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Abstract 

We investigate the effect that caches have on the per- 
formance of sorting algorithms both experimentally and 
analytically. To address the performance problems that 
high cache miss penalties introduce we restructure heap- 
sort, mergesort and quicksort in order to improve their 
cache locality. For all three algorithms the improvement 
in cache performance leads to a reduction in total ex- 
ecution time. We also investigate the performance of 
radix sort. Despite the extremely low instruction count 
incurred by this linear sorting algorithm, its relatively 
poor cache performance results in worse overall perfor- 
mance than the efficient comparison based sorting algo- 
rithms. 

1 Introduction. 

Since the introduction of caches, main memory has con- 
tinued to grow slower relative to processor cycle times. 
The time to service a cache miss to memory has grown 
from 6 cycles for the Vax 11/780 to 120 for the Al- 
phaServer 8400 13, 73. Cache miss penalties have grown 
to the point where good overall performance cannot be 
achieved without good cache performance. As a conse- 
quence of this change in computer architectures, algo- 
rithms which have been designed to minimize instruc- 
tion count may not achieve the performance of algo- 
rithms which take into account both instruction count 
and cache performance. 

One of the most common tasks computers perform 
is sorting a set of unordered keys. Sorting is a funda- 
mental task and hundreds of sorting algorithms have 
been developed. In this paper we explore the potential 
performance gains that cache-conscious design offers in 
understanding and improving the performance of four 
popular sorting algorithms: heapsort [25], mergesortl, 
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quicksort [12], and radix sort*. Heapsort, mergesort, 
and quicksort are all comparison based sorting algo- 
rithms while radix sort is not. 

For each of the four sorting algorithms we choose an 
implementation variant with potential for good overall 
performance and then heavily optimize this variant us- 

ing traditional techniques to minimize the number of 
instructions executed. These heavily optimized algo- 
rithms form the baseline for comparison. For each of 
the comparison sort baseline algorithms we develop and 
apply memory optimizations in order to improve cache 
performance and, hopefully, overall performance. For 
radix sort we optimize cache performance by varying 
the radix. In the process we develop some simple an- 
alytic techniques which enable us to predict the mem- 
ory performance of these algorithms in terms of cache 
misses. 

For comparison purposes we focus on sorting an ar- 
ray (4,000 to 4,096,OOO keys) of 64 bit integers chosen 
uniformly at random. Our study uses trace-driven sim- 
ulations and actual executions to measure the impact 
that our memory optimizations have on performance. 
We concentrate on three performance measures: in- 
struction count, cache misses, and overall performance 
(time) on machines with modern memory systems. Our 
results can be summarized as follows: 

1. For the three comparison based sorting algorithms, 
memory optimizations improve both cache and 
overall performance. The improvements in overall 
performance for heapsort and mergesort are signif- 
icant, while the improvement for quicksort is mod- 
est. Interestingly, memory optimizations to heap- 
sort also reduce its instruction count. For radix sort 
the radix that minimizes cache misses also mini- 
mizes instruction count. 

the 1930s. 
2Knuth [IS] traces the radix sorting method to the Hollerith 

sorting machine that was first used to assist the 1890 United 
States census. 
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For large arrays, radix sort has the lowest instruc- locations. Direct-mapped caches have an associa- 
tion count, but because of its relatively poor cache tivity of one, and can load a particular block only 
performance, its overall performance is worse than in a single location. Fully associative caches are at 
the memory optimized versions of mergesort and the other extreme and can load blocks anywhere in 
quicksort. the cache. 

Although our study was done on one machine, 
we demonstrate the robustness of the results by 
showing that comparable speedups due to improved 
cache performance can be achieved on several other 
machines. 

l Replacement policy, which indicates the policy of 
which block to remove from the cache when a new 
block is loaded. For the direct-mapped cache the 
replacement policy is simply to remove the block 
currently residing in the cache. 

There are effective analytic approaches to predict- 
ing the number of cache misses these sorting algo- 
rithms incur. 
The main general lesson to be learned from this 

study is that because cache miss penalties are large, 
and growing larger with each new generation of pro- 
cessor, selecting the fastest algorithm to solve a prob- 
lem entails understanding cache performance. Improv- 
ing an algorithm’s overall performance may require in- 
creasing the number of instructions executed while, at 
the same time, reducing the number of cache misses. 
Consequently, cache;conscious design of algorithms is 
required to achieve the best, performance. 

