
~ROCFEDINOS OF THE IEEE, VOL. 60, NO. 4, APRIL 1972 369

49, p. 439, 1966.

I 5 9 K. Tamarlbuchl. and M. L. Smlth. "Charge Determiling Species in Non-Aqueous
Solvents." J. Colloid Interlace Sci., VoI. 22, p. 404, 1966.
'60 T. Tani and S. Klkuchi. "Spectral Sensitlzarion in Photography and Electrophotog-
raphy," Report lnst. Industrial SCI., Univ. Tokyo, Vol. 18, p. 51, 1968.

of Semiconductors by Dyes," J. Phys. Chem., VoI 69. p. 730, 1965.
A. Terenin and I. Akimov. "Some Experiments on the Photosensitization MechaTism

I i Z V. D Tughan and R. C. Pink, "Solutions of Metal Soaps in Organic Solvents Part 11,"
J. Chem. Soc., p. 1604, 1951

VoI. 59, p. 328. 1969.
' h 3 V. Tuiagin. "Imaging Method Based on Photoelectrophoresis," J. Opt Soc. Amer.,

l d 4 E. J Verwey and J. Th. G. Overbeek, The- of the Stability of Lyophobic Colloids,
Amsterdam: Elsevler, 1946.

Optics: Suppl. -3 on Electrophotography, p. 27, 1969.
J. Viscakas. et al. "Recombination in Selenium Electrophotographic Layers," A w l .

photographic Layers," Reprographle 1 1 , l lnd Int. Conf. Cologne, Helwich Darmstadt,
I b b J. Viscakas and V. Gaidelis. "The Role of Intercrystalline Barriers in ZnO Electro-

1969.
I b 7 0. Von Bronk, British Patent No. 188.030, 1922

W. H. F. Talbot, "Photogem Drawing," The Athenaeum, No. 589, p. 114, 1839.
' H E. W. Wagner, British Patent No. 1,065796 1967.
l L 9 L. E Walkup, U S . Patent No. 2,777,957, 1957.
' ' O L. E. Walkup, U.S. Patent No. 2.825.614. 1954.

Appl. Optics: Suppl. =3 on Electrophotography. p 65, 1969.

Surfaces." Jap. J. Appl. Phys., Vol. 4, p. 945. 1965.
"' J. W. Weigl. Photographic Science, Ed. by W. F. Berg, New York: Focal Press, 1963.
'I4 R. D. Weiss, "Electrolytic Photography," Phot. Sci. and Enq., Vol. 11. p. 287, 1967.
' I 5 P. H. Wersema, et al, "Calculatlon of the Electrophoretic Mobility of a Spherical
Collold Particle," J. CoUoid Interface Sci., Vol. 22. p. 78. 1966.

117 N. E. Wolff. " A Photoconductive Thermoplastic Recording System," RCA Review,
' l e H. Wiellcki. private communicatlon.

Vol. 25, p. 200. 1964.
' l e W. Yellin, et al, British Patelt No. 1,016,072, 1966.

' d o C. J. Young and H. G. Grieg. "Electrofax: Direct Electrophotographic Printing on
Paper," RCA Review, Vol. 15. p, 469, 1954.
' 8 ' Anon., Electronic News, p. 68, February 16, 1970.

P. J. Warter, Jr.. ' Factors Determinlng Xerographlc Photoreceptor Performance,"

H. Watanabe. et al. "The Activation Energy !or Oxygen Desorptlon from Zinc Oxide

W. C. York, U.S. Patent No. 3,135.695. 1964.

The Illiac IV System
W. J. BOUKNIGHT, STEWART A. DENENBERG, DAVID E. McINTYRE, J. M. RANDALL,

AMED H. S m H , AND DANIEL L. SLOTNICK, SENIOR MEMBER, IEEE

Invited Paper

-Tho masons for the creation of llliac IV a n described and
Wn history of tho liiiac IV p t + c t is mwntod. The archihchrn or hard-
ware st ruetun of * llliac IV is discuss- llllac IV array is an army
processor with a rp.dalied control unit (CUI that urn be vkwed as a
small stand-alone computer. The llliac IV sohare strategy is described
in k r m s of current user habits and needs. Brief descriptions are given of
the systems software itself, its history, and the maior lessons l e a d dur-
ing its development. Some i d e a s for future development are suggested.
Applications of lliiac N are discussed in terms of evaluating the fundon
ffxJ rimultanoously on up to 64 distinct argument sets x<. Many of the time-
consuming p r o b k m s In scientiAc computation invoke repeated evaludon
of the same function on dihrenl agument soh. The agumenl sets which
c o m p o s e the problem data base must be structured in such a fashion tho+
they can bo dimtbuted omong 64 separate memories. Two matrix a p
plications: Jacobi's algorithm for Anding the eigenvalues and eigenvectors
of mal symmetric matrices, and reducing a mal nonsymmetric matrix to
the uppor-Hawnberg form using Householder's transformotions are dis-
cussed in detail. The ARPA networlr, a highly sophisticated and wide
ranging experiment in the remote access and sharing of computer n-
SOUKOS, is brieAy described and its current status discussed. Many re-
marchers located about the country who will use Illiac IV in solving
problems will do so via the network. The various systems, hardware,
and procedures they will use is discussed.

I. INTRODUCI-ION

1 T ALL BEGAN in the early 1950's shortly after EDVAC [l]
became operational. Hundreds, then thousands of compu-
ters were manufactured, and they were generally organized

on Von Neumann's concepts, as shown and described in Fig. 1.
In the decade betwetm 1950 and 190, memories became cheaper
and faster, and the concept of archival storage was evolved; con-
trol-and-arithmetic and logic units became more sophisticated:

Manuscript received December 10, 1971; revised January 17, 1972.

The M t o r .
Ttris inoitedpper is one of a series p h n e d on topics of general interest-

The authors are with the Center for Advanced Computation and the
Illiac N Project, University of Illinois, Urbana, Ill. 61801.

a MEMORY

Fig. 1. Functional relations within a conventional computer. The CU
has the function of fetching instructions which are stored in memory,
decoding or interpreting these instndons, and linally generating
the microsequences of electronic pulses which cause the instruction
to be performed. The performance of the instruction may entail the
use or "driving" of one of the three other components. The CU may
also contain a small amount of memory called registers that can be
accessed faster than the main memory. The ALU contains the elec-
tronic circuitry necess~~y to perform arithmetic and logical opera-
tions. The ALU may also contain register storage. Memory is the
medium by which information (instructions or data) is stored. The
1/0 accepts information which is input to or output from Memory.
The 1 / 0 hardware may also take care of converting the information
from one coding scheme to another. The CU and ALU taken
together are sometimes called a CPU.

1 /0 devices expanded from typewriter to magnetic tape units,
disks, drums, and remote terminals. But the four basic compo-
nents of a conventional computer (control unit (0, arithmetic-
and-logic unit (ALLJ), memory, and I/O) were all present in one
form or another.

The turning away from the conventional organization came in
the middle lm's , when the law of diminishing returns began to

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

370 P R ~ I N G S OF THE IEEE, APRIL 1972

Timing
Cycle

1

2

3

4

5

Fig. 2. Pipelined operation. The large boxes represent the circuits required to transform the operands A and B into the quantity O(A, B) (some
function of A and B, say the sum of A and B). The smaller boxes represent storage stages for the intermediate results O(A, B) , and @ A , B)2,
and the desired result O(A, B). The operation 0 has been broken.down into three stages, each of which accepts as input the output of the pre-
vious stage, and all of which perform a stage of the operation at the same time. At esch step of the timing cycle, the pipeline accepts a new
pair of operands (A , B) and the previous pair moves to the next stage. This mode of operation causes results (the sum in this example) to
appear at the end of the pipeline at time intervals equal to the time of operation of the slowest stage of the pipeline.

take effect in the effort to increase the operational speed of a com-
puter. Up until this point the approach was simply to speed up
the operation of the electronic circuitry which comprised the four
major functional components. (See Fig. 1.)

Electronic circuits are ultimately limited in their speed of
operation by the speed of light (light travels about one foot in a
nanosecond) and many of the circuits were already operating in
the nanosecond time range. So, although faster circuits could be
made, the amount of money necessary to produce these faster
circuits was not justifiable in terms of the small percentage in-
crease of speed.

