5.2

5.2 Memory Consistency 283

b — @D E W= ® ®
b — @ —=® O—-O>®

Py ®*=®—=®) E=® ®

FIGURE 5.6 Partial order of memory operations for an execution with the write-
through invalidation protocol. Write bus transactions define a global sequence of
events between which individual processors read locatiens in program order. The execution
is consistent with any total order obtained by interleaving the processor orders within each
segment.

Answer A single processor will generate 30 million stores per second (0.15 stores per

instruction = 1 instruction per cycle = 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240 MB of data per second per processor. Even ig-
noring address and other information and ignoring read misses, a 1-GB/s bus will
therefore support only about four processors. B

For most applications, a write-back cache would absorb the vast majority of the
writes. However, if writes do not go to memory, they do not generate bus transac-
tions, and it is no longer clear how the other caches will observe these modifications
and ensure write propagation. Also, when writes to different caches are allowed Lo
occur concurrently, no obvious ordering mechanism exists to sequence the writes.
We will need somewhat more sophisticated cache coherence protocols to make the
“critical” events visible to the other caches and to ensure write serialization.

The space of protocols for write-back caches is quite large. Belore we examine it,
let us step back Lo the more general ordering issue alluded to in the introduction to
this chapter and examine the semantics of a shared address space as determined by
the memory consistency model.

MEMORY CONSISTENCY

Coherence, on which we have focused so far, is essential if information is to be
transferred between processors by one writing to a location that the other reads.
Eventually, the value written will become visible to the reader—indeed to all read-
ers. However, coherence says nothing about when the write will become visible.
Often in writing a parallel program, we want to ensure that a read returns the value
ol a particular write; that is, we want to establish an order between a write and a
read. Typically, we use some form of event synchronization to convey this depen-
dence, and we use more than one memory location.

284 cHAPTER 5 Shared Memory Multiprocessors

Consider, for example, the code fragments executed by processors Py and P, in
Figure 5.7, which we saw when discussing point-to-point event synchronization in a
shared address space in Chapter 2. It is clear that the programmer intends for pro-
cess P o spin idly until the value of the shared variable £ lag changes to 1 and then
to- print the value of variable & as 1, since the value of & was updated before that of
£lag by process Py. In this case, we use accesses to another location (£1ag) to pre-
serve a desired order of different processes’ accesses to the same location (2). In par-
ticular, we assume that the write of & becomes visible to P; before the write to £1ag
and that the read of £1ag by P, that breaks it out of its while loop completes belore
its read ol & (a print operation is essentially a read). These program orders within
Py and P4 accesses to different locations are not implied by coherence, which, lor
example, only requires that the new value for & eventually become visible to process
P, not necessarily before the new value of f1ag is observed.

The programmer might try to avoid this issue by using a barrier or other explicit
event synchronization, as shown in Figure 5.8. We expect the value ol & 1o be
printed as 1 since & was set to 1 before the barrier. Even this approach has twe
potential problems, however. First, we are adding assumptions to the meaning of the
barrier: not only do processes wait at the barrier until all of them have arrived, they
alsp wait until all writes issued prior to the barrier have become visible o the other
processors, Second, a barrier is often built using reads and writes o erdinary shared
variables (e.g., bl in the figure) rather than with specialized hardware support. In
this case, as far as the machine is concerned, it sees only accesses to different shared
variables in the compiled code, not a special barrier operation. Coherence does not
say anything at all about the order among these accesses.

Clearly, we expect more from a memory system than to “return the last value
written” for each location. To establish order among accesses to the same location
(say,) by different processes, we sometimes expect a memory system to respect the
order of reads and writes to different locations (& and £1ag or A4 and k1) issued by
the same process. Coherence says nothing about the order in which writes to differ-
ent locations become visible. Similarly, it savs nothing about the order in which the
reads issued to different locations by P5 are perlormed with respect to Py. Thus,
coherence does not in itsell prevent an answer of 0 from being printed by either
example, which is certainly not what the programmer had in mind.