In most modern machines, more than one cache is 
placed between the processor and main memory. These 
hierarchies of caches are configured with the smallest, 
fastest cache next to the processor and the largest, 
slowest cache next to main memory. The largest miss 
penalty is typically incurred with the cache closest to 
main memory and this cache is usually direct-mapped. 
Consequently, our design and analysis techniques will 
focus on improving the performance of direct-mapped 
caches. We will assume that the cache parameters, block 
size and capacity, are known to the programmer. 

High cache hit ratios depend on a program’s stream 
of memory references exhibiting locality. A program 
exhibits temporal locality if there is a good chance that 
an accessed data item will be accessed again in the near 
future. A program exhibits spatial locality if there is 
good chance that subsequently accessed data items are 
located near each other in memory. Most programs 
tend to exhibit both kinds of locality and typical hit 
ratios are greater than 90% [18]. Our design techniques 
will attempt to improve both the temporal and spatial 
locality of the sorting algorithms. 

2 Caches. 

In order to speed up memory accesses, small high speed 
memories called c&es are placed between the proces- 
sor and the main memory. Accessing the cache is typ- 
ically much faster than accessing main memory. Un- 
fortunately, since caches are smaller than main memory 
they can hold only a subset of its contents. Memory 
accesses first consult the cache to see if it contains the 
desired data. If the data is found in the cache, the main 
memory need not be consulted and the access is consid- 
ered to be a cache hit. If the data is not in the cache it 
is considered a miss, and the data must be loaded from 
main memory. On a miss, the block containing the ac- 
cessed data is loaded into the cache in the hope that 
it will be used again in the future. The hit ratio is a 
measure of cache performance and is the total number 
of hits divided by the total number of accesses. 

The major design parameters of caches are: 
l Capacity, which is the total number of bytes that 

the cache can hold. 

l Block site, which is the number of bytes that are 
loaded from and written to memory at a time. 

l Associativity, which indicates the number of differ- 
ent locations in the cache where a particular block 
can be loaded. In an N-way set-associative cache, a 
particular block can be loaded in N different cache 
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3 Design and Evaluatiqn Methodology. 

Cache locality is a good thing. When spatial and tempo- 
ral locality can be improved at no cost it should always 
be done. In this paper, however, we develop techniques 
for improving locality even when it results in an increase 
in the total number of executed instructions. This rep- 
resents a significant departure from traditional design 
and optimization methodology. We take this approach 
in order to show how large an impact cache performance 
can have on overall performance. Interestingly, many of 
the design techniques are not particularly new. Some 
have already been used in optimizing compilers, in al- 
gorithms which use external storage devices, and in par- 
allel algorithms. Similar techniques have also been used 
successfully in the development of the cache-efficient Al- 
phasort algorithm [19]. 

As mentioned earlier we focus on three measures 
of performance: instruction count, cache misses, and 
overall performance in terms of execution time. All 



372 

of the dynamic instruction counts and cache simula- 
tion results were measured using Atom [23]. Atom is 
a toolkit developed by DEC for instrumenting program 
executables on Alpha workstations. Dynamic instruc- 
tion counts are obtained by inserting an increment to 
an instruction counter after each instruction executed 
by the algorithm. Cache performance is determined by 
inserting calls after every load and store to maintain 
the state of a simulated cache and to keep track of hit 
and miss statistics. In all cases we configure the simu- 
lated cache’s block size and capacity to be the same as 
the second level cache of the architecture used to mea- 
sure execution time. Execution times are measured on 
a DEC Alphastation 250, and execution times in our 
study represent the median of 15 trials. The machine 
used in our study has 32 byte cache blocks with a direct- 
mapped second level cache of 2,097,152 = 2’l bytes. In 
our study, the set to be sorted is varied in size from 4,000 
to 4,096,OOO keys of 8 bytes each. 