At this stage of the problem two new approaches evolved.
1) Owrlup: The hardware structure of the conventional or-

ganization was modified so that two or more of the major func-
tional components (or subcomponents within a major compo-
nent) could overlap their operations. Overlap means that more
than one operation is occurring during the same time interval,
and thus total operation time is decreased.

Before operations could be overlapped, control sequences be-
tween the components had to be decoupled. Certainly the CU
could at least be fetching the next instruction while the ALU was
executing the present one.

2) Replication: One of the four major components (or sub-
components within a major component) could be duplicated many
times. (Ten black boxes can produce the result of one black box
in one-tenth of the time if the conditions are right.) The replica-
tion of 1/0 devices, for example, was a step taken very early in the
evolution of digital computers-large installations had more than
one tape drive, more than one card reader, more than one printer.

Since the above two philosophies do not mutually exclude
each other, a third approach exists which consists of both of them
in a continuously variable range of proportions.

The overlapping philosophy was implemented largely through
the buffer and pipeline mechanisms. The pipeline mechanism (see
Fig. 2) breaks down an operation into suboperations, or stages,
and decouples these stages from each other. After the stages are
decoupled they can be performed simultaneously or, equivalently,
in parallel. The buffer mechanism allows an operation to be de-
coupled into parallel operation by providing a place to store in-
formation.

The replication philosophy is exemplified by the general multi-
processor which replicates three of the four major components
(all but the I/O) many times. The cost of a general multiprocessor
is, however, very high and further design options were considered
which would decrease the cost without seriously degrading the
power or efficiency of the system. The options consist merely of
recentralizing one of the three major components which had been
previously replicated in the general multiprocessor-the memory,
the ALU, or the CU. Centralizing the CU gives rise to the basic
organization of a vector or array processor such as Illiac IV. This
particular option was chosen for two main reasons.

1) Cost: A very high percentage of the cost within a digital
computer is associated with CU circuitry. Replication of this
component is particularly expensive, and therefore centralizing
the CU saves more money than can be saved by centralizing either
of the other two components.

2) Structure: There is a large class of both scientific and
business problems that can be solved by a computer with one CU
(one instruction stream) and many ALUs. The same algorithm is
performed repetitively on mzny sets of different data: the data
are structured as a vector, and the vector processor of Illiac IV
operates on the vector data. All of the components of data struc-
tured as a vector are processed simultaneously or in parallel.

The Illiac IV project was started in the Computer Science De-
partment at the University of Illinois with the objective of de-
veloping a digital system employing the principle of parallel
operation to achieve a computational rate of IO9 instructions/s.
In order to achieve this rate, the system was to employ 256 proces-
sors operating simultaneously under a central control divided into
four subassembly quadrants of 64 processors each. Due primarily
to subcontractor problems several basic technological changes
were necessitated during the course of the program, principally,
reduction in individual logic-circuit complexity and memory tech-
nology. These resulted in cost escalation and schedule delays,
ultimately limiting the system to one quadrant with an overall
speed of approximately 200 million instructions/s. It is this one-
quadrant system that will be discussed for the remainder of this
paper.

The approach taken in Illiac IV surmounts fundamental lim-
itations in ultimate computer speed by allowing-at least in p M -

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et al.: THE ILLIAC IV SYSTEM

ciple-an unlimited number of computational events to take place
simultaneously. The logical design of Illiac IV is patterned after
that of the Solomon [2], [3] computers, prototypes of which were
built by the Westinghouse Electric Corporation in the early 1960’s.
In this design a single master CU sends instructions to a sizable
number of independent processing elements (PES) and transmits
addresses to individual memory units associated with these PES
(“PE memories,” PEMs). Thus, while a single sequence of instruc-
tions (the program) still does the controlling, it controls a number
of PES that execute the same instruction simultaneously on data
that can be, and usually are, different in the memory of each PE.

Each of the 64 PES of Illiac IV is a powerful computing unit
in its own right. It can perform a wide range of arithmetical opera-
tions on numbers that are 64 binary digits long. These numbers
can be in any of the six possible formats: the number can be
processed as a single number 64 bits long in either a fixed or a
“floating” point representation, or the 64 bits can be broken up
into smaller numbers of equal length. Each of the memory units
has a capacity of 2048 64-bit numbers. The time required to ex-
tract a number from memory (the access time) is 188 ns, but be-
cause additional logic circuitry is needed to resolve conflicts when
two or more sections of Illiac IV call on the memory simultane-
ously, the minimum time between successive operations of mem-
ory is increased to 350 ns.

Each PE has more than 100 OOO distinct electronic components
assembled into some 12 OOO switching circuits. A PE together
with its memory unit and associated logic is called a processing
unit (PU). In a system containing more than six million compo-
nents one can expect a component or a connection to fail once
every few hours. For this reason much attention has been devoted
to testing and diagnostic procedures. Each of the 64 processing
units will be subjected regularly to an extensive library of auto-
matic tests. If a unit should fail one of these tests, it can be quickly
unplugged and replaced by a spare, with only a brief loss of oper-
ating time. When the defective unit has been taken out of service,
the precise cause of the failure will be determined by a separate
diagnostic computer. Once the fault has been found and repaired,
the unit will be returned to the inventory of spares.

Illiac IV could not have been designed at all without much
help from other computers. Two medium-sized Burroughs 5500
computers worked almost full time for two years preparing the
artwork for the system’s printed circuit boards and developing
diagnostic and testing programs for the system’s logic and hard-
ware. These formidable design, programming, and operating
efforts were under the direction of Arthur B. Carroll, who, during
this period, was the project’s deputy principal investigator.

The Illiac IV system is scheduled for completion by the end of
this calendar year; the fabrication phase is essentially complete
with some final assembly and considerable debugging yet to be
completed.]

11. HARDWARE STRUCTURE
A . Illiac IV in Brief

As stated in the Introduction, the original design of Illiac IV
contained four CUs, each of which controlled a 64-ALU array
processor. The version being built by the Burroughs Corporation
will have only one CU which drives 64 ALUs as shown in Fig. 3.
It is tor this reason that Illiac IV is sometimes referred to as a

All of this work was sponsored under a Grant (Contract USAF
30(602)4144) from the Advanced Research Projects Agency.

371

I c cu
I/O

(86500)
1

J

u.. .A
Fig. 3. Functional block diagram of nliac IV.

quadrant (one-fourth of the original machine) and it is this ab-
breviated version of Illiac IV that will be discussed for the re-
mainder of this paper. For a more complete description of the
Illiac IV architecture see [4]-[6].

One difference between Illiac IV and a general array processor
is that the CU has been decoupled from the rest of the array
processor so that certain instructions can be executed completely
within the resources of the CU at the same time that the ALU is
performing its vector operations. In this way another degree of
parallelism is exploited in addition to the inherent parallelism of
64 ALUs being driven simultaneously. What we have is 2 com-
puters inside Illiac IV: one that operates on scalars, and one that
operates on vectors. All of the instructions, however, emanate
from the computer that operates on scalars-the CU.

Each element of the ALU array is not called by its generic
name (ALU) but is called a PE. There are 64 PES, and they are
numbered from 0 to 63. Each PE responds to appropriate instruc-
tions if the PE is in an active mode. (There exist instructions in the
repertoire which can activate or deactivate a PE.) Each PE per-
forms the same operation under command from the CU in the
lock-stepped manner of an array processor. That is, since there
is only one CU, there is only one instruction stream and all of the
ALUs respond together or are lock-stepped to the current in-
struction. If the current instruction is ADD for example, then all
the ALUs will add-there can be no instruction which will cause
some of the ALUs to be adding while others are multiplying.
Every ALU in the array performs the instruction operation in this
lock-stepped fashion, but the operands are vectors whose com-
ponents can be, and usually are, different.

Each PE has a full complement of arithmetic and logical cir-
cuitry, and under command from the CU will perform an instruc-
tion “at-a-crack” as an array processor. Each PE has its own 2048
word 64-bit memory called a PE memory (PEM) which can be
accessed in no longer than 350 ns. Special routing instructions can
be used to move data from PEM to PEM. Additionally, operands
can be sent to the PES from the CU via a full-word (64-bit) one-
way communication line and the CU has eight-word one-way
communication with the PEM array (for instruction and data
fetching).