In other situations, the programmer’s intention may not be so clear. Consider the
example in Figure 3.9. The accesses made by process Py are ordinary writes, and A
and B are not used as flags or synchronization variables. Should we intuitively
expect that if the value printed for B is 2, then the value printed for & is 17 Whatever
the answer, the two print statements read different locations and coherence says
nothing about the order in which the writes by Py become visible to P3. This exam-
ple is in fact a fragment from Dekkers algorithm (Tanenbaum and Woodhull 1997)
to determine which of two processes arrives first at a critical point as a step in ensur-
ing mutual exclusion. The algorithm relies on writes to distinct locations by a pro-
cess becoming visible to other processes in the order in which they appear in the

5.2 Memory Consistency 285

P, P,

*Assume initial value of A and flag is 0/
e while (flag. == 0); Mspinidly*/
flag = 1: print A;

FIGURE 5.7 Requirements of event synchronization through flags. The figure
shows two processors concurrently executing twio distinct code fragments. For programs-
mer intuition to be maintained, it must be the case that the printed value of 2 i5 1. The
intuition is that because of program order, if flag =1 is visible to pracess P, then it must

also be the case that & = 1 is visible to P5.

P4 P2

FHAssume initial value of A is 0%/

=== WHARRTER fhl:) = = =St — S HERETER (= == f=ilia

print’ Aj;

FIGURE 5.8 Maintaining order among accesses to a location using explicit syn-
chronization through barriers. As in Figure 5.7, the programmer expects the value
printed for & to be 1 since passing the barrier should imply that the write of by Py has
already completed and is therefore visible to P,

Py P2
A Assume initial values of A and B are 0%/
(la) Ra= (Za) print B;
LE BiE= 2 (2b} print A;

FIGURE 5.9 Order among accesses without synchronization. Here it is less clear
what a programmer should expect since neither a flag nor any other explicit event synchro-
nization is used.

program. Clearly, we need something more than coherence to give a shared address
space a clear semantics, that is, an ordering model that programmers can use Lo rea-
son about the possible results and hence the correciness of their programs.

A memory consistency model for a shared address space specifies constraints on the
order in which memory operations must appear to be performed (i.e., to become vis-
ible to the processors) with respect to one another. This includes operations to the
same locations or to different locations and by the same process or different pro-
CESSES, 50 in this sense MEmory C-I.'.!l]'.IE'IIST.E]'.I.C‘I!P S-UL'!'SHHTES CGI'!-E‘:],'E:TLEE,

=

286 cHAPTER 5 Shared Memory Multiprocessors

5.2.1

Sequential Consistency

In the discussion in Chapter 1 of fundamental design issues [or a communication
architecture, Section 1.4 described informally a desirable ordering model lor a
shared address space: the reasoning that allows a multithreaded program to work
under any possible interleaving on a uniprocessor should hold when some of the
threads run in parallel on different processors. The ordering of data accesses within
a process was therefore the program order, and that across processes was some inter-
leaving of the program orders. That is, the multiprocessor case should not be able to
cause values to become visible to processes in the shared address space in a manner
that ne sequential interleaving ol accesses [rom different processes can generate.
This intuitive model was [ormalized by Lamport as sequential consistency (5C),
which is defined as follows (Lampaort 1979):!

A multiprocessor is sequentially consistent il the result of any execution is the same as if the
operations of all the processors were exccuted in some sequential order, and the oper-
ations of each individual processor occur in this sequence in the order specified by its
program.

Figure 5.10 depicts the abstraction of memory provided to programmers by a
sequentially consistent system (Adve and Gharachorloo 1996). Tt is similar to the
machine model we used to introduce coherence, though now it applies to multiple
memory locations. Multiple processes appear to share a single logical memory, even
though in the real machine main memory may be distributed across multiple proces-
sors, each with their own private caches and buffers, Every process appears to issue
and complete memory operations one at a time and atomically in program order;
that is, a memory operation does not appear to be issued until the previous one from
that process has completed. In addition, the common memory appears to service
these requests one at a time in an interleaved manner according to an arbitrary (but
hopefully [air) schedule. Memory operations appear atomic in this interleaved order;
that is, it should appear globally (1o all processes) as if one operation in the consis-
tent interleaved order executes and completes belore the next one begins.