Finally, we provide analytic methods to predict 
cache performance in terms of cache misses. In some 
cases the analysis is quite simple. For example, tradi- 
tional mergesort has a fairly oblivious pattern of access 
to memory, thereby making its analysis quite straight- 
forward. However, the memory access patterns of the 
other algorithms are less oblivious requiring more so- 
phisticated techniques and approximations to accom- 
plish the analysis. For example, in traditional heapsort 
the memory access pattern is very non-oblivious. We 
describe some of these techniques in Section 10. 

4 Heapsort. 

The heapsort algorithm first builds a heap containing 
all of the keys and then removes them all from the heap 
in sorted order [25]. With n keys, building the heap 
takes O(n log n) steps, and removing them in sorted 
order takes O(n logn) steps. In 1965 Floyd proposed 
an improved technique for building a heap with better 
average case performance and a worst case of O(n) 
steps [8]. As a base heapsort algorithm, we follow 
the recommendations of algorithm textbooks and use 
a binary heap constructed using Floyd’s method. In 
addition, we employ standard optimizations to reduce 
instruction count. The literature contains a number of 
optimizations that reduce the number of comparisons 
performed for both adds and removes [5, 2, lo], but in 
practice these do not improve performance and we do 
not include them in the base heapsort. 

4.1 Memory Optimized Heapsort. To this base 
heapsort algorithm, we now apply memory optimiza- 
tions in order to further improve performance. Our pre- 
vious results [17, 161 show that William’s repeated-adds 

algorithm [25] for building a binary heap incurs fewer 
cache misses than Floyd’s method. In addition we have 
shown [17, 161 that two other optimizations reduce the 
number of cache misses incurred by the remove-min op- 
eration. The first optimization is to replace the tradi- 
tional binary heap with a d-heap [14] where each non- 
leaf node has d children instead of two. The fanout d 
is chosen so that exactly d keys are the size of a cache 
block. If d is relatively small, say 4 or 8, then there is an 
added advantage that the number of instructions exe- 
cuted for both add and remove-min is also reduced. The 
second optimization is to align the heap array in mem- 
ory so that all d children lie on the same cache block. 
This optimization reduces what Lebeck and Wood refer 
to as alignment misses [18]. The algorithm dynamically 
chooses between the repeated-adds method and Floyd’s 
method for building a heap. If the heap is larger than 
the cache and repeated-adds can offer a reduction in 
cache misses, it is chosen over Floyd’s method. We call 
this algorithm memory-tuned heapsort. 

4.2 Performance of Heapsort. We now compare 
the performance of base heapsort and memory-tuned 
heapsort. Since the DEC Alphastation 250 has a 32 
byte block size and our keys are 64 bits, there are 4 
keys per block. As a consequence we choose d = 4 in 
our memory-tuned heapsort. The top row of figure 1 
shows the performance of the variants of heapsort. 
The instruction count graph shows that memory-tuned 
heapsort executes fewer instructions than base heapsort 
(d = 2). The cache miss graphs shows that for 
large data sets the number of cache misses incurred 
by memory-tuned heapsort is less than half the misses 
incurred by base heapsort. Finally, the execution time 
shows that memory-tuned heapsort outperforms base 
heapsort for all sizes of data sets. Memory-tuned 
heapsort initially outperforms base heapsort due to 
lower instruction cost, and as the set size is increased 
the gap widens. 

5 Mergesort. 

For our base mergesort algorithm, we chose an iterative 
mergesort [15] to which a number of traditional opti- 
mizations can be applied. The standard iterative merge- 
sort makes [logzn] passes over the array, where the i-th 
pass merges sorted subarrays of length 2’-l into sorted 
subarrays of length 2’. The optimizations applied to the 
base mergesort include: alternating the merging process 
from one array to another to avoid unnecessary copying, 
making sure that subarrays to be merged are in oppo- 
site order to avoid unnecessary checking for end condi- 
tions, sorting small subarrays with a fast in-line sorting 
method, and loop unrolling. Our base mergesort algo- 



373 

rithm has very low instruction count, executing fewer 
than half as many instructions as the base heapsort, 

5.1 Memory Optimized Mergesort. In our study 
we employ two memory optimizations with mergesort. 
Applying the first of these optimizations yields tiled 
mergesort, and applying both yields multi-mergesort. 