An Illiac IV word is 64 bits, and data numbers can be repre-
sented in either 64-bit floating point, 64-bit logical. 48-bit fixed
point, 32-bit floating point, 24-bit fixed point, or 8-bit fixed point
(character) mode. By utilizing the 64-bit, 32-bit, and 8-bit data
formats, the 64 PES can hold a vector of operands with either 64,

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

372 PROCEEDINGS OF THE IEEE, APRIL 1972

CONTROL UNIT - ILLIAC SYSTEM

*- PROCESSOR WIT (tu)
ARRAY CONTROL

I

I I I
COWTROL DESCRIPTOR BUFFER INPUTIOUTPUT INPUTiUUTPUT SWITCH
CONTROLLER (CDCI NEYORY (I I IDYI (1051

Fig. 4. Illiac IV system organization.

128, or 512 components. Since Illiac IV can add 512 operands in
the 8-bit integer mode in about 66 ns, it is capable of performing
almost 101O of these "short" additionsl's. Illiac IV can perform
approximately 150 million 64-bit rounded normalized floating-
point additionsis.

The 1/0 is handled by a B6500 computer system. The operat-
ing system, including the assemblers and compilers, also resides
in the B6500.

B. The Ilfiac IV System
The IUiac TV system can be organized as in. Fig. 4. The Illiac IV

system consists of the Illiac IV array plus the Illiac IV I/O system.
The Illiac IV array consists of the array processor and the CU.
In turn, the array processor is made up of 64 PES and their 64
associated memories-PEMs. The Illiac IV 11'0 system comprises
the 1/0 subsystem, the disk file system (DFS), and the B6500 con-
trol computer. The 110 subsystem is broken down further t o the
CDC, BIOM, and 10s. The B 6 5 0 is actually a medium-scale
computer system by itself.

The Illiac IV array will be discussed first, in a general manner,
followed by two illustrative problems which indicate some of the
similarities and differences in approach to problem solving using
sequential and parallel computers. The prablems also serve to
illustrate how the hardware components are tied together. Fi-
nally, the Illiac IV 11'0 system is discussed briefly.

I) The Ifliuc IF' Array: Fig. 5 represents the Illiac IV array-
the CU plus the array processor.

a) CU: The CU is not just the CU that we are used to think-
ing of on a conventional computer, but can be viewed as a small
unsophisticated computer in its own right. Not only does it cause
the 64 PES to respond to instructions, but there is a repertoire of
instructions that can be completely executed within the resources
of the CU, and the execution of these instructions is overlapped
with the execution of the instructions which drive the PE array.
Again, it is worthwhile to view Illiac IV as being two computers,
one which operates on scalars and one which operates on vectors.

The CU contains 64 integrated-circuit registers called the
ADVAST data buffer (ADB), which can be used as a high-speed
scratch-pad memory. ADVAST is an acronym for advanced sta-
tion and is one of the five functional sections of the CU. Each
register of the ADB (DO through D63) is 64 bits long. The CU

TO

m1 ,
CONTROL UNIT BUS

I

Fig. 5 . llliac 1V array.

also has 4 accumulator registers called ACARO, ACARI,
ACAR2, and ACAR3, each of which is also 64 bits long. The
ACARs can be used as accumulators for integer addition, shift-
ing, Boolezn operations, and holding loop-control information-
such as the lower limit, increment, and upper limit. In addition
the ACARs can be used as index registers to modify storage refer-
ences within the memory section (PEM).

b) PE: Each PE is a sophisticated ALU capable of a wide
range of arithmetic and logical operations. There are 64 PES num-
bered 0 through 63. Each PE in the array has 6 programmable
registers: the A register (RGA) or accumulator, the B register
(RGB), which holds the second operand in a binary operation
(such as ADD, SUBTRACT, MULTIPLY, or DIVIDE), the R or routing
register (RGR), which transmits information from one PE to
another, the S register (RGS) which can be used as temporary
storage by the programmer, the X register (RGX) or index register
to modify the address field of an instruction, and the D or mode
register (RGD), which controls the active or nonactive status of
each PE independently. The RGD determines whether a PE will
be active or passive during instruction execution. Since this regis-
ter is under the programmer's control, individual PES within the
array of 64 PES may be set to enabled (active) or disabled (pas-
sive) status based on the contents of one of the other PE registers.
For example, there are instructions which disable all PES whose
RGR contents are greater than their RGA contents. Only those
PES in an enabled state are able to execute the current instruction.
All registers are 64 bits except RGX which is 16 bits, and RGD
which is 8 bits,.

c) PEM: Each PE has its own 2048-word 64-bits per word
random-access memory. Each memory is called a PEM, and they
are numbered 0 through 63 also. PE and PEM taken together are
called aprocesving unir or PU. PEi may only access PEMi so that
one PU cannot modify the memory of another PU. Information

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et al. : THE ILLIAC IV SYSTEM 313

56 57 58 59 60 61 62 63

Fig. 6. PE routing connections.

can, however, be passed from one PU to another via the routing
network, which is one of the 4 paths by which data flow through
the Illiac IV array.

6) Data paths: There are four paths by which data flow
through the Illiac IV array. These paths are called the CU bus,
the common-data bus (CDB), the routing network, and the mode-
bit line.

1) CU bus: Instructions or data from the PEMs in blocks of
eight words can be sent to the CU via the CU bus. The instruc-
tions to be executed are distributed throughout the PEMs and
are fetched in blocks of eight words to the CU via the CU bus as
necessary. Although the operating system takes care of fetching
and executing instructions, data can also be fetched in blocks of
eight words under program control using the CU bus.

2) CDB: Information stored in the CU can be “broadcast”
to the entire 64 PE array simultaneously via the CDB. A value
such as a constant to be used as a multiplier need not be stored 64
times in each PEM; instead this value can be stored within a CU
register and then broadcast to each enabled PE in the array. Ia
addition the operand or address portion of an instruction is sent
to the PE array via the CDB.

3) Routing network: Information in one PE register can be
sent to another PE register by special routing instructions. (In-
formation can be transferred from PE register to PEM by stan-
dard LOAD or STORE instructions.) High-speed routing lines run
between every RGR of every PE and its nearest left and right
neighbor (distances of - 1 and +1, respectively) and its neighbor
8 positions to the left and 8 positions to the right (-8 and +8,
respectively). Other routing distances are effected by combinations
of routing - 1, + 1 , -8, or f 8 PEMs; that is, if a route of 5 to
the right is desired, the software will figure out that the fastest way
to do this is by a right route of 8 followed by three left routes of 1.
Fig. 6 shows one way to view the connectivity which exists be-
tween PES. As can be seen from the figure, PEo is connected to
PES, PEI, PEs, and P G .

4) Mode-bit fine: The mode-bit line consists of one line coming

from the RGD of each PE in the array. The mode-bit line can
transmit one of the eight mode bits of each RGD in the array up
to an ACAR in the CU. If this bit is the bit which indicates
whether or not a PE is on or off, we can transmit a “mode pat-
tern’’ to an ACAR. This mode pattern reflects the status or on-
offness of each PE in the array; then there are instructions which
are executed completely within the CU that can test this mode
pattern and branch on a zero or nonzero condition. In this way
branching in the instruction stream can occur based on the mode
pattern of the entire 64-PE array.

2) Some Illustratice Problems
a) Adding two aligned arrays: Let us first consider the prob-

lem of adding two arrays of numbers together. The Fortran state-
ments for a conventional computer might look like:

DO 10 I = 1, S
10L4(I) = B (I) + C (I) .

The two Fortran instructions are compiled to a set of machine-
language instructions which include initialization of the loop,
looping instructions, and the addition of each element of the B
array to the proper element in the C array, and storage to the A
array. Except for the initialization instructions, the set of machine-
language instructions is executed N times. Therefore, if it takes
M ps to pass once through the loop, it will take about N times M
ps to perform the above Fortran code.

Now suppose the same operations are to be performed on
Illiac IV. Arrangement of the data in memory becomes a primary
consideration-the data must be arranged to exploit the parallel-
ism of operation of the PES as effectively as possible. The worst
way to use the PES would be to allocate storage for the A , B, and
C arrays in just one PEM. Then instructions would have to be
written just as they were in a conventional machine to loop
through an instruction set N times.

Let us consider the problem as consisting of three cases:
N=64, N<64, and N>64, and then see what each case entails in
terms of programming for Illiac IV.

