
The Influence of Caches on the Performance of Sorting

Anthony LaMarca* & Richard E. Ladner
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

lamarcaQparc.xerox.com

Abstract

We investigate the effect that caches have on the per-
formance of sorting algorithms both experimentally and
analytically. To address the performance problems that
high cache miss penalties introduce we restructure heap-
sort, mergesort and quicksort in order to improve their
cache locality. For all three algorithms the improvement
in cache performance leads to a reduction in total ex-
ecution time. We also investigate the performance of
radix sort. Despite the extremely low instruction count
incurred by this linear sorting algorithm, its relatively
poor cache performance results in worse overall perfor-
mance than the efficient comparison based sorting algo-
rithms.

1 Introduction.

Since the introduction of caches, main memory has con-
tinued to grow slower relative to processor cycle times.
The time to service a cache miss to memory has grown
from 6 cycles for the Vax 11/780 to 120 for the Al-
phaServer 8400 13, 73. Cache miss penalties have grown
to the point where good overall performance cannot be
achieved without good cache performance. As a conse-
quence of this change in computer architectures, algo-
rithms which have been designed to minimize instruc-
tion count may not achieve the performance of algo-
rithms which take into account both instruction count
and cache performance.

One of the most common tasks computers perform
is sorting a set of unordered keys. Sorting is a funda-
mental task and hundreds of sorting algorithms have
been developed. In this paper we explore the potential
performance gains that cache-conscious design offers in
understanding and improving the performance of four
popular sorting algorithms: heapsort [25], mergesortl,

-arca was supported by an AT&T fellowship. He is
currently at Xerox PARC, 3333 Coyote Hill Road, Palo Alto CA
94304

lKnuth [15] traces mergesort back to card sorting machines of

ladner@cs.washington.edu

quicksort [12], and radix sort*. Heapsort, mergesort,
and quicksort are all comparison based sorting algo-
rithms while radix sort is not.

For each of the four sorting algorithms we choose an
implementation variant with potential for good overall
performance and then heavily optimize this variant us-

ing traditional techniques to minimize the number of
instructions executed. These heavily optimized algo-
rithms form the baseline for comparison. For each of
the comparison sort baseline algorithms we develop and
apply memory optimizations in order to improve cache
performance and, hopefully, overall performance. For
radix sort we optimize cache performance by varying
the radix. In the process we develop some simple an-
alytic techniques which enable us to predict the mem-
ory performance of these algorithms in terms of cache
misses.

For comparison purposes we focus on sorting an ar-
ray (4,000 to 4,096,OOO keys) of 64 bit integers chosen
uniformly at random. Our study uses trace-driven sim-
ulations and actual executions to measure the impact
that our memory optimizations have on performance.
We concentrate on three performance measures: in-
struction count, cache misses, and overall performance
(time) on machines with modern memory systems. Our
results can be summarized as follows:

1. For the three comparison based sorting algorithms,
memory optimizations improve both cache and
overall performance. The improvements in overall
performance for heapsort and mergesort are signif-
icant, while the improvement for quicksort is mod-
est. Interestingly, memory optimizations to heap-
sort also reduce its instruction count. For radix sort
the radix that minimizes cache misses also mini-
mizes instruction count.

the 1930s.
2Knuth [IS] traces the radix sorting method to the Hollerith

sorting machine that was first used to assist the 1890 United
States census.

370

2.

3.

4.

For large arrays, radix sort has the lowest instruc- locations. Direct-mapped caches have an associa-
tion count, but because of its relatively poor cache tivity of one, and can load a particular block only
performance, its overall performance is worse than in a single location. Fully associative caches are at
the memory optimized versions of mergesort and the other extreme and can load blocks anywhere in
quicksort. the cache.

Although our study was done on one machine,
we demonstrate the robustness of the results by
showing that comparable speedups due to improved
cache performance can be achieved on several other
machines.

l Replacement policy, which indicates the policy of
which block to remove from the cache when a new
block is loaded. For the direct-mapped cache the
replacement policy is simply to remove the block
currently residing in the cache.

There are effective analytic approaches to predict-
ing the number of cache misses these sorting algo-
rithms incur.
The main general lesson to be learned from this

study is that because cache miss penalties are large,
and growing larger with each new generation of pro-
cessor, selecting the fastest algorithm to solve a prob-
lem entails understanding cache performance. Improv-
ing an algorithm’s overall performance may require in-
creasing the number of instructions executed while, at
the same time, reducing the number of cache misses.
Consequently, cache;conscious design of algorithms is
required to achieve the best, performance.

In most modern machines, more than one cache is
placed between the processor and main memory. These
hierarchies of caches are configured with the smallest,
fastest cache next to the processor and the largest,
slowest cache next to main memory. The largest miss
penalty is typically incurred with the cache closest to
main memory and this cache is usually direct-mapped.
Consequently, our design and analysis techniques will
focus on improving the performance of direct-mapped
caches. We will assume that the cache parameters, block
size and capacity, are known to the programmer.