Tiled mergesort employs an idea, called tiling, that 
is also used in some optimizing compilers [26]. Tiled 
mergesort has two phases. To improve temporal locality, 
in the first phase subarrays of length BC/2 are sorted 
using mergesort, where B is the number of keys per 
cache block and C is the capacity of the cache in blocks. 
The second phase returns to the base mergesort to 
complete the sorting of the entire array. 

Multi-mergesort adds an additional optimization 
to reduce the number of cache misses in the second 
phase of tiled mergesort. Multi-mergesort uses a multi- 
way merge similar to those used in external sorting 
(Knuth devotes a section of his book to techniques for 
multi-merging [15, Sec. 5.4.11). In multi-mergesort 
we replace the final pog,(n/(BC/2))] merge passes of 
tiled mergesort with a single pass that merges all of the 
pieces together at once. The multi-merge introduces 
several complications to the algorithm and significantly 
increases the dynamic instruction count. However, the 
resulting algorithm has excellent cache performance, 
incurring roughly a constant number of cache misses 
per key in our executions. 

5.2 Performance of Mergesort. The second row 
of figure 1 shows the performance of our mergesort 
variants. The instruction count graph shows that base 
mergesort and tiled mergesort essentially execute the 
same number of instructions while multi-mergesort has 
a much higher instruction count when the input set 
exceeds the cache capacity. The cache miss graph shows 
that both the base mergesort and the tiled mergesort 
make a sudden leap in cache misses when the size of 
the input array exceeds half the cache capacity. The 
multi-mergesort incurs slightly more than 1 miss per 
key regardless of the input size. The execution time 
graph shows that tiled mergesort and multi-mergesort 
perform much better than base mergesort and for the 
largest data sets multi-mergesort performs the best. 

6 Quicksort. 

Quicksort is an in-place divide-and-conquer sorting 
algorithm considered by many to be the fastest 
comparison-based sorting algorithm when the set of keys 
fits in memory [12]. Among the optimizations that 
Sedgewick suggests is one that sorts small subsets using 
a faster sorting method [21]. He suggests that, rather 

than sorting these in the natural course of the quicksort 
recursion, all the small unsorted subarrays be left un- 
sorted until the very end, at which time they are sorted 
using insertion sort in a single final pass over the entire 
array. We employ all the optimizations recommended 
by Sedgewick in our base quicksort. 

6.1 Memory Optimized Quicksort. Again, we 
develop two memory optimized versions of quicksort, 
memory-tuned quicksort and multi-quicksort. Our 
memory-tuned quicksort simply removes Sedgewick’s el- 
egant insertion sort at the end and instead sorts, using 
insertion sort, each small subarray when it is first en- 
countered. While saving them all until the end makes 
sense from an instruction cost perspective, it is exactly 
the wrong thing to do from a cache performance per- 
spective. 

Multi-quicksort employs a second memory opti- 
mization in similar spirit to that used in multi- 
mergesort. Although quicksort incurs only one cache 
miss per block when the set is cache-sized or smaller, 
larger sets incur a substantial number of misses. To 
fix this inefficiency, a single multi-partition pass can be 
used to divide the full set into a number of subsets which 
are likely to be cache sized or smaller. 

Multi-partitioning is used in parallel sorting algo 
rithms to divide a set into subsets for multiple proces- 
sors [l, 131 in order to quickly balance the load. We 
choose the number of pivots so that the number of sub- 
sets larger than the cache is small with sufficiently high 
probability. Feller shows that if k points are placed ran- 
domly in a range of length 1, the chance of a resulting 
subrange being of size z or greater is exactly (1 - x)~ 
[6, Vol. 2, Pg. 221. Let n be the total number of 
keys, B the number of keys per cache block, and C the 
capacity of the cache in blocks. In multi-quicksort we 
partition the input array into 3n/(BC) pieces, requiring 
(3n/(BC)) - 1 pivots. Feller’s formula indicates that af- 
ter the multi-partition, the chance that a subset is larger 
than BC is (1 - BC/TI)(~“I(~~))-~. In the limit as n 
grows large, the percentage of subsets that are larger 
than the cache is e-‘, less than 5%. 