As with coherence, it is not important in what order memory operations actually
issue or even complete. What matters [or sequential consistency is that they appear
to complete in a manner that satishes the constraints just described. In the example
in Figure 5.9, under SC the result (0, 2) lor (&, B} would not be allowed—preserv-
ing our intuition—since it would then appear that the writes of 2 and B by process
Py executed out ol program order. However, the memory operations may actually
execute and complete in the order 11, 12, 2b, 2a. It does not matter that they actu-
ally complete out of program order since the results of the execution (1, 2) are the
same as il the operations were executed and completed in program order. On the
other hand, the acwal execution order 1b, 2a, 21, 1a would not be sequentially
consistent since it would produce the result {0, 2), which is not allowed under SC.
Other examples illustrating the intuitiveness of sequential consistency ean be found

. Two closely related concepis in sofiware sysiems are serializability (Papadimitiouw 1979) for concurrem

updates 1o a database and linearizability {Herlihy and Wing 1987) for concurrent objects,

3.2 Memory Consistency 287

Processars
iSSUING mMemory @ @ o
references as
per program arder ff_,_f
.,-F""'-FF
,ﬂf
asase @

The "switch” is randomly
set after each memory
reference

Mermory

FIGURE 5.10 Programmer's abstraction of the memory subsystem under the
sequential consistency madel. The model completely hides the underlying cancurrency
in the memory system hardware {2.9., the possible existence of distributed main memaory,
the presence of caches and write buffers) frem the programmer.

in Exercise 5.6. Note that 5C does not obviate the need for synchronization. The rea-
son is that SC allows operations from different processes to be interleaved arbitrarily
and does so at the granularity of individual instructions. Synchronization is needed
if we want to preserve atomicity (mutual exclusion) across multiple memory opera-
tions from a process or il we want to enforce constraints on the interleaving across
ProCesses.

The term “program order” also bears some elaboration. Intuitively, program order
for a process is simply the order in which statements appear according to the source
code that the process executes; more specifically, it is the order in which memory
operations oceur in the assembly code that results from a straightforward translation
of source statements one by one to machine instructions. This is not necessarily the
order in which an optimizing compiler presents memory operations to the hardware
since the compiler may reorder memory operations (within certain constraints, such
as preserving dependences to the same location). The programmer has in mind the
order of statements in the source program, but the processor sees enly the order of
the machine instructions. In fact, there is a “program order” at each of the interfaces
in the parallel computer architecture—particularly the programming model inter-
face seen by the programmer and the hardware/software interface—and ordering
models may be defined at each. Since the programmer reasons with the source pro-
gram, it makes sense to use this to define program order when discussing memory
consistency models; that is, we will be concerned with the consistency model pre-
sented by the language and the underlying system to the programmer.

Implementing SC requires that the system (software and hardware) preserve the
intuitive constraints defined previously. There are really twa constraints. The first is
the program order requirement: memory operations ol a process must appear to

288

CHAPTER 3 Shared Memory Multiprocessors

become visible—to itself and others—in program order. The second constraint
guarantees that the total order or the interleaving across processes is consistent for
all processes by requiring that the operations appear atomic. That is, it should
appear that one operation is completed with respect to all processes belore the next
one in the total order is issued (regardless of which process issues it). The tricky
part of this second requirement is making writes appear atomic, especially in a sys-
tem with multiple copies of a memory word that need to be informed on a write.
The write atomicity requirement, included in the preceding definition of sequential
consistency, implies that the position in the total order at which a write appears o
perform should be the same with respect to all processors. It ensures that nothing a
processor does alter it has seen the new value produced by a write (e.g., another
write that it issues) becomes visible 1o other processes before they oo have seen the
new value for that write. In effect, the write atomicity required by 5C extends the
write serialization required by coherence: while write serialization says that writes
to the same location should appear to all processors to have occurred in the same
order, write atomicity says that all writes (1o any location) should appear to all pro-
cessors to have occurred in the same order. Example 5.4 shows why write atomicity
15 Important.

EXAMPLE 5.4 Consider the three processes in Figure 5.11. Show how not preserving

write atomicity violates sequential consistency.

