Finally, if on a write the block is not present in the cache, the write is
treated simply as a vead-miss transaction followed by a write transaction,
Thus, first a BusRd is generated. I the block is also found in other caches, a
BusUpd is generated, and the block is loaded locally in the Sm state; other-
wise, the block is loaded locally in the M state.

m Replacement: On a replacement (arcs not shown in the hgure), the block is
writtent back to memory using a bus transaction only if it is in the M or 5m
state. I it ig in the Se state, then either some other cache has it in Sm state or
none does, in which case it is already valid in main memory.

Example 5.7 illustrates the transitions for a familiar scenario.

EXAMPLE 5.7 Using the Dragon update protocol, show the state transitions and bus
transactions for the scenario depicted in Figure 5.3,

Answer The results are shown in Figure 5.17. We can see that, whereas for processor
actions 3 and 4 only one word is transferred on the bus in the update protocol, the
whaole memory block is transferred twice in the invalidation-based protocol. Of
course, it is easy to construct scenarios in which the invalidation protocol does
much better than the update protocol, and we discuss the detailed trade-offs in
Section 5.4. B

Lower-Level Design Choices

Again, many implicit design choices have been made in this protocol. For example,
it is [easible to eliminate the shared-modified state. In fact, the update protocol used
in the DEC Firefly multiprocessor does exactly that. The rationale is that every time
the BusUpd transaction occurs, main memory can also update its contents along
with the other caches holding that block; therefore, shared clean suffices, and a
shared-modified state is not needed. The Dragon protocol is instead based on the
assumption that the SRAM caches are much quicker to update than the DRAM main
memory, so it is inappropriate to wait for main memory to be updated on all BusUpd
transactions. Another subtle choice relates to the action taken on cache replace-
ments. When a shared-clean block is replaced, should other caches be informed of
that replacement via a bus transaction so that if only one cache remains with a copy
of the memory block, it can change its state to exclusive or modihed? The advantage
of doing this would be that the bus transaction upon the replacement might not be
in the critical path of a memory operation, whereas the later bus transaction that it
saves might be.

Since all writes appear on the bus in an update protocol, write serialization, write
completion detection, and write atomicity are all quite straightforward with a simple
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Processor Action  Statein Py StateinP; Statein P;  Bus Action  Data Supplied By

1. P; reads u E - - BusRd Memory
2, Py reads u Sc - Sc BusRd Memory
3. Py writes u Sc = 5 BusUpd Py cache
&, P; reads u 5a - 8m null -

2. Ps reads u Sc Se Sm BusRd Py cache

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in
Figure 5.3. The figure shows the state of the relevant memary block at the end of each processor
action, the bus transaction generated {if any), and the entity supplying the data.

3.4

atomic bus, a lot like they were in the write-through case. However, with both
invalidation- and update-based protecols, we must address many subtle implemen-
tation issues and race conditions, even with an atomic bus and a single-level cache.
We discuss this next level of protocol and hardware design in Chapter 6, as well as
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and
hardware techniques that can reorder the completion of memory operations. None-
theless, we can gquantify many protocol trade-olls even at the state diagram level that
we have been considering so far.

ASSESSING PROTOCOL DESIGN TRADE-OFFS

Like any other complex system, the design of a multiprocessor requires many inter-
related decisions to be made. Even when a processor has been picked, we must
decide on the maximum number of processors to be supported by the system, vari-
ous parameters of the cache hierarchy (e.g., number of levels in the hierarchy, and
for each level the cache size, associativity, block size, and whether the cache is write
through or write back), the design of the bus (e.g., width of the data and address
buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of internal buffers), and the design of the
/O subsystem. Many of the issues are similar to those in uniprocessors (Smith 1982}
but accentuated. For example, a write-through cache standing before the bus may be
a poor choice for multiprocessors because the bus bandwidth is shared by many pro-
cessors, and memory may need to be more greatly interleaved because it services
cache misses from multiple processors. Greater cache associativity may also be use-
ful in reducing conflict misses that generate bus tralfic,

The cache coherence protocel is a crucial new design issue for a multiprocessor.
It includes protocol class (invalidation or update), protocol states and actions, and
lower-level implementation trade-offs. Protocol decisions interact with all the other
design issues. On the one hand, the protocal influences the extent to which the
latency and bandwidth characteristics of system components are stressed; on the
other, the performance characteristics as well as the organization of the memory and
communication architecture influence the choice of protocols. As discussed in