There are a number of complications in the design 
of the multi-partition phase of multi-quicksort, not 
the least of which is that the algorithm cannot be 
done efficiently in-place and executes more instructions 
than the base quicksort. However, the resulting multi- 
quicksort is very efficient from a cache perspective. 

6.2 Performance of Quicksort. The third row 
of Figure 1 shows the performance of our quicksort 
variants. The instruction count graph shows that the 
number of instructions executed by the base quicksort 
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is the least followed closely by memory-tuned quicksort. 
For large data sets multi-quicksort executes up to 20% 
more instructions than the memory-tuned quicksort. 
The cache miss curve for the memory-tuned quicksort 
shows that removing the instruction count optimization 
in the base quicksort improves cache performance by 
approximately .25 cache misses per key. The cache 
miss graph also shows that the multi-way partition 
produces a flat cache miss curve much the same as the 
curve for the multi-mergesort. The maximum number 
of misses incurred per key for the multi-quicksort is 
slightly larger than 1 miss per key. The execution 
time graph shows that the execution times of the three 
quicksort algorithms are quite similar. However, this 
graph also suggests that if more memory were available 
and larger sets were sorted, the multi-quicksort would 
outperform both the base quicksort and the memory- 
tuned quicksort. 

7 Radix Sort. 

Radix sort is the most important non-comparison based 
sorting algorithm used today. Knuth [15] traces the 
radix sort suitable for sorting in the main memory of 
a computer to a Master’s thesis of Seward, 1954 [22]. 
Seward pointed out that radix sort of n keys can be 
accomplished using two n key arrays together with a 
count array of size 2’ which can hold integers up to 
size n, where P is the “radix.” Seward’s method is still 
a standard method found in radix sorting programs. 
Radix sort is often called a “linear” sort because for keys 
of fixed length and for a fixed radix a constant number of 
passes over the data is sufficient to accomplish the sort, 
independent of the number of keys. For example, if we 
are sorting b bit integers with a radix of P then Seward’s 
method does [b/ 1 t t r i era ions each with 2 passes over 
the source array. The first pass accumulates counts 
of the number of keys with each radix. The counts 
are used to determine the offsets in the keys of each 
radix in the destination array. The second pass moves 
the source array to the destination array according to 
the offsets. Friend [9] suggested an improvement to 
reduce the number of passes over the source array, by 
accumulating the counts for the (i + I)-st iteration at 
the same time as moving keys during the i-th iteration. 
This requires a second count array of size 2’. This 
improvement has a positive effect on both instruction 
count and cache misses. Our radix sort is a highly 
optimized version of Seward’s algorithm with Friend’s 
improvement. The final task is to pick the radix which 
minimizes instruction count. This is done empirically 
since there is no universally best T which minimizes 
instruction count. 

There is no obvious memory optimization for radix 

sort that is similar to those that we used for our 
comparison sorts. The obvious memory optimization 
is to choose the radix which minimizes cache misses. 
As it happens, for the particular implementation used 
in our study, a radix of 16 bits minimizes both cache 
misses and instruction count on an Alphastation 250. 
In Section 10 we take a closer look at the cache misses 
incurred by radix sort. 

7.1 Performance of Radix Sort. For this study 
the keys are 64 bit integers and the counts can be 
restricted to 32 bit integers. With a 16 bit radix 
the two count arrays together are l/Pth the size of 
the 2 Megabyte cache. The last row of figure 1 
shows the resulting performance. The instruction count 
graph shows radix sort’s “linear time” behavior rather 
stunningly. The cache miss graph shows that when the 
size of the input array reaches the cache capacity the 
number of cache misses rapidly grows to a constant 
slightly more than 3 misses per key. The execution 
time graph clearly shows the effect that cache misses 
can have on overall performance. Execution time curve 
looks much like the instruction count curve until the 
input array exceeds the cache size at which time cycles 
per key increase according to the cache miss curve. 

8 Performance Comparison. 

To compare performance across sorting algorithms, Fig- 
ure 2 shows the instruction count, cache misses and cy- 
cles executed per key for the fastest variants of heapsort, 
mergesort, quicksort and radix sort. 