1) N = 64: To reflect the case where N=64, we have arranged
the data as shown in Fig. 7. In order to execute the two lines of
Fortran code, only the three basic Illiac IV machine-language in-
structions are necessary: 1) LOAD all PE Accumulators (RGA)
from location a+2 in all PEMs. 2) ADD to the PE Accumulators
(RGA) the contents of location a+l in all PEMs. 3) STORE result
of all PE Accumulators to location cr in all PEMs.

Since every PE will execute each instruction at the same time
or in parallel, accessing its own PEM when necessary, the 64 loads,
additions, and stores will be performed while just three instruc-
tions are executed. This is a speedup of 64 times for this case, in
execution time.

The three instructions to perform the 64 additions in Illiac IV
assembly language (Ask) would actually look like:

LDA ALPHA -t 2 ;
A D R S ALPHA + 1:
STA ALPHA;

(note that since each instruction operates on a vector, a memory
location can be considered a row of words rather than a single
word).

2) N<64: Since there are exactly 64 PES to perform calcula-
tions, a proper question is: what happens if the upper limit of the

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

374 PROCEEDINGS OF THE IEEE, APRE 1972

LOCATON 0

LoCAfKyla
LOCATION a+l
LOCATION a t 2

LOcA1K)N 2047

Fig. 7. Arrangement of data in PEM to accomplish
DO 10 I = 1, 64

10 .4(Z) = B (I) + C (I) .

loop is not exactly equal to 64? If the upper limit is less than 64,
there is no problem other than that the total PE array will not be
utilized.

The tradeoff the potential user of Illiac IV must consider here
is how much (or how often) is Illiac IV underutilized? If the under-
utilization is “too much” then the problem should be considered
for running on a conventional computer. However, the user
should keep in mind that he usually does not feel too guilty if he
underutilizes the resources of a conventional system-he does not
use every tape drive, every bit of available core, every printer, and
every byte of disk space for most of his conventional programs.

3) N > 64: When the upper limit of the loop is greater than 6 4 ,
the programmer is faced with a storage allocation problem. That
is, he has various options for storing the A , B, and C arrays and
the program he writes to perform the 2 Fortran statements will
vary considerably with the storage allocation scheme chosen. To
illustrate this let us consider the special case where N = 6 6 with
the A, B, and C arrays stored as shown in Fig. 8.

To perform the 66 additions on the data stored as shown in
Fig. 8, six Illiac IV machine-language instructions are now neces-
sary:

LOAD RGA from location a+4.
ADD to RGA contents of location a+2 .
STORE result to location a.
LOAD RGA from location a+5.
ADD to RGA contents of location a+3.
STORE result to location a+ 1.

The addition of two more data items to the A , B, and C arrays
not only necessitates extra Illiac IV instructions but complicates
the data storage scheme. In this instance, the programmer might
as well DIMENSION the A , B, and C arrays to 128 as 66. Note that
the particular storage scheme shown in Fig. 8 wastes almost 3
rows of storage (186 words). The storage could have been packed
much closer so that B (l) followed A(66) in PE, of row a + l , but
the program to add the arrays together would have to do much
more shuffling to properly align the arrays before adding. An
Illiac IV program is highly dependent on the storage scheme
chosen.

b) Uncoupling sequential code: Finally let us consider the

L o M K m O

LOCATON a
LOCATION a t 1
LOCATION a t 2
LCCATKN a t 3
LOCATION a+4
LOCATWa+5

Lac14TDn 2047

/ i /
Fig. 8. Arrangement of data in PEM to accomplish

10 A(Z) = R(Z) + C(Z).

DO 10 I = 1, 66

Fortran code :

D 0 1 0 1 = 2 , 6 4
10 A(Z) = B(Z) + A (I - 1).

How would we do the above instructions on a parallel computer
such as Illiac IV? At first, it appears we cannot perform the above
algorithm on Illiac IV because it is inherently sequential. If we
recognize that the 2 Fortran statements above are only a short-
hand for 63 Fortran statements:

A (2) = B(2) + A (1)
A(3) = B(3) + A (2)

A(63) = B(63) + A(62)

A(64) = B(Ci4) + A(63)

and that each of the 63 statements is executed sequentially, we see
that each statement in the sequence relies on the result computed
from the previous statement. That is, 4 3) cannot be computed
until the statement above it has computed 4 2) . Therefore, the 63
additions cannot be done in parallel if we literally try to apply the
2 Fortran statements as they stand. However, using mathematical
subscript notation:

A2 = B2 + A I
A3 = B3 + A ? = B3 + B2 + A I

A * = B ~ + A ~ = B I + B ~ + B : ! + A ~

A N = B.v + B.v-1 * * BZ + A I .
We see that the elements of the A array can be computed inde-
pendently using the formula

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et al. : THE ILLIAC IV SYSTEM 315

I 'I+*1 I

I 1

I =' I
...

...

Fig. 9. Status of data in PEM, RGA, RGR, and mode status (RGD) while executing
DO 10 Z = 2, 64

10 A(Z) = B(Z) + A(Z - 1).

The mode status (RGD) and the contents of PEM, RGA, and RGR are shown after step 8) (i = 2) of the program.

s
;Is = A I + Bi, for .2 I S I 64.

i= 2

The Fortran code to perform the above formula would be:

i(; = 9 (1)

s = AS + R (S)
DO 10 S = 2,64

10 A(.\-) = 6 s .

The above Fortran code is equivalent to the original code (its end
results are the same) but now the computation of the A array has
been decoupled so that each value of A in the airay can be com-
puted independently.

An arrangement of data to effect this program is shown in Fig.
9 and the program might be as follows.

1) Enable all PES. (Turn ON all PES.)
2) Ali PES LOAD RGA from location a.
3) i d .
4) All PES LOAD RGR from their RGA. [This instruction is

performed by d l PES, whether they are ON (enabled) or OFF (dis-
abled).]

5) All PES ROUTE their RGR contents a distance of 2' to the
right. (This instruction is also performed by all PES, regardless of
whether they are ON or OFF.)

6) j -2'- 1 .
7) Disable PES number 0 through j . (Turn them OFF.)
8) All enabled PES ADD to RGA the contents of RGR. (Fig.

9 shows the state of RGR, RGA, and RGD (the mode status-
which PES are ON and which are OFF-after this step has been ex-
ecuted when i = 2.)

9) i c i + l .
10) If i<6 go back to step 3), otherwise to the step 11).
11) Enable all PES.
12) All PES STORE the contents of RGA to location a+l.
Note that this same algorithm can be applied to the solution

of problems where the recurrence is of the form:. F, = C, * F$-I

a 86500 CONTROL COMPUTER

DISK FILE
SYSTEM SVBSYSTEM

Fig. IO. Illiac IV 1 / 0 system.

which decouples to F.v=((ITL2 Ci)Fl. All that need be done is
that step 8) be changed to MULTIPLY rather than ADD. Note also
that if Ci = i (i= 1,2, . ,64) and F1 = 1 we have an algorithm for
computing N ! on Illisc IV; thst is, when the algorithm is com-
plete PE.v will contain (N+l)!

This example tries to illustrate that it is not always immedi-
ately clear if an algorithm can be decoupled so thst it can operate
in parallel, or is so dependent on what happened before that it can
only be executed sequentially. In this example, it appears that the
algorithm is sequential, but upon closer inspection, the parallelism
appears. Potential Illiac IV users will probably need much prac-
tice in analyzing problems using a parallel viewpoint, especially if
they have already been conditioned to viewing their problems only
in terms of solving them on a sequential conventional computer.
The tool, for better or for worse, shapes the uses it is pxt to.

3) Illiac IV 1'0 System: The Illiac IV array is an extremely
powerful information processor, but it has of itself no I . 0 capa-
bility. The I 0 capability, along with the supervisory system (in-
cluding compilers and utilities), resides within the Illiac IV I ' ' 0
System. The Illiac IV I, '0 system (see Fig. 10) consists of the I '0
subsystem, a DFS, and a B6500 control computer (which in turn

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

376 PROCEEDINGS OF THE IEEE, APRIL 1972

B6500 Peripherals: C a d Reader, Cord Punch,
Line Printer. 4 Magnetic TODB Units. 2 Disk Files.

I Console Pilnter ond Ke;board I
4

ARPA NETWQIK

“i“
T

Devise

Fig. 11. Illiac IV system.

supervises a large laser memory and the ARPA network link).
The total Illiac IV system consisting of the Illiac IV 1, 0 system
and the Illiac IV array is shown in Fig. 11. All system configura-
tions shown are transitory, and more than likely will have change3
several times in the next year or so.

a) Z,’O subsystem: The I 0 subsystem consists of the control
descriptor controller (CDC), the buffer I, 0 memory (BIOM),
and the 110 switch (10s).