High cache hit ratios depend on a program’s stream
of memory references exhibiting locality. A program
exhibits temporal locality if there is a good chance that
an accessed data item will be accessed again in the near
future. A program exhibits spatial locality if there is
good chance that subsequently accessed data items are
located near each other in memory. Most programs
tend to exhibit both kinds of locality and typical hit
ratios are greater than 90% [18]. Our design techniques
will attempt to improve both the temporal and spatial
locality of the sorting algorithms.

2 Caches.

In order to speed up memory accesses, small high speed
memories called c&es are placed between the proces-
sor and the main memory. Accessing the cache is typ-
ically much faster than accessing main memory. Un-
fortunately, since caches are smaller than main memory
they can hold only a subset of its contents. Memory
accesses first consult the cache to see if it contains the
desired data. If the data is found in the cache, the main
memory need not be consulted and the access is consid-
ered to be a cache hit. If the data is not in the cache it
is considered a miss, and the data must be loaded from
main memory. On a miss, the block containing the ac-
cessed data is loaded into the cache in the hope that
it will be used again in the future. The hit ratio is a
measure of cache performance and is the total number
of hits divided by the total number of accesses.

The major design parameters of caches are:
l Capacity, which is the total number of bytes that

the cache can hold.

l Block site, which is the number of bytes that are
loaded from and written to memory at a time.

l Associativity, which indicates the number of differ-
ent locations in the cache where a particular block
can be loaded. In an N-way set-associative cache, a
particular block can be loaded in N different cache

371

3 Design and Evaluatiqn Methodology.

Cache locality is a good thing. When spatial and tempo-
ral locality can be improved at no cost it should always
be done. In this paper, however, we develop techniques
for improving locality even when it results in an increase
in the total number of executed instructions. This rep-
resents a significant departure from traditional design
and optimization methodology. We take this approach
in order to show how large an impact cache performance
can have on overall performance. Interestingly, many of
the design techniques are not particularly new. Some
have already been used in optimizing compilers, in al-
gorithms which use external storage devices, and in par-
allel algorithms. Similar techniques have also been used
successfully in the development of the cache-efficient Al-
phasort algorithm [19].

As mentioned earlier we focus on three measures
of performance: instruction count, cache misses, and
overall performance in terms of execution time. All

372

of the dynamic instruction counts and cache simula-
tion results were measured using Atom [23]. Atom is
a toolkit developed by DEC for instrumenting program
executables on Alpha workstations. Dynamic instruc-
tion counts are obtained by inserting an increment to
an instruction counter after each instruction executed
by the algorithm. Cache performance is determined by
inserting calls after every load and store to maintain
the state of a simulated cache and to keep track of hit
and miss statistics. In all cases we configure the simu-
lated cache’s block size and capacity to be the same as
the second level cache of the architecture used to mea-
sure execution time. Execution times are measured on
a DEC Alphastation 250, and execution times in our
study represent the median of 15 trials. The machine
used in our study has 32 byte cache blocks with a direct-
mapped second level cache of 2,097,152 = 2’l bytes. In
our study, the set to be sorted is varied in size from 4,000
to 4,096,OOO keys of 8 bytes each.

Finally, we provide analytic methods to predict
cache performance in terms of cache misses. In some
cases the analysis is quite simple. For example, tradi-
tional mergesort has a fairly oblivious pattern of access
to memory, thereby making its analysis quite straight-
forward. However, the memory access patterns of the
other algorithms are less oblivious requiring more so-
phisticated techniques and approximations to accom-
plish the analysis. For example, in traditional heapsort
the memory access pattern is very non-oblivious. We
describe some of these techniques in Section 10.

4 Heapsort.

The heapsort algorithm first builds a heap containing
all of the keys and then removes them all from the heap
in sorted order [25]. With n keys, building the heap
takes O(n log n) steps, and removing them in sorted
order takes O(n logn) steps. In 1965 Floyd proposed
an improved technique for building a heap with better
average case performance and a worst case of O(n)
steps [8]. As a base heapsort algorithm, we follow
the recommendations of algorithm textbooks and use
a binary heap constructed using Floyd’s method. In
addition, we employ standard optimizations to reduce
instruction count. The literature contains a number of
optimizations that reduce the number of comparisons
performed for both adds and removes [5, 2, lo], but in
practice these do not improve performance and we do
not include them in the base heapsort.