The instruction count graph shows that the 
memory-tuned heapsort executes the most instructions, 
while radix sort executes the least. The cache miss 
graph shows that radix sort has the most cache misses, 
while multi-mergesort has the least. For the largest data 
set radix sort has approximately 3 times as many cache 
misses as multi-mergesort or memory-tuned quicksort. 
The execution time graph strikingly shows the effect 
of cache performance on overall performance. For the 
largest data set memory-tuned quicksort ran 24% faster 
than radix sort even though memory-tuned quicksort 
performed more than three times as many instructions 
and multi-mergesort ran 23% faster than radix sort yet 
performed almost four times as many instructions. 

9 Robustness. 

In order to determine if our experimental results gen- 
eralize beyond the DEC Alphastation 250, we ran our 
programs on four other platforms: an IBM Power PC, 
a Spare 10, a DEC Alpha 3000/400 and a Pentium base 
PC. Figure 3 shows the speedup that the memory-tuned 
heapsort achieves over the base heapsort for the Alphas- 
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tation 250 as well as these four additional machines. 
Despite the differences in architecture, all the platforms 
show similar speedups. 

Figure 4 shows the speedup of our tiled merge- 
sort over the traditional mergesort for the same five 
machines. Unlike the heapsort case, the speedups for 
mergesort differ substantially. This is partly due to dif- 
ferences in the page mapping policies of the different 
operating systems. Throughout this study we have as- 
sumed that a block of contiguous pages in the virtual 
address space map to a block of contiguous pages in 
the cache. This is only guaranteed to be true when 
caches are virtually indexed rather than physically in- 
dexed [ 111. Unfortunately, the caches on all five of our 
test machines are physically indexed. Fortunately some 
operating systems, such as Digital Unix, have virtual 
to physical page mapping polices that attempt to map 
pages so that blocks of memory nearby in the virtual ad- 
dress space do not conflict in the cache [24]. Unlike the 
heapsort algorithms, tiled mergesort relies heavily on 
the assumption that a cache-sized block of pages do not 
conflict in the cache. As a result, the speedup of tiled 
mergesort relies heavily on the quality of the operating 
system’s page mapping decisions. While the operating 
systems for the Spare and the Alphas (Solaris and Dig- 
ital Unix) make cache-conscious decisions about page 
placement, the operating systems for the Power PC and 
the Pentium (AIX and Linux) appear not to be as care- 
ful. 

10 Analysis of Cache Misses. 

Cache misses cannot be analyzed precisely due to a 
number of factors such as context switching and the op- 
erating system’s virtual to physical page-mapping pol- 
icy. In addition, the memory behavior of an algorithm 
may be too complex to analyze completely. For these 
reasons the analyses we present are only approximate 
and must be validated empirically. 

10.2 Analysis of Radix Sort. The approximate 
cache miss analysis of radix sort is more complicated. 
Let n be the number of keys, b be the number of bits per 
key, r be the radix, B be the number of keys per block, 
A be the number of counts per block, and C the capacity 
of the cache in blocks. Assume that the size of the two 
count arrays is less than the cache capacity, 2’+l < AC, 
and that the number of keys is larger than the cache 
capacity, n > BC. Although it is not necessarily true, 
we assume that in the first iteration every block in one 
of the count arrays is accessed at least once every BC 
visits to the input array, in the last iteration every block 
in one of the count arrays is accessed at least once every 
BC/Z visits to the source array, and in each of the other 
iterations every block in the two count arrays is accessed 
at least once every BC/2 visits of the source array. In 
the first iteration of radix sort n keys are visited in 
the input array. This results in n/B cache misses. In 
addition every BC visits flushes the count array used 
to accumulate counts. Hence, there are an additional 
(n/BC)(2’/A) cache misses. In the last iteration, n 
keys are visited in each of the source and destination 
arrays resulting in 2n/B cache misses. Also in the 
last iteration, one of the two count arrays is flushed 
on average every BC/2 accesses yielding an additional 
(n/(BC/2))(2’/A) cache misses. In the remaining 
iterations n keys are visited in each of the source array 
and destination array. This results in 2( [b/r] - l)(n/B) 
misses. In all these iterations, on average, every BC/2 
visits flushes both the count arrays. This leads to an 
additional (n/(BC/2))([b/rj - 1)(2’+l/A) misses. In 