1) CDC: The CDC monitors a section of the CU waiting for
an 1;O request to appear. The CDC can then interrupt the B6500
control computer which can, in turn, try to honor the request and
place a response code back in that section of the CU via the CDC.
This response code indicates the status of the I, 0 request to the
program in the Illiac IV array.

The CDC causes the B6500 to initiate the loading of the PEM
array with programs and data from the Illiac IV disk (also called
the DFS). After PEM has been loaded, the CDC can then pass
control to the CU to begin execution of the Illiac 1V program.

2) BIOM: The B6500 control computer can transfer informa-
tion from its memory through its CPU at the rate of 8OX1O6
bits’s. The Illiac IV DFS accepts information at the rate of

500X1O6 bits,’s. This factor of over six in information transfer
rates between the two systems necessitates the placing of a rate-
smoothing buffer between them. The BIOM is that buffer. A
buffer is also necessary for the conversion of 48-bit B6500 words
to 64-bit Illiac IV words which can come out of the BIOM two
a t a time via the 128-bit wide path to the DFS. The BIOM is ac-
tually four PE memories pro\liding 8192 words of 64-bit storage.

3) 10s: The 10s performs two functions. As its name im-
plies, it is a switch and is responsible for switching information
from either the DFS or from a port which can accept input from
a real-time device. All bulk data transfers to and from the PEM
array are via 10s. As a switch it must ensure that only one input
is sending to the array at a given time. In addition, the 10s acts
as a buffer between the DFS and the array, since each channel
from the Illiac 1V disk to the 10s is 256 bits wide and the bus
from the 10s to the PEM array is 1024 bits wide.

b) DFS: The DFS consists of two storage units, two elec-
tronics units and two disk file controllers. The DFS is also called
the Illiac IV disk or simply, the Disk. The Disk is of 109-bit capac-
ity, having 128 heads, with one head per track. The DFS has two
channels, each of which can transmit or receive data at a rate of

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et a/.: THE ILLIAC IV SYSTEM 311

0.5 X lo9 bitsjs over a path 256 bits wide; however, if both chan-
nels are sending or receiving simultaneously the transfer rate is
IO9 bitsis.

c) B6500 control computer: The B6500 control computer con-
sists of a central processing unit (CPU), a memory, a multiplexor,
and a set of peripheral devices (card reader, card punch, line
printer, 4 magnetic tape units, 2 disk files and a console printer,
and a keyboard). It is the function of the B6500 to manage all
programmers’ requests for system resources. This means that the
operating system will reside on the B6500. All compiling and as-
sembling of programs is also performed on the B6500. Utilities,
such as card-to-disk, card-to-tape, etc., are also executed on the
B6500. From a total system standpoint, the Illiac IV array can be
considered as a special-purpose peripheral device of the B6500
capable of solving certain classes of problems with extremely high
speed.

1) Laser memory: The B6500 supervises a 101*-bit write-once
read-only laser memory developed by the Precision Instrument
Company. The beam from an argon laser records binary data by
burning microscopic holes in a thin film of metal coated on a strip
of polyester sheet, which is carried by a rotating drum. Each data
strip can store some 2.9 billion bits. A “strip file” provides storage
for 400 data strips containing more than a trillion bits. The time to
locate data stored on any one of the 400 strips is 5 s. Within the
same strip data can be located in 200 ms. The read and record
rate is four million bits per second on each of two channels. A
projected use of this memory will allow the user to “dump” large
quantities of programs and data into this storage medium for
leisurely review at a later time; hard copy output can optionally
be made from files within the laser memory.

2) ARPA network link: The ARPA network is a group of com-
puter installations separated geographically but connected by
high-speed (50 OOO bitsjs) data communication lines. On these
lines, the members of the “net” can transmit information-usu-
ally in the form of programs, data, or messages. The link performs
an information switching function and is handled by an interface
message processor (IMP) and a network control program stored
within each member installation’s “host” computer. Each IMP
operates in a “store and forward mode,” that is, information in
one IMP is not lost until the receiving IMP has signalled complete
reception and retention of the message. The IMP interfaces with
each member’s computer system and converts information into
standard format for transmission to the rest of the net. Con-
versely, the IMP accepts information in a standard format and
converts it to the particular data format of the member installa-
tion. In this way, the ARPA network is a form of a computer
utility with each contributing member offering its unique resources
to all of the other members. The Illiac IV system then is an ARPA
network resource that will be shared by the members of the ARPA
network; even the host site of the Illiac IV, Ames Research Center
at Moffett Field, Calif., will be constrained to access Illiac IV via
the ARPA network.

111. SOETWARE
A. Introduction

It should be remembered that the Illiac IV project was initially
directed toward experimenting with the feasibility of building a
massive hardware configuration and most of the software de-
scribed here (defined as operating system, compilers, debugging
aids, and necessary library functions) could have been developed

with suitably sophisticated simulators, without any reference to a
“real” Illiac IV; indeed, most of the truly innovative software
envisioned has yet to be built. This Section, then, is devoted pri-
marily to a discussion of a sound software strategy rather than to
a minutely detailed description of the initial software [6] - [8] .

B. Software Strategy
The main reason for building Illiac IV was to provide a facility

of massive computing power especially suited to the solution of
partial differential equations and matrix manipulation. A con-
siderable amount of this work was already being done on less
powerful serial machines by users who demanded execution speed
at almost any price and who used their machines largely in batch-
processing mode (as opposed to time sharing), relying very much
on punch-card input devices and magnetic tape and line printer
for intermediate storage and for printing final results. It was esti-
mated that users would utilize a substantial proportion of Illiac IV
time during its first year of operation in debugging and refining
their programs or “code,” thus justifying the creation of the
machine. Nearly all these users desired that languages and oper-
ating systems provide machine efficiency rather than “ease of use”
or “programmability.” Many of the codes for existing Illiac IV
applications have evolved over the last ten years and have dis-
played a remarkable architectural similarity. They comprise the
following three parts:

1) A “preprocessor” section, wherein the problem is initial-
ized and decimal-to-binary conversion (reading data) is per-
formed. This is usually a serially oriented section.

2) A “kernel” where the main problem is addressed, usually
inherently parallel, and therefore considered a job for Illiac IV.
The kernel occupies between 5 percent and 10 percent of the
source and object code, and on serial machines uses 80 to 95 per-
cent of the time.

3) A “postprocessor” section, wherein results are stored on
archive files, necessary binary-to-decimal (writing data) conver-
sions are msde, graphs are plotted, and line printer output for-
matting is set. This is ususlly a serially oriented section. From
here control may loop back to the kernel in order to complete a
further set of iterations on the data.

Generally speaking, Illiac IV jobs will be presented to the
B6500 as card decks, tape files, or as files received over the ARPA
network [9]. B6500 disk files which have originated from one of
these sources, but have been edited’ through local or remote on-
line consoles, may also be presented as Illiac IV jobs.

Results produced by B6500 or Illiac IV programs msy be
printed in the conventional manner locally, displayed on local or
remote on-line consoles, or transmitted over the ARPA network
to output devices local to the user. Later, it is expected that pro-
vision for microfilm graphics and selective viewing and editing of
results will be made available locally.

However, because of the high disk latency (40 ms) compared
with processor speed, it should be remembered that the Illiac IV
hardware, as it stands, is not particularly amenable to a “time-
sharing’’ operation if “time-sharing” implies “time-slicing.” All
the usual interactive and debugging facilities will be provided on
the B6500.

From the intended user’s point of view, then, it seemed ade-
quate initially to provide simple batch-processing software that
would enable jobs to be run efficiently, even though only one job
kernel would be active at a time. This attitude was reenforced by
questions of reliability. The initial mean time between failures for

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

378 PROCEEDINGS OF THE IEEE, APRIL 1972

the Illiac IV array was envisioned to be 2-4 h. Debugging “state-
of-the-art’’ software on untried “state-of-the-art” hardware de-
manded either more bravery or more foolhardiness than most
ordinary mortals were prepared to volunteer. On the other hand,
the B6500 promised to be much more reliable and offered Bur-
roughs Algol as an implementation language.