4.1 Memory Optimized Heapsort. To this base
heapsort algorithm, we now apply memory optimiza-
tions in order to further improve performance. Our pre-
vious results [17, 161 show that William’s repeated-adds

algorithm [25] for building a binary heap incurs fewer
cache misses than Floyd’s method. In addition we have
shown [17, 161 that two other optimizations reduce the
number of cache misses incurred by the remove-min op-
eration. The first optimization is to replace the tradi-
tional binary heap with a d-heap [14] where each non-
leaf node has d children instead of two. The fanout d
is chosen so that exactly d keys are the size of a cache
block. If d is relatively small, say 4 or 8, then there is an
added advantage that the number of instructions exe-
cuted for both add and remove-min is also reduced. The
second optimization is to align the heap array in mem-
ory so that all d children lie on the same cache block.
This optimization reduces what Lebeck and Wood refer
to as alignment misses [18]. The algorithm dynamically
chooses between the repeated-adds method and Floyd’s
method for building a heap. If the heap is larger than
the cache and repeated-adds can offer a reduction in
cache misses, it is chosen over Floyd’s method. We call
this algorithm memory-tuned heapsort.

4.2 Performance of Heapsort. We now compare
the performance of base heapsort and memory-tuned
heapsort. Since the DEC Alphastation 250 has a 32
byte block size and our keys are 64 bits, there are 4
keys per block. As a consequence we choose d = 4 in
our memory-tuned heapsort. The top row of figure 1
shows the performance of the variants of heapsort.
The instruction count graph shows that memory-tuned
heapsort executes fewer instructions than base heapsort
(d = 2). The cache miss graphs shows that for
large data sets the number of cache misses incurred
by memory-tuned heapsort is less than half the misses
incurred by base heapsort. Finally, the execution time
shows that memory-tuned heapsort outperforms base
heapsort for all sizes of data sets. Memory-tuned
heapsort initially outperforms base heapsort due to
lower instruction cost, and as the set size is increased
the gap widens.

5 Mergesort.

For our base mergesort algorithm, we chose an iterative
mergesort [15] to which a number of traditional opti-
mizations can be applied. The standard iterative merge-
sort makes [logzn] passes over the array, where the i-th
pass merges sorted subarrays of length 2’-l into sorted
subarrays of length 2’. The optimizations applied to the
base mergesort include: alternating the merging process
from one array to another to avoid unnecessary copying,
making sure that subarrays to be merged are in oppo-
site order to avoid unnecessary checking for end condi-
tions, sorting small subarrays with a fast in-line sorting
method, and loop unrolling. Our base mergesort algo-

373

rithm has very low instruction count, executing fewer
than half as many instructions as the base heapsort,

5.1 Memory Optimized Mergesort. In our study
we employ two memory optimizations with mergesort.
Applying the first of these optimizations yields tiled
mergesort, and applying both yields multi-mergesort.

Tiled mergesort employs an idea, called tiling, that
is also used in some optimizing compilers [26]. Tiled
mergesort has two phases. To improve temporal locality,
in the first phase subarrays of length BC/2 are sorted
using mergesort, where B is the number of keys per
cache block and C is the capacity of the cache in blocks.
The second phase returns to the base mergesort to
complete the sorting of the entire array.

Multi-mergesort adds an additional optimization
to reduce the number of cache misses in the second
phase of tiled mergesort. Multi-mergesort uses a multi-
way merge similar to those used in external sorting
(Knuth devotes a section of his book to techniques for
multi-merging [15, Sec. 5.4.11). In multi-mergesort
we replace the final pog,(n/(BC/2))] merge passes of
tiled mergesort with a single pass that merges all of the
pieces together at once. The multi-merge introduces
several complications to the algorithm and significantly
increases the dynamic instruction count. However, the
resulting algorithm has excellent cache performance,
incurring roughly a constant number of cache misses
per key in our executions.

5.2 Performance of Mergesort. The second row
of figure 1 shows the performance of our mergesort
variants. The instruction count graph shows that base
mergesort and tiled mergesort essentially execute the
same number of instructions while multi-mergesort has
a much higher instruction count when the input set
exceeds the cache capacity. The cache miss graph shows
that both the base mergesort and the tiled mergesort
make a sudden leap in cache misses when the size of
the input array exceeds half the cache capacity. The
multi-mergesort incurs slightly more than 1 miss per
key regardless of the input size. The execution time
graph shows that tiled mergesort and multi-mergesort
perform much better than base mergesort and for the
largest data sets multi-mergesort performs the best.

6 Quicksort.

Quicksort is an in-place divide-and-conquer sorting
algorithm considered by many to be the fastest
comparison-based sorting algorithm when the set of keys
fits in memory [12]. Among the optimizations that
Sedgewick suggests is one that sorts small subsets using
a faster sorting method [21]. He suggests that, rather

than sorting these in the natural course of the quicksort
recursion, all the small unsorted subarrays be left un-
sorted until the very end, at which time they are sorted
using insertion sort in a single final pass over the entire
array. We employ all the optimizations recommended
by Sedgewick in our base quicksort.