10.1 Analysis of Quicksort and Mergesort. The 
number of cache misses for our mergesort and quicksort 
variants are fairly easy to approximate because the 
memory reference patterns of these algorithms are fairly 
oblivious. As an example, for multi-mergesort let C 
be the cache capacity in cache blocks and let B be 
the number of keys per cache block. We assume that 
the number of keys, n, is such that [n/(BC/2)] = 
k for some integer k > 1. Because the auxiliary 
data structures needed for merging and other parts of 
the program are small we assume they remain in the 
cache most of the time and have little effect on cache 
performance. In the first phase of multi-mergesort there 
are exactly two cache misses for every B keys, one miss 

in the source array and one in the destination array. 
In the second phase there are again two cache misses 
for every B keys, one in the source array of the Ic-way 
merge and one in the destination. In addition, there 
may be an additional miss per every B keys because 
the keys may need to be copied. This extra copy 
happens if log, (BC/2) is even. Thus, the total number 
of misses per key is either 4 or 5 misses for every B keys, 
depending on the parity of log,(BC/2). In the case of 
our cache performance study, B = 4 and C = 216. Thus, 
we calculate 4 misses for every 4 keys which is 1 miss 
per key. This corresponds almost exactly to the number 
of misses per key reported in the cache miss graph of 
multi-mergesort in figure 1. Naturally, if Ic were very 
large then we cannot assume that the Ic-way merging 
data structure has little effect on memory performance. 
This case would be much more difficult to analyze, but 
is probably not relevant in practice because this case 
would only arise if n were at least the order of (BC)2. 
The analysis of the other versions of mergesort and of 
the versions of quicksort can be done in a similar way. 
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all, the total number of misses per key is approximated 
by 

2[;1 + 1 + 2’(4[;1 - 1) 
B ABC * 

Figure 5 compares this approximation with the actual 
number of cache misses incurred per key by radix sort 
for n = 4,096,000, b = 64, A = 8, B = 4, and C = 2’e. 
Both the analytic approximation and the simulation 
agree that the radix that minimizes cache misses is 16. 

Our approximation loses accuracy as f grows. 
There are at least two sources of the inaccuracy. The 
first is our assumption that each block in a count ar- 
ray is accessed at least once every M steps for some M. 
In reality, the probability that a block will not be ac- 
cessed at least once in M steps is (1 - l/S)M where S 
is the number blocks in a count array. In our example 
shown in the last row of figure 1, S = 216/8 = 213 and 
M = 216 .4 = 218 so that the probability that a block 
will not be accessed is (1 - 1/213)21s M e-32. Hence, 
this is not a significant source of inaccuracy. A second 
and significant source of inaccuracy is the unmodeled in- 
terference among accesses to the destination array and 
count arrays. In reality, the destination array in all the 
iterations but the first has 2” pointers into it. Each 
pointer traverses left-to-right from its original position 
to the original position of the next pointer at a rate pro- 
portional to the original distance between them. If T is 
large enough then these pointer accesses can interfere 
significantly with each other and with accesses to the 
count arrays causing “conflict misses.” We believe that 
this is the major source of inaccuracy in our analysis. 

10.3 Analysis of Heapsort. In a previous paper 
[17] we introduced collecta’ve analysis which enabled us 
to approximate the cache performance of heaps. In that 
paper we analyzed the cache performance of d-heaps in 
the hold model which models the priority queue in a dis- 
crete event simulator. That analysis serves as the basis 
for an approximate analysis of our heapsort variants. In 
collective analysis of an algorithm we divide the cache 
into a set of regions R and the algorithm’s memory ac- 
cesses into a set of independent stochastic processes P, 
where a process is intended to approximate the memory 
behavior of an algorithm or part of an algorithm. Ar- 
eas of the virtual address space accessed in a uniform 
way should be represented with a single process. Collec- 
tively, all of the processes represent the accesses to the 
entire virtual address space and hence represent the al- 
gorithm’s overall memory behavior. Collective analysis 
assumes that the references to memory satisfy the an- 
dependent reference assumption [4]. In this model each 
access is independent of all previous accesses, that is, 
the system is memoryless. 