The wisest course was clearly to aim for simple batch-process-
ing systems software executed as much as possible on the B5500.
As experience leads to greater familiarity and confidence with the
array hardware and initial software performance, those modules
whose operation is inherently parallel could be moved onto
Illiac IV if the B6500 became overloaded, or if it seemed otherwise
advisable to do so.

One of the first software tasks was to write an Illiac IV simula-
tor that would handle all operations in the CU and PES and all
Illiac IV machine instructions. Although this simulator ran ap-
proximately a million times more slowly than Illiac IV on a B6500,
and later, about 200 OOO times more slowly on a B6500, it became
the basis for all language and algorithm development for Illiac IV.
Recently, the simulator was extended to simulate Illiac IV 1/0
subsystem logic and its interaction with the Illiac operating sys-
tem. At the time of writing, potential users may “run Illiac IV
jobs” on this complete simulator as if they were using the com-
plete Illiac IV installation, although the length of the Illiac IV
program must, of course, be of limited execution time. This simu-
lated operating system is built so that it may be incrementally
transferred onto the real Illiac IV hardware. The present software
will be operational very shortly after the hardware is built and
working.

It is also worth noting that all Illiac IV languages except the
Assembler, but including the Illiac control language (the oper-
ating-system control-card language), have been implemented us-
ing a compiler-compiler system called TWST [lo]. This has al-
lowed a certain amount of language experimentation, and has re-
sulted in the early availability of usable languages despite the fact
that the team providing the basic Illiac IV software included never
more than fourteen professionals. This relatively small team has
provided a coherent set of software, although the relatively mech-
anized approach has caused some degradation in compile-time
speed for instance. Consequently, there is a considerable amount
of refinement to be done. However, this will not affect the users,
whose programs will not have to be changed while the overall
compiler efficiency increases.

C. Operating System
The Illiac IV operating system [111 operates in a “diagnostic”

or “normal” mode. The main task of the diagnostic mode is the
testing and diagnosis of possible faults in the Illiac IV I/’O subsys-
tem and the Illiac IV array itself. These disgnostic programs are
designed to identify faults and to automatically identify the plug-
gable unit in which they occur. The unit is then replaced and the
operating system automatically reruns the test program that iden-
tified the fault to ensure that it has in fact been remedied. While
in this mode, an interactive routine is available to the engineers to
enable them to either call specific diagnostic programs or generate
new ones. This system may also be used to interrogate Illiac IV
registers and to change their values. While in the diagnostic mode,
the B6500 is available to carry on its usual work of preparing jobs
to be run on Illiac IV and to process the output from those which
have already run. However, it cannot use any major unit that is
being diagnosed at the time by the diagnostic routines. In the
“normal” mode, the operating system administers the running on
Illiac IV and the use of the I!O subsystem.

The Illiac IV operating system consists of a set of asynchro-
nous processes which run under the control of the B6500 master
control program (MCP). When a user submits an Illiac IV job to
the B6500, it usually consists of the following parts:

1) B6500 programs usually written in B6.500 Algol or For-
tran, which transform and prepare binary input files (input under
format control, i.e., character-to-binary conversion) to be used
by the IUiac IV program called “Preprocessor.”

2) Illiac IV programs usually written in Ask, Glypnir, or
Illiac IV Fortran, which use Illiac IV to operate on the files pre-
pared by the B6500 programs and to prepare binary output files
(“Kernel”).

3) B6500 programs usually written in B6500 Algol or Fortran
which transform binary files from Illiac IV to the required external
form for use or storage (“Postprocessor”).

4) An Illiac control language (ICL) program which defines
the job. The ICL controls the operating system for the job which
it defines, and thus may be seen as “driving” the operating system
for that particular job, although the operating system may be
operating on several ICL programs concurrently.

As each job enters the system through the B6500, it is assigned
a priority (if one has not been specified by the user). Higher
priority jobs, as well as being processed more favorably by the
B6500, have the privilege of having their Illiac IV program parts
preempting running Illiac IV programs of lower priority. The
preempting program will run to completion unless it is itself pre-
empted by a program of higher priority. The number of stacked-
up preempted jobs may be arbitrarily set when the system is
initialized. However, the main function of the preemption scheme
is to allow debugging runs and short production runs to move
along the job stream quite rapidly, while longer production runs
and jobs of lower priority ensure that the Illiac IV itself is rarely
idle for any length of time. If the work load permits, non-Illiac IV
jobs may be run on the B6500 while it is not compiling, prepro-
cessing, postprocessing, and administering Illiac IV jobs.

The B6500 programs and Illiac IV programs communicate via
Illiac IV disk files (for data) and the 48-bit path through the TMU
of the CU (interrupt signals). The protocol for these signals over
the 48-bit path is administered by two modules. The first is a
small executive program residing in Illiac IV itself (called OS4)
which processes all interrupts for the array, handles all communi-
cations between the user program and the rest of the operating
system, and provides a few standard functions for use in the
array. OS4 communicates with a module (known as the “job
partner”) in the B6500, which acts as a clearing house for all com-
munication between OS4 and thus the user program running on
Illiac IV. The job partner thus initiates all data transfers between
the B6500 and Illiac IV, B6500 and Wac IV disk, and between
Illiac IV and Illiac IV disk. This arrangement emphasizes the rate
of the B6500 as an 1/0 computer for the Illiac IV or, conversely,
the Illiac IV as a peripheral for the B6500.

ICL is used to coordinate the execution and communication
of the set of B6500 and Illiac IV programs that constitute an
Illiac 1V job. ICL is an Algol-like block-structured language in
which FILES, PROGRAMS, and INTEGERS may be declared.

FILES may be declared in formats and number representations
appropriate to either machine. Additionally, Illiac IV files may
be laid out on the Illiac IV disk in a very flexible manner to allow
the user to maximize their availability as they spin on the disk.
When files are moved from one machine to another, i.e., when
M a c 1V files are equated to B6500 files, they are automatically
transformed to the appropriate format and binary representation.

PROGRAMS may be declared as Illiac IV programs, B6500 com-

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et a/.: THE ILLIAC IV SYSTEM 379

pilers, job partners, ICL programs, or other B6500 programs. A
program may be viewed as acting much like as INTEGER PRO-
CEDURE in Algol with monstrous side effects. The files which the
program uses for data and results and the file on which the pro-
gram is to be found are also included in the declaration.

INTEGERS are used mainly for manipulating a single-integer
result always delivered by a program when it is called by the ICL
program. This integer may be set by the user, and normally in-
dicates the degree of success of the program execution.

The availability of IF and CASE statements allows considerable
flexibility in job control, and facilities are also provided to
allow simultaneous execution of interlocking B6500 and Illiac IV
programs within the same job.

The ICL allows the user to construct a simple operating sys-
tem appropriate to each of his jobs. The Illiac IV operating system
then allows each of these “job-operating systems” to overlap each
other in their utilization of time and resources. It also encourages
the division of the job into manageable modules, thus making it
more resilient to hardware and software malfunction.

The present operating system can undergo considerable de-
velopment with the present hardware configuration. Apart from
simply enhancing the existing code and making it part of the Bur-
roughs MCP, many of the file-conversion modules and the disk
allocator, whose operations are inherently parallel, may be moved
to the Illiac IV array. Preparation for this work is well underway.
Major changes in operating philosophy, however, are best left
until hardware performance has been evaluated in the real world.

D . Languages
I) Background: The strategy adopted in language development

for Illiac IV was more liberal than that adopted for the operating
system. Apart from the assembler, three “higher level languages”
were attempted. Two survived to be usable. The problem of defin-
ing requirements for the languages was more difficult than that
of the operating system, where user habits and needs were fairly
well understood.

The first major difficulty is that of formal representation.
Fortran, Algol, and other numerically oriented higher level lan-
guages are based primarily upon traditional mathematical formal-
ism. However, there is no comparably suitable formalism that can
be easily used as a basis for describing the kind of operations that
Illiac IV does easily and, at the same time, can be extended to a
truly nontrivial set of array or matrix operations. For while vec-
tor and matrix operations such as addition and multiplications by
a scalar quantity are trivial to implement, matrix multiplication
and inversion require reasonably sized subroutines. In addition,
in the field of partial differential equations the large number of
treatments of boundary conditions, discontinuities, and other
special cases have presented a variety of approaches that has only
recently been attacked from the higher level language point of
view [12].