6.1 Memory Optimized Quicksort. Again, we
develop two memory optimized versions of quicksort,
memory-tuned quicksort and multi-quicksort. Our
memory-tuned quicksort simply removes Sedgewick’s el-
egant insertion sort at the end and instead sorts, using
insertion sort, each small subarray when it is first en-
countered. While saving them all until the end makes
sense from an instruction cost perspective, it is exactly
the wrong thing to do from a cache performance per-
spective.

Multi-quicksort employs a second memory opti-
mization in similar spirit to that used in multi-
mergesort. Although quicksort incurs only one cache
miss per block when the set is cache-sized or smaller,
larger sets incur a substantial number of misses. To
fix this inefficiency, a single multi-partition pass can be
used to divide the full set into a number of subsets which
are likely to be cache sized or smaller.

Multi-partitioning is used in parallel sorting algo
rithms to divide a set into subsets for multiple proces-
sors [l, 131 in order to quickly balance the load. We
choose the number of pivots so that the number of sub-
sets larger than the cache is small with sufficiently high
probability. Feller shows that if k points are placed ran-
domly in a range of length 1, the chance of a resulting
subrange being of size z or greater is exactly (1 - x)~
[6, Vol. 2, Pg. 221. Let n be the total number of
keys, B the number of keys per cache block, and C the
capacity of the cache in blocks. In multi-quicksort we
partition the input array into 3n/(BC) pieces, requiring
(3n/(BC)) - 1 pivots. Feller’s formula indicates that af-
ter the multi-partition, the chance that a subset is larger
than BC is (1 - BC/TI)(~“I(~~))-~. In the limit as n
grows large, the percentage of subsets that are larger
than the cache is e-‘, less than 5%.

There are a number of complications in the design
of the multi-partition phase of multi-quicksort, not
the least of which is that the algorithm cannot be
done efficiently in-place and executes more instructions
than the base quicksort. However, the resulting multi-
quicksort is very efficient from a cache perspective.

6.2 Performance of Quicksort. The third row
of Figure 1 shows the performance of our quicksort
variants. The instruction count graph shows that the
number of instructions executed by the base quicksort

374

is the least followed closely by memory-tuned quicksort.
For large data sets multi-quicksort executes up to 20%
more instructions than the memory-tuned quicksort.
The cache miss curve for the memory-tuned quicksort
shows that removing the instruction count optimization
in the base quicksort improves cache performance by
approximately .25 cache misses per key. The cache
miss graph also shows that the multi-way partition
produces a flat cache miss curve much the same as the
curve for the multi-mergesort. The maximum number
of misses incurred per key for the multi-quicksort is
slightly larger than 1 miss per key. The execution
time graph shows that the execution times of the three
quicksort algorithms are quite similar. However, this
graph also suggests that if more memory were available
and larger sets were sorted, the multi-quicksort would
outperform both the base quicksort and the memory-
tuned quicksort.

7 Radix Sort.

Radix sort is the most important non-comparison based
sorting algorithm used today. Knuth [15] traces the
radix sort suitable for sorting in the main memory of
a computer to a Master’s thesis of Seward, 1954 [22].
Seward pointed out that radix sort of n keys can be
accomplished using two n key arrays together with a
count array of size 2’ which can hold integers up to
size n, where P is the “radix.” Seward’s method is still
a standard method found in radix sorting programs.
Radix sort is often called a “linear” sort because for keys
of fixed length and for a fixed radix a constant number of
passes over the data is sufficient to accomplish the sort,
independent of the number of keys. For example, if we
are sorting b bit integers with a radix of P then Seward’s
method does [b/ 1 t t r i era ions each with 2 passes over
the source array. The first pass accumulates counts
of the number of keys with each radix. The counts
are used to determine the offsets in the keys of each
radix in the destination array. The second pass moves
the source array to the destination array according to
the offsets. Friend [9] suggested an improvement to
reduce the number of passes over the source array, by
accumulating the counts for the (i + I)-st iteration at
the same time as moving keys during the i-th iteration.
This requires a second count array of size 2’. This
improvement has a positive effect on both instruction
count and cache misses. Our radix sort is a highly
optimized version of Seward’s algorithm with Friend’s
improvement. The final task is to pick the radix which
minimizes instruction count. This is done empirically
since there is no universally best T which minimizes
instruction count.

There is no obvious memory optimization for radix

sort that is similar to those that we used for our
comparison sorts. The obvious memory optimization
is to choose the radix which minimizes cache misses.
As it happens, for the particular implementation used
in our study, a radix of 16 bits minimizes both cache
misses and instruction count on an Alphastation 250.
In Section 10 we take a closer look at the cache misses
incurred by radix sort.