If Xii is the access intensity of process j in cache 
region i then by extending a result of Rao [20] it can be 
shown [li’] that the hit intensity of the algorithm is 

and the miss intensity is A - n where & = CjEp Aij and 
x = CjER xj. 

Memory accesses in the d-heap can be approxi- 
mately modeled using collective analysis [17]. In partic- 
ular, the cache can be divided into regions correspond- 
ing to levels of the d-heap that are smaller than the 
cache. The memory accesses can be divided into pro- 
cesses that correspond to accesses to the levels that are 
smaller than the cache and to parts of a level that are 
equal to the cache size. 

Assume there are n keys, C cache blocks, and each 
block holds B keys. In the building a heap phase 
of heapsort there are at least n/B misses incurred 
in traversing the array. In addition, there are more 
misses incurred during the insertions into the d-heap. 
Because we use William’s repeated-adds algorithm [25] 
we pessimistically assume that all adds percolate to the 
root and that the most recent leaf-to-root path is in the 
cache. In this case, the probability that the next leaf is 
in the cache is l- l/B, the parent of that leaf is in the 
cache is 1 -l/( dB), the grandparent of that leaf is in the 
cache is 1 - 1/(d2B), and so on. We divide the removes 
phase of heapsort into n/(BC) subphases with each 
subphase removing BC keys. For 0 _< i < n/(BC) - 1 
we model the removal of keys BCI + 1 to BC(i + 1) 
as BC steps on an array of size n - BCi in the hold 
model. In essence, we are saying that the removal 
of BC keys from the d-heap is approximated by BC 

repeated remove-mins and adds in approximately the 
same size d-heap. Admittedly, this approximation was 
one of convenience because we already had a complete 
approximate analysis of the d-heap in the hold model. 
In figure 6 we measured the results of heapsort using the 
traditional binary heap (base heapsort) and the 4-heap 
(memory-tuned heapsort) on a DEC Alphastation 250 
with a 2 MB cache. Exactly four 64-bit keys fit in a 
cache block. We are somewhat surprised how well this 
analysis matches the measured results considering the 
assumptions we made in the approximation. 

11 Conclusions. 

This paper explores the potential performance gains 
that cache-conscious design and analysis offers to classic 
sorting algorithms. The main conclusion of this work 
is that the effects of caching are extremely important 
and need to be considered if good performance is a 
goal. Despite its very low instruction count, radix sort 



is outperformed by both mergesort and quicksort due 
to its relatively poor locality. Despite the fact that 
the multi-mergesort executed 75% more instructions 
than the base mergesort, it sorts up to 70% faster. 
Neither the multi-mergesort nor the multi-quicksort are 
in-place or stable. Nevertheless, these two algorithms 
offer something that none of the others do. They 
both incur very few cache misses, which renders their 
overall performance far less sensitive to cache miss 
penalties than the others. As a result, these algorithms 
can be expected to outperform the others as relative 
cache miss penalties continue to increase. This paper 
also shows that despite the complexities of caching, 
the cache performance of algorithms can be reasonably 
approximated with a modest amount of work. Figures 
5 and 6 show that our approximate analysis gives good 
information. However, more work needs to be done 
to improve the analysis techniques to make them more 
accurate. 
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Figure 1: Performance of heapsort, mergesort, quicksort and radix sort on sets between 4,000 and 4,096,OOO keys. 
The first column of graphs shows instruction counts per key, the second column shows cache misses per key and 
the third column shows execution times per key. Executions were run on a DEC Alphastation 250 and simulated 
cache capacity is 2 megabytes with a 32 byte block size. 
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Figure 3: Speedup of memory-tuned heapsort over Figure 5: Cache misses incurred by radix sort, 
base heapsort on five architectures. measured versus predicted. 
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Figure 4: Speedup of tiled mergesort over base 
mergesort on five architectures. 
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Figure 6: Cache misses incurred by heapsort, mea 
sured versus predicted. 