The second problem is that Illiac IV can be fiendishly difficult
to program properly if one does not banish nearly all serial ma-
chine preconceptions and habits. Realizing this, the language
designer is faced with choosing between completely disguising the
architecture of M a c IV, thus helping the programmer by doing
quite a lot of dirty housekeeping for him, or fearlessly exposing
the architecture of Illiac IV, thus in all probability, forcing the
programmer to rethink his algorithm in Illiac IV terms. The first
approach was applied in the design of the Tranquil programming
language, the second in Glypnir. The nature and success of each
project will be discussed later.

The third problem was the unexpected amount of code that

had to be produced for any given problem, and the difficulty of
optimizing this code automatically. A study of Illiac IV assembler
codes indicates that for every arithmetical operation (including
fetch and store), at least two others were required to direct and
define the scope of the arithmetic instructions. About half of these
extra instructions were CU instructions setting up loops, con-
stants, administering ADB storage, and storing stacks of.mode
patterns. The other half were concerned with mode-pattern calcu-
lation. Thus it was difficult to see what efficient code generation
meant for Illiac IV, and to make allowance for it, especially in
view of the fact that Tranquil and Glypnir were being imple-
mented before the Illiac IV instruction code had been finalized.

In this latter respect, it may be interesting to note that all com-
pilers were designed to translate source code into Illiac IV assem-
bler code. This will make the compilers themselves more resilient
in the face of machine modification, and also, since neither of
the higher level languages do any automatic optimization, give
the enthusiastic user a chance to optimize his own code should
he wish to do so.

The Illiac IV assembler [131 is fairly conventional as assem-
blers go nowadays. It has a very sophisticated macro-definition
facility which may be used to include standard I/O facilities and
other communications with OS4. It also has “pseudo operations”
to help with storage layout and PE address allocation, of which
there are four types: syllable (half-word) addresses, word ad-
dresses, row addresses, and 1;’O word addresses. All of these may
be used by some instructions.

Before embarking upon a more detailed discussion of the
Illiac IV higher level languages, it is worth pointing out that their
differences with existing languages center around the following
subjects.

1) Storage allocations in a two-dimensional store. The “nat-
ural’’ method of addressing PEM is by row (or 64 words). Single
words of PEM may be addressed individually. However, a “col-
umn,” that is, a group of words in the memory of a single PE, may
not bk addressed as a group.

2) The expression of parallelism and mode control. To a
certain extent, a vector may be the natural expression of paral-
lelism, and Illiac IV languages should in some sense be able
to allow operations on vectors or rows of matrices. The length of
the vector and the elements within it to be operated upon are
defined by the mode pattern. Illiac IV languages should allow
efficient and comprehensive calculation and manipulation of
mode patterns.

3) The expression of routing and indexing. The language
should allow reasonable expression of routing, and of indexing
by a different amount in each PE.

2) Tranquil: The first Illiac IV language attempted was
“Tranquil” [14], an Algol-like language entirely independent of
machine organization. It was designed to allow programmers to
operate on arrays of data in a simultaneous way. An algorithm
may be viewed as being applied to any set of elements of an array
at the same logical time, thus often allowing a programmer to
avoid thinking about such details as how to index through an
array and which elements to save in temporary arrays.

The Tranquil compiler was brought to a fairly advanced state
of completion when experience with the object code indicated
that the overhead involved in completely masking the machine’s
architecture was too high in relation to the users’ demand for fast
execution of their programs. This was not just a matter of the
payoff between the cost of programming time and execution time,
but of making existing programs, whose execution times for

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

380 PROCEEDINGS OF THE IEEE, APRIL 1972

proposed problems were unfeasibly long on existing equipment,
run in a realistic time on the Illiac IV. Users were thus prepared
to do a certain amount of reprogramming in, say, Fortran and to
restructure their algorithms to suit Illiac IV architecture, but they
were unwilling to reprogram the whole problem in Illiac IV
assembler.

As it seemed unlikely that Tranquil could be made sufficiently
efficient before the machine was then projected to be delivered,
work on Tranquil was halted, and the job of providing an ex-
tended Fortran was begun. However, Tranquil should not be
shrugged off. It represents the level of language that implementors
would like to provide. Continued experience with extended
Fortran has shown, moreover, that the inefficiencies of Tranquil
could have been remedied with time, and that with slight modifica-
tion to the language, Tranquil could have become a viable and
extremely interesting and useful Illiac IV language.

3) Glypnir: Glypnir [15], [I61 is also an Algol-like block
structured language and in many ways an Illiac IV equivalent of
Burroughs B6500 Algol in the sense that it was written to allow
the knowledgeable user to exploit Illiac IV architecture to con-
siderable advantage.

Progam data types or procedures may be declared as being
either CU or PE variables. In the first case, they refer to one
%bit value corresponding to an Illiac IV word, and in the second
case, they refer to a row of Illiac IV words and thus may have up
to 64 different values simultaneously. Boolean values, however,
are neither CU or PE variables but refer to 64 true-false values.
Thus .a Boolean variable is said to be TRUE when all its con-
stituent bits are TRUE and FALSE when all its constituents bits are
FALSE. Two extra operators, SOME and EVERY, are used to provide
a bridge between word and bit level logic.

All arithmetic operations are carried out under the control of
a MODE pattern. The MODE allows the 64 truefalse values of a
Boolean to be associated with each of the PES. When a bit of the
MODE pattern is TRUE, the corresponding PE is enabled and may
thus deliver the results of an operation.

The Glynpir expression A : = B * C; , where A, B, and Care PE
variables, means that each value of A is multiplied by C and de-
livered to A for each enabled PE. If C were a CU variable, it
would be repeated 64 times in an invisible PE variable before the
statement was evaluated.

Special facilities exist to allow the rotation and shifting of
rows to the right and left, in a way similar to the more familiar
operations conventionally carried out on words, thus allowing
the “route” instruction to be utilized.

FOR and IF statements are also provided, but often give un-
conventional results. For instance, given PE variables A , B, and
C, the statement

IF -4 > B THEK c : = -4 ELSE c : = B
will deliver the maximum elements of A and B to C, and may re-
sult in both the THEN and ELSE statements being executed.

Glypnir will alow the explicit inclusion of blocks of assembler
language for the optimization of any section of code, and also has
facilities within the language to refer explicitly to selected hard-
ware registers for those who wish to optimize without going into
assembler language.

The language has now been in use with the Illiac IV simulator
for over a year and a considerable amount of useful experience
has been gained from it. Projected future developments include
the addition of a 32-bit mode and the facility to allow binding to
separately compiled assembler, Glypnir, or Illiac IV Fortran
subroutines.

4) Zlliac ZV Fortran: Illiac IV Fortran [17] was provided more
for the general Illiac IV user than for the specialist. Glypnir
demands that the programmer undertake the detailed supervision
of storage allocation and be constrained to think in terms of
Illiac IV rows or vectors of Illiac IV rows. IUiac IV Fortran allows
the user to think in terms of rows of any length in “straight” and
“skewed” storage (see Section IV-B). Skewed storage allows rows
and columns to be accessed with equal facility.

In order to provide mode control, the data type BINARY has
been added to the language which allows arbitrary arrays of bits
(or true-false values) to be declared in a way similar to arrays of
LOGICAL values.

The DO statement has been extended to allow parallel execu-
tion of arithmetic expressions, and extra constructs have been
added to the language to allow the shifting and rotation of vectors
and array rows.

The only sigrulicant change in definition applies to EQUIV-
ALENCE and COMMON statements, where the two-dimensional store
of Illiac IV imposes restrictions on the usual serial definition.
However, as these restrictions are those usually forced upon the
programmer by ‘‘real’’ problems, they may often be a help
rather than a hindrance.

One very important option allowed in Illiac IV Fortran is that
of taking an existing serial Fortran code with suitably adjusted
1/0 statements and running it on Illiac IV serially (in one PE)
to test its validity before incrementally parallelizing it.

An Illiac IV Fortran-to-Glypnir translator has now been in
use for several months and is considered to be very successful.
Illiac IV Fortran exhibits many of the operational features of
Tranquil, and has benefitted from both the Tranquil and the
Glypnir experiences.

5) Some Other Considerations: Because of the large disk
latency compared with processing speed, the 1/0 software for
Illiac IV languages tends to be elaborate in order to enable the
programmer to synchronize his I/’O functions with his computing.
A considerable amount of disk latency may be removed by using
the elaborate disk-layout facilities provided by the operating
system. This latency msy be reduced further by the IjO intrinsics
in both Glypnir and IUiac IV Fortran.