7.1 Performance of Radix Sort. For this study
the keys are 64 bit integers and the counts can be
restricted to 32 bit integers. With a 16 bit radix
the two count arrays together are l/Pth the size of
the 2 Megabyte cache. The last row of figure 1
shows the resulting performance. The instruction count
graph shows radix sort’s “linear time” behavior rather
stunningly. The cache miss graph shows that when the
size of the input array reaches the cache capacity the
number of cache misses rapidly grows to a constant
slightly more than 3 misses per key. The execution
time graph clearly shows the effect that cache misses
can have on overall performance. Execution time curve
looks much like the instruction count curve until the
input array exceeds the cache size at which time cycles
per key increase according to the cache miss curve.

8 Performance Comparison.

To compare performance across sorting algorithms, Fig-
ure 2 shows the instruction count, cache misses and cy-
cles executed per key for the fastest variants of heapsort,
mergesort, quicksort and radix sort.

The instruction count graph shows that the
memory-tuned heapsort executes the most instructions,
while radix sort executes the least. The cache miss
graph shows that radix sort has the most cache misses,
while multi-mergesort has the least. For the largest data
set radix sort has approximately 3 times as many cache
misses as multi-mergesort or memory-tuned quicksort.
The execution time graph strikingly shows the effect
of cache performance on overall performance. For the
largest data set memory-tuned quicksort ran 24% faster
than radix sort even though memory-tuned quicksort
performed more than three times as many instructions
and multi-mergesort ran 23% faster than radix sort yet
performed almost four times as many instructions.

9 Robustness.

In order to determine if our experimental results gen-
eralize beyond the DEC Alphastation 250, we ran our
programs on four other platforms: an IBM Power PC,
a Spare 10, a DEC Alpha 3000/400 and a Pentium base
PC. Figure 3 shows the speedup that the memory-tuned
heapsort achieves over the base heapsort for the Alphas-

375

tation 250 as well as these four additional machines.
Despite the differences in architecture, all the platforms
show similar speedups.

Figure 4 shows the speedup of our tiled merge-
sort over the traditional mergesort for the same five
machines. Unlike the heapsort case, the speedups for
mergesort differ substantially. This is partly due to dif-
ferences in the page mapping policies of the different
operating systems. Throughout this study we have as-
sumed that a block of contiguous pages in the virtual
address space map to a block of contiguous pages in
the cache. This is only guaranteed to be true when
caches are virtually indexed rather than physically in-
dexed [111. Unfortunately, the caches on all five of our
test machines are physically indexed. Fortunately some
operating systems, such as Digital Unix, have virtual
to physical page mapping polices that attempt to map
pages so that blocks of memory nearby in the virtual ad-
dress space do not conflict in the cache [24]. Unlike the
heapsort algorithms, tiled mergesort relies heavily on
the assumption that a cache-sized block of pages do not
conflict in the cache. As a result, the speedup of tiled
mergesort relies heavily on the quality of the operating
system’s page mapping decisions. While the operating
systems for the Spare and the Alphas (Solaris and Dig-
ital Unix) make cache-conscious decisions about page
placement, the operating systems for the Power PC and
the Pentium (AIX and Linux) appear not to be as care-
ful.

10 Analysis of Cache Misses.

Cache misses cannot be analyzed precisely due to a
number of factors such as context switching and the op-
erating system’s virtual to physical page-mapping pol-
icy. In addition, the memory behavior of an algorithm
may be too complex to analyze completely. For these
reasons the analyses we present are only approximate
and must be validated empirically.

10.2 Analysis of Radix Sort. The approximate
cache miss analysis of radix sort is more complicated.
Let n be the number of keys, b be the number of bits per
key, r be the radix, B be the number of keys per block,
A be the number of counts per block, and C the capacity
of the cache in blocks. Assume that the size of the two
count arrays is less than the cache capacity, 2’+l < AC,
and that the number of keys is larger than the cache
capacity, n > BC. Although it is not necessarily true,
we assume that in the first iteration every block in one
of the count arrays is accessed at least once every BC
visits to the input array, in the last iteration every block
in one of the count arrays is accessed at least once every
BC/Z visits to the source array, and in each of the other
iterations every block in the two count arrays is accessed
at least once every BC/2 visits of the source array. In
the first iteration of radix sort n keys are visited in
the input array. This results in n/B cache misses. In
addition every BC visits flushes the count array used
to accumulate counts. Hence, there are an additional
(n/BC)(2’/A) cache misses. In the last iteration, n
keys are visited in each of the source and destination
arrays resulting in 2n/B cache misses. Also in the
last iteration, one of the two count arrays is flushed
on average every BC/2 accesses yielding an additional
(n/(BC/2))(2’/A) cache misses. In the remaining
iterations n keys are visited in each of the source array
and destination array. This results in 2([b/r] - l)(n/B)
misses. In all these iterations, on average, every BC/2
visits flushes both the count arrays. This leads to an
additional (n/(BC/2))([b/rj - 1)(2’+l/A) misses. In