Answer 5ince P; waits until ~ becomes 1 and then sets E to 1, and since P53 waits until

2 becomes 1 and only then reads the value of 2, from transitivity we would infer
that P5 should find the value of & to be 1. If P5 is allowed to go on past the read of
2 and write B before it is guaranteed that P; has seen the new value of 2, then Ps
may read the new value of B but read the old value of A (e.q., from its cache),
violating our sequentially consistent intuition. M

More formally, each processs program order imposes a partial order on the set of
all operations; that is, it imposes an ordering on the subset of the operations that are
issued by that process. An interleaving of the operations from different processes
defines a total order on the set of all operations. Since the exact interleaving is not
defined by SC, interleaving the partial (program) orders [or different processes may
yield a large number of possible total orders. The following definitions therefore

apply:

B Sequentially consistent execution, An execution ol a program is said to be se-
quentially consistent il the results it produces are the same as those produced
by any one of the possible total orders (interleavings) as defined earlier. That
is, a total order or interleaving of program orders from processes should exist
that yields the same result as the actual execution.

B Sequentially consistent system. A system is sequentially consistent if any possi-
ble execution on that system is sequentially consistent,

5.2.2

5.2 Memory Consistency 283

Py P5 Py
— - while [(A==0);
B=1; p while (B==0);

-
il
e

printi A

FIGURE 5.11 Example illustrating the importance of write atomicity for sequen-
tial consistency

Sufficient Conditions for Preserving Sequential Consistency

Having discussed the definitions and high-level requirements, let us see how a mul-
tiprocessor implementation can be made to satisfy SC. It is possible to define a set of
sufficient conditions that will guarantee sequential consistency in a multiproces-
sor—whether bus-based or distributed, cache-coherent or not. The following set,
adapted from its original form (Duhois, Scheurich, and Briggs 1986; Scheurich and
Dubois 1987), is relatively simple:

1. Every process issues memory operations in program order.

2. After a write operation is issued, the issuing process waits lor the write to
complete before issuing its next operation.

3. Alter a read operation is issued, the issuing process waits for the read to com-
plete, and [or the write whose value is being returned by the read to complete,
before issuing its next operation. That is, if the write whaose value is being
returned has performed with respect to this processor (as it must have if its
value is being returned), then the processor should wait until the write has
performed with respect to all processors.

The third condition is what ensures write atomicity and is quite demanding. 1t is
not a simple local constraint because the read must wait until the logically preceding
write has become globally visible. Note that these are sufficient, rather than neces-
sary, conditions. Sequential consistency can be preserved with less serialization in
many situations, as we shall see,

With program order defined in terms of the source program, it is important that
the compiler should not change the order of memory operations that it presents to
the hardware (processor). Otherwise, sequential consistency from the programmer’s
perspective may be compromised even before the hardware gets involved. Unfortu-
nately, many of the optimizations that are commonly employed in both compilers
and processors violate these sufficient conditions. For example, compilers routinely
reorder accesses to different locations within a process, so a processor may in fact
issue accesses out of the program order seen by the programmer. Explicitly parallel
programs use uniprocessor compilers, which are concerned only about preserving
dependences 1o the same location, Advanced compiler optimizations that greatly
improve pErfn:eram:f:—s-:-ut:h as common subexpressi:;-n elimination, constant

230

CHAPTER 5 Shared Memory Multiprocessors

propagation, register allocation, and loop transformartiens like loop splitting, loop
reversal, and blocking (Wolfe 1989)—can change the order in which different loca-
tions are accessed or can even eliminate memory operations® In practice, to con-
strain these compiler optimizations, multithreaded and parallel programs annotate
variables or memory references that are used to preserve orders. A particularly strin-
gent example is the use of the volatile qualifier in a variable declaration, which
prevents the variable [rom being register allocated or any memory operation on the
variable from being reordered with respect o operations before or after it in program
order. Example 5.5 illustrates these issues.

EXAMPLE 5.5 How would reordering the memory operations in Figure 5.7 affect

semantics in a sequential program (only one of the processes running), in a parallel
program running on a multiprocessor, and in a threaded program in which the two
processes are interleaved on the same processor? How would you solve the problem?