10.1 Analysis of Quicksort and Mergesort. The
number of cache misses for our mergesort and quicksort
variants are fairly easy to approximate because the
memory reference patterns of these algorithms are fairly
oblivious. As an example, for multi-mergesort let C
be the cache capacity in cache blocks and let B be
the number of keys per cache block. We assume that
the number of keys, n, is such that [n/(BC/2)] =
k for some integer k > 1. Because the auxiliary
data structures needed for merging and other parts of
the program are small we assume they remain in the
cache most of the time and have little effect on cache
performance. In the first phase of multi-mergesort there
are exactly two cache misses for every B keys, one miss

in the source array and one in the destination array.
In the second phase there are again two cache misses
for every B keys, one in the source array of the Ic-way
merge and one in the destination. In addition, there
may be an additional miss per every B keys because
the keys may need to be copied. This extra copy
happens if log, (BC/2) is even. Thus, the total number
of misses per key is either 4 or 5 misses for every B keys,
depending on the parity of log,(BC/2). In the case of
our cache performance study, B = 4 and C = 216. Thus,
we calculate 4 misses for every 4 keys which is 1 miss
per key. This corresponds almost exactly to the number
of misses per key reported in the cache miss graph of
multi-mergesort in figure 1. Naturally, if Ic were very
large then we cannot assume that the Ic-way merging
data structure has little effect on memory performance.
This case would be much more difficult to analyze, but
is probably not relevant in practice because this case
would only arise if n were at least the order of (BC)2.
The analysis of the other versions of mergesort and of
the versions of quicksort can be done in a similar way.

376

all, the total number of misses per key is approximated
by

2[;1 + 1 + 2’(4[;1 - 1)
B ABC *

Figure 5 compares this approximation with the actual
number of cache misses incurred per key by radix sort
for n = 4,096,000, b = 64, A = 8, B = 4, and C = 2’e.
Both the analytic approximation and the simulation
agree that the radix that minimizes cache misses is 16.

Our approximation loses accuracy as f grows.
There are at least two sources of the inaccuracy. The
first is our assumption that each block in a count ar-
ray is accessed at least once every M steps for some M.
In reality, the probability that a block will not be ac-
cessed at least once in M steps is (1 - l/S)M where S
is the number blocks in a count array. In our example
shown in the last row of figure 1, S = 216/8 = 213 and
M = 216 .4 = 218 so that the probability that a block
will not be accessed is (1 - 1/213)21s M e-32. Hence,
this is not a significant source of inaccuracy. A second
and significant source of inaccuracy is the unmodeled in-
terference among accesses to the destination array and
count arrays. In reality, the destination array in all the
iterations but the first has 2” pointers into it. Each
pointer traverses left-to-right from its original position
to the original position of the next pointer at a rate pro-
portional to the original distance between them. If T is
large enough then these pointer accesses can interfere
significantly with each other and with accesses to the
count arrays causing “conflict misses.” We believe that
this is the major source of inaccuracy in our analysis.

10.3 Analysis of Heapsort. In a previous paper
[17] we introduced collecta’ve analysis which enabled us
to approximate the cache performance of heaps. In that
paper we analyzed the cache performance of d-heaps in
the hold model which models the priority queue in a dis-
crete event simulator. That analysis serves as the basis
for an approximate analysis of our heapsort variants. In
collective analysis of an algorithm we divide the cache
into a set of regions R and the algorithm’s memory ac-
cesses into a set of independent stochastic processes P,
where a process is intended to approximate the memory
behavior of an algorithm or part of an algorithm. Ar-
eas of the virtual address space accessed in a uniform
way should be represented with a single process. Collec-
tively, all of the processes represent the accesses to the
entire virtual address space and hence represent the al-
gorithm’s overall memory behavior. Collective analysis
assumes that the references to memory satisfy the an-
dependent reference assumption [4]. In this model each
access is independent of all previous accesses, that is,
the system is memoryless.

If Xii is the access intensity of process j in cache
region i then by extending a result of Rao [20] it can be
shown [li’] that the hit intensity of the algorithm is

and the miss intensity is A - n where & = CjEp Aij and
x = CjER xj.

Memory accesses in the d-heap can be approxi-
mately modeled using collective analysis [17]. In partic-
ular, the cache can be divided into regions correspond-
ing to levels of the d-heap that are smaller than the
cache. The memory accesses can be divided into pro-
cesses that correspond to accesses to the levels that are
smaller than the cache and to parts of a level that are
equal to the cache size.

Assume there are n keys, C cache blocks, and each
block holds B keys. In the building a heap phase
of heapsort there are at least n/B misses incurred
in traversing the array. In addition, there are more
misses incurred during the insertions into the d-heap.
Because we use William’s repeated-adds algorithm [25]
we pessimistically assume that all adds percolate to the
root and that the most recent leaf-to-root path is in the
cache. In this case, the probability that the next leaf is
in the cache is l- l/B, the parent of that leaf is in the
cache is 1 -l/(dB), the grandparent of that leaf is in the
cache is 1 - 1/(d2B), and so on. We divide the removes
phase of heapsort into n/(BC) subphases with each
subphase removing BC keys. For 0 _< i < n/(BC) - 1
we model the removal of keys BCI + 1 to BC(i + 1)
as BC steps on an array of size n - BCi in the hold
model. In essence, we are saying that the removal
of BC keys from the d-heap is approximated by BC

repeated remove-mins and adds in approximately the
same size d-heap. Admittedly, this approximation was
one of convenience because we already had a complete
approximate analysis of the d-heap in the hold model.
In figure 6 we measured the results of heapsort using the
traditional binary heap (base heapsort) and the 4-heap
(memory-tuned heapsort) on a DEC Alphastation 250
with a 2 MB cache. Exactly four 64-bit keys fit in a
cache block. We are somewhat surprised how well this
analysis matches the measured results considering the
assumptions we made in the approximation.

11 Conclusions.

This paper explores the potential performance gains
that cache-conscious design and analysis offers to classic
sorting algorithms. The main conclusion of this work
is that the effects of caching are extremely important
and need to be considered if good performance is a
goal. Despite its very low instruction count, radix sort

is outperformed by both mergesort and quicksort due
to its relatively poor locality. Despite the fact that
the multi-mergesort executed 75% more instructions
than the base mergesort, it sorts up to 70% faster.
Neither the multi-mergesort nor the multi-quicksort are
in-place or stable. Nevertheless, these two algorithms
offer something that none of the others do. They
both incur very few cache misses, which renders their
overall performance far less sensitive to cache miss
penalties than the others. As a result, these algorithms
can be expected to outperform the others as relative
cache miss penalties continue to increase. This paper
also shows that despite the complexities of caching,
the cache performance of algorithms can be reasonably
approximated with a modest amount of work. Figures
5 and 6 show that our approximate analysis gives good
information. However, more work needs to be done
to improve the analysis techniques to make them more
accurate.

Acknowledgement.

We thank Jim Fix and Mike Salisbury for carefully read-
ing preliminary versions of this paper and for making
many useful suggestions for improvements.

References

WI

1131

P41

P51

P61

P71

P81

P91

PO1

Pll

PI

PI

PI

[41

[51

[61

[71

[81

PI
PO1

Pll

G. Blelloch, C. Plaxton, C. Leiserson, S Smith,
B. Maggs, and M. Zagha. A comparison of sorting aL [‘21
gorithms for the connection machine. In Proceedings
of the 3rd ACM Symposium on Parallel Algorithms & [231
Architecture, pages 3-16, July 1991.
S. Car&son. An optimal algorithm for deleting the root
of a heap. Information Processing Letters, 37(2):117-
120, 1991.
D. Clark. Cache performance of the VAX-11/780. PI
ACM Transactions on Computer Systems, 1(1):24-37,
1983.
E. Coffman and P. Denning. Operating Systems The-
ory. Prentice-Hall, Englewood Cliffs, NJ, 1973.
J. De Graffe and W. Kosters. Expected heights in [251
heaps. BIT, 32(4):570-579, 1992.
W. Feller. An Introduction to Probability Theory and t261
its Applications. Wiley, New York, NY, 1971.
D. Fenwick, D. Foley, W. Gist, S. VanDoren, and
D. Wissell. The AlphaServer 8000 series: High-end
server platform development. Digital Technical Jour-
nal, 7(1):43-65, 1995.
Robert W. Floyd. Treesort 3. Communications of the
ACM, 7(12):701, X964.
E. H. Friend. Journal of the ACM, 3:152, 1956.
G. Gonnet and J. Munro. Heaps on heaps. SIAM
Journal of Computing, 15(4):964-971, 1986.
J. Hennesey and D. Patterson. Computer Architecture
A Quantitative Approach. Morgan Kaufman Publish-
ers, Inc., San Mateo, CA, 1990.