Answer The compiler may reorder the writes to 2 and flag with no impact on a

sequential program. However, this can violate our intuition for both parallel
programs and concurrent (or multithreaded) uniprocessor programs. In the latter
case, a context switch can happen between the two reordered writes, so the
process switched in may see the update to flag without seeing the update to 2.
Similar violations of intuition occur if the compiler reorders the reads of f1ag and
. For many compilers, we can avoid these reorderings by declaring the variable
£1zo to be of type volatile integer instead of just integer. Other solutions
are also possible and are discussed in Chapter 9. H

Even if the compiler preserves program order, modern processors use sophisti-
cated mechanisms like write buffers, interleaved memory, pipelining, and out-of-
order execution techniques (Hennessy and Patterson 1996). These allow memory
operations from a process 1o issue, execute, and/or complete out of program order.
Like compiler optimizations, these architectural optimizations work for sequential
programs because the appearance of program order in these programs requires that
dependences be preserved only among accesses to the same memory location, as
shown in Figure 5,12, The problem in parallel programs is that the out-of-order
processing of operations to different shared variables by a process can be detected by
other processes.

Preserving the sufficient conditions for 5C in multiprocessors is quite a strong
requirement since it limits compiler reordering and out-ol-order processing tech-
niques. Several weaker consistency models have been proposed and techniques have
been develaped to satisfy SC while relaxing the sufficient conditions. We will exam-
ine these approaches in the context of scalable shared address space machines in
Chapter 9. For the purposes of this chapter, we assume the compiler does not reor-
der memeory operations, so the program order that the processor sees is the same as

. Moete that register sllocation, pecformed by modern compilers ta eliminate memory operations, can affect

calierence itsell, not just memory consistency. For the [lag synchronization example in Figure 5.7, if the
compiler were 1o register-allocate the £lag variable [or process Py, the process could end up spinning
[orever: the cache coherence hardware updates or invalidates only the memory and the caches, not the
registers of the machine, so the write propagation property of coherence is violated.

5.3

5.3 Design Space for Snooping Protocols 291

Write &

Write B FIGURE 5.12 Preserving the orders in a sequential
program running on a uniprocessor. Only the orders

Read A corresponding to the two dependence arcs must be pre-

Read B served, The first two operations can be reordered with-
out a problem, as can the last two ar the middle twa,

that seen by the programmer. On the hardware side, we assume that the sufficient
conditions must be satisfied. To do this, we need mechanisms for a processor to
detect completion of its writes so it may proceed past them (completion of reads is
easy; a read completes when the data returns to the processor) and mechanisms to
satisfy the condition that preserves write atomicity. For all the protocols and systems
considered in this chapter, we see how they satisly coherence {including write serial-
ization), how they can satisfy sequential consistency (in particular, how write com-
pletion is detected and write atomicity is guaranteed), and what shorteuts can be
taken while still satislying the sulficient conditions.

For bus-based machines, the serialization imposed by transactions appearing on
the shared bus is very useful in ordering memory operations. It is easy to verily that
the two-state write-through invalidation protocol discussed previously actually pro-
vides sequential consistency—not just coherence—quite easily. The key observation
to extend the arguments made for coherence in that system is that writes and read
misses Lo all locations, not just to individual locations, are serialized in bus order.
When a read obtains the value of a write, the write is guaranteed to have completed
since it caused a previous bus ransaction, thus ensuring write atomicity. When a
write is performed with respect to any processor, all previous writes in bus order
have completed.

DESIGN SPACE FOR SNOOPING PROTOCOLS

The beauty of snooping-based cache coherence is that the entire machinery for sol-
ving a difficult problem boils down to applying a small amount of extra interpreta-
tion to events that naturally occur in the system. The processor is completely
unchanged. No explicit coherence operations must be inserted in the program. By
extending the requirements on the cache controller and exploiting the properties of
the bus, the reads and writes thart are inherent to the program are used implicitly to
keep the caches coherent, and the serialization provided by the bus maintains con-
sistency. Each cache controller observes and interprets the bus transactions gener-
ated by others to maintain its internal state. Our initial design point with write-
through caches is not very elficient, but we are now ready to study the design space
for snooping protocols that make efficient use of the limited bandwidth of the
shared bus. All of these use write-back caches, allowing processors to write to dil-
ferent blocks in their local caches concurrently without any bus transactions. Thus,