377

C. A. R. Hoare. Quicksort. Computer Journal, 5:10-
15, 1962.
Li Hui and K. C. Sevcik. Parallel sorting by overparti-
tioning. In Proceedings of the 6th ACM Symposium on
Parallel Algorithms tY Architecture, pages 46-56, June
1994.
D. B. Johnson. Priority queues with update and find-
ing minimum spanning trees. Information Processing
Letters, 4, 1975.
D. E. Knuth. The Art of Computer Progmmming, uol
III - Sorting and Searching. Addison-Wesely, Reading,
MA, 1973.
A. LaMarca. Caches and algorithms. Ph.D. Disserta-
tion, University of Washington, May 1996.
A.’ LaMarca and R. E. Ladner. The influence of caches
on the performance of heaps, Feb 1996. UW depart-
ment of computer science technical report # 96-02-03,
to appear in Journal of Experimental Algorithmics.
A. Lebeck and D. Wood. Cache profiling and the spec
benchmarks: a case study. Computer, 27(10):15-26,
act 1994.
C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. Alphasort: a RISC machine sort. In 1994
ACM SIGMOD International Conference on Manage-
ment of Data, pages 233-242, May 1994.
G. Rao. Performance analysis of cache memories.
Journal of the ACM, 25(3):378-395, 1978.
R. Sedgewick. Implementing quicksort programs.
Communications of the A CM, 21(10):847-8.57, October
1978.
H. H. Seward. Masters Thesis, M.I.T. Digital Com-
puter Laboratory Report R-232, 1954.
Amitabh Srivastava and Alan Eustace. ATOM: A sys-
tem for building customized program analysis tools. In
Proceedings of the 1994 ACM Symposium on Program-
ming Languages Design and Implementation, pages
196-205. ACM, 1994.
G. Taylor, P. Davies, and M. Farmwald. The TBL
slice:a low-cost high-speed address translation mecha-
nism. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 355-363,
1990.
J. W. Williams. Heapsort. Communications of the
A CM, 7(6):347-348, 1964.
M. Wolfe. More iteration space tiling. In Proceedings
of Supercomputing ‘89, pages 655-664, 1989.

378

Instructions per Key
450 .'--.1 . . --....I . ' bake +-
400 - memory-tuned -+---
350 -

100 -

50 -

”

10000 100000 le+06

350 '..-'1II --
base -

300 - tiled -+--
multi -0.-.

250 - P"'

200 -
.;-

10000 100000 le+06

350

300 memory-tuned -+---
multi -Q-.-

250

200

150

100

50

0 ‘.....’ ‘.....I . ‘-.-..’ ’
10000 100000 le+06

1200

1000

800

600

400

200

0
10000 100000 le+06 10000 100000 le+06 10000 100000 le+06

Set Size Set Size Set Size

Cache Misses per Key
7 . _.., me .~. ,

6 _ memory-tuned -+---

5-

4-

3 -

2 -

l-

o'*.- -' '-..-..‘- .
10000 100000 le+06

8 -

6-

44

10000 100000 le+06

2 . ..'.II, .

1.8 -
base +

memory-tuned -+---
1.6 - multi -Q--

1.4 -

1.2 -

1 -

0.8 -

0.6 -

0.4 -

0 -...'.' '.....I . '..,..I .a
10000 100000 le+06

base - -

Time (Cycles per Key)
2000-I . -me .+..I.., . *

memory-tuned -+-

1500 -

0I ..---..I'..I . "
10000 100000 le+06

1200

1000

800

600

400

200

bake - '
"

tiled -+---

I

0-
10000 100000 le+06

700 -"".I . -"."I . '..".,
base -

600 - memory-tuned -+--*
multi -e.--

500 -

400 -

100 -

0*I '......II "
10000 100000 le+06

2000 I.."., .--..'II 1

1800

1600

1400

1200

1000

800

600

400

base - _

Figure 1: Performance of heapsort, mergesort, quicksort and radix sort on sets between 4,000 and 4,096,OOO keys.
The first column of graphs shows instruction counts per key, the second column shows cache misses per key and
the third column shows execution times per key. Executions were run on a DEC Alphastation 250 and simulated
cache capacity is 2 megabytes with a 32 byte block size.

379

500
450

B 400
$ 350

300
1 250

3 s 200

:: 150

a d 100
50

0

Figure 2: Instruction count, cache

.

radix sort -

10000 100000 1e*06
set sire in keys

misses and execution time per key for the best heapsort, mergesort, quicksort -
and radix sort on a DEC AIphastation 250. Simulated cache capacity is 2 megabytes, block size is 32 bytes.

2.2 r. .."I
spare 10 +
Power PC -+----

2 - Pentium PC -*-
DEC Alphastation 250 *

DBC Alpha 3000/400 -A-,--
1.8 -

9 1.6 -
1

H

0.8 .".I
10000 100000 le+06

set size in keys

Figure 3: Speedup of memory-tuned heapsort over Figure 5: Cache misses incurred by radix sort,
base heapsort on five architectures. measured versus predicted.

0.8 “..I I
10000 100000 le+Ob

set size in keys

Figure 4: Speedup of tiled mergesort over base
mergesort on five architectures.

lb

2 4 6 8 10 12 14 16 1.9
Radix (in bits)

6 memory-tuned heapsort - measured --•----
mwory-tuned heapsort - predicted -

10000 100000 l&06
Set Size in Keys

Figure 6: Cache misses incurred by heapsort, mea
sured versus predicted.