File declarations are modeled on those of the Burroughs
B6500, with the option of implicit buffering to a level given by the
user. The user is also given the option of driving his program by
I / O interrupt. At a lower level, standard assembler macros pro-
vide a similar facility for the assembler programmer.

In terms of what could be done, and, by analogy, has been
done in producing software for some serial machines, Illiac IV
software development is still very much in its infancy. While the
present software is more than adequate to get a considerable
amount of useful work out of Illiac IV for a few years after its
completion there are several areas where new work would pro-
duce valuable payoffs.

Illiac IV offers hardware facilities for a “32-bit mode,” that is,
the ability to store and operate on two 32-bit numbers of differing
value stored in one Illiac IV word. None of the present compilers
offer a 32-bit mode as a complete data type that can be used in
harmony with the 64-bit mode. Work in this area is continuing
at the University of Illinois, and consists not only of inserting the
necessary language constructions into the compilers and develop-
ing the necessary standard algorithms, but also bringing 32-bit
user experience to some sort of parity with 64-bit user experience.
The effective use of a 32-bit mode may essentially double the
power of Illiac IV, but much remains to be done before patterns
of effective use are established.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT er al.: THE ILLIAC IV SYSTEM 38 1

The automatic overlaying of array and program segments is
also particularly important in view of the relatively small core-
storage capacity of the Illiac IV. This, of course, impinges upon
the operating system as well as the compilers, and although
automatic overlay has always been desirable, its detailed investi-
gation has always, quite rightly, been postponed until sufficient
experience with existing hardware sheds more light on its feasi-
bility. At present, the same effect may be gained by coupling pro-
gram modules together with a suitable Illiac control program, or
by explicitly overlaying file segments into array space.

Lastly, neither of the compilers optimize code in the sense that
they scramble instructions to make the best use of CU-PE over-
lap. Considerable savings are envisioned with this kind of
optimization but, once again, this is difficult to do with a simula-
tor which takes no account of this overlay.

All the software described in this paper, and much more that
is not, has been tried by users through the agency of simulation.
The major task of transferring this software to the real machine
still lies ahead, but all of the software, especially the languages,
has gone through several stages of appraisal and revision in the
light of informed user comment. It is hoped that this relatively
conservative software policy will provide a usable Illiac IV very
soon after the hardware is completed, and a firm base for a more
adventurous second generation of software.

IV. APPLICATIONS
A . General Considerations

Most of the numerical algorithms available on conventional
machines cannot be readily modified for efficient parallel com-
putations. Two difficulties face the users of parallel machines.
First, algorithms must be devised that are suited to the array
nature of their arithmetic units. Second, data may have to be
stored in highly interleaved memories so that proper combina-
tions of elements are available simultaneously at various steps of
the algorithm.

Fig. 5 illustrates that Illiac IV is designed to execute the same
instruction streams simultaneously on 64 data sets that are stored
in separate memories. Thus Illiac IV is well suited to evaluate the
same function f on 64 sets of arguments, provided that the data
base from which the argument sets are drawn can be structured in
a certain fashion. The data base must be distributed among the
PES so that the argument sets required in the ith evaluation of the
functionfcan be stored in the ith memory or in a memory that is
“close” to the ith memory.

A primary requirement for many of the time-consuming prob-
lems in scientific computation is repeated evaluation of the same
functional form on different argument sets. Consider the follow-
ing examples :

I) Matrix-Mulriply: The elements zi of a column of the matrix
Z = A X are produced by forming

J=1

where xj are the elements of the corresponding column in X . This
requires evaluation of the function

n

f(y, X) = C ujsj
i- 1

where the argument 0 1 1 , y2, + 9 , y n) is repeatedly replaced by
(ail , ai2, * . . , ain), for i= 1, 2, . . . n.

2) Solution of Simultaneous Linear Equations: Using the

Gauss-Jordan method, the dominant computation is

ai,’ = a . . I J - c J k J) .a j = k > k + l > ’ ” ’ n

i = k , k + l , . . . ’ n

or repeated evaluation off(x, y , c)=x-cy, where the three-tuple
argument (x , y , c) is repeatedly replaced by (a+ akj, cj).

3) Two-Dimensional Finite Difference Schemes: An explicit
scheme for solving the “heat equation” au,.’du = A2u is

. . n+ l = I (. n + C(tli-l,jn + U i - l , j n + U i , j + l n

+ u i . j - 1 n - 4 2 L i , j n)

where n refers to the nth time step.
This requires that

&f(.r., y, Z! 1 I . 1 ’) c) = .r + c(l/ + Z + I I + 1’ - 4.r)

be evaluated with suitable argument sets in which x takes on
values of uij, and y , z , u, and u take on corresponding values of the
“neighbors” of u;j .

Note that if one sampled the instruction stream on a conven-
tional machine during execution of these algorithms, the computa-
tion offwould dominate the calculation. For these illustrations,
the data base can be stored among the distinct PEMs so that there
is no difficulty in accessing the appropriate arguments and per-
forming up to 64 simultaneous evaluations off.

The two central considerations in programming Illiac IV are
1) the exploitation of the simultaneous arithmetic capability, and
2) the distribution of operands in the memories so that the re-
quired argument sets can be accessed without time-consuming
rearrangement of storage. Exploiting simultaneous arithmetic is
generally straightforward. Often cursory inspection of the loops
in a conventional program will reveal methods of utilizing the
simultaneous arithmetic feature. There are cases where it is not
straightforward, i.e., cases where, because of data dependent
conditions or other considerations, it may be desirable to evaluate
several different functional forms fl, f2, . . . , fk in different PES
at the same time. This can be accomplished either by turning
off groups of PES and sequentially evaluatingfi,f?, * . ,fk or by
imbedding one functional form fi in the instruction stream of
another functional form fi [18]. On a digital computer all func-
tions, regardless of how dissimilar their forms are, are expressed
as sequences of fetches, stores, and arithmetic instructions. It is
trivial to imbed the evaluation off= xy in the instruction stream
calculating g=a+bc and it is possible to imbed the evaluation
offfg in the computation h = sin (x).

Memory allocation is somewhat less straightforward. Gen-
erally if the data base for the problem lends itself to representa-
tion either in vector form or in matrix form there are schemes for
storing the vectors or matrices among the 64 distinct memories
which preserve the topology or connectedness of the elements in
the data base [19]-[22]. The function evaluation involved in
example 3 requires that the PEM which contains the element uij

also have easy access to ~ i , j + ~ , u ~ , ~ - ~ , ~ i + ~ , j , ui-1.j. There are
storage schemes which ensure that access to the “neighbors” of
an element are always convenient. Furthermore there are schemes
which allow simultaneous access of both rows and columns of a
matrix.

The applicability of Illiac IV to large problems inscientific
computation has been studied for a wide variety of problems [23].
As one might expect, problems have been found which are ideally
suited for Illiac IV or which can be made ideally suited with very
little modification to the algorithms. Problems have also been

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

382 PROCEEDINGS OF THE IEEE, APRIL 1972

TABLE I apQ(k+l) = (k + l)

ILLIAC APPLICATIONS AND EFFICIENCY
aQP

of Ak+l in (1) are eliminated. It can be easily shown [25] that
Applicable with High P E Utilization Op,(k) is given by,

Finite-difference calculations in one, two. and three dimensions.
Matrix arithmetic.
Quadrature (including fast Fourier transform).
SgnaI processing. -
Linear programming (this application could drop to low PE utilization

when 1/0 is taken into consideration).

Applicable with Moderate PE Utilization

Particle-moving problems (nonlinear Monte Carlo transport, etc.).
Nonsymmetric eigenvalue calculation.
Solution of linear equations and matrix inversion (if iterative methods

Solution of nonlinear equations.
Polynomial root finding (in some instances, this application moves up

are used this application could move up to high utilization).

to high PE utilization).

Applicable with Low P E Utilizatiotl

Inversion of tridiagonal matrices.
Table lookup in large unstructured tables.

found which can be adapted for Illiac IV at some sacrifice in
utilization of the PES, and some problems have been found which
defy modification to exploit the machine architecture. Table I
gives some examples of types of calculations which fall in each of
these categories.

It is not uncommon to find that numerical techniques which
are generally regarded as superior to others for conventional
machines might not be superior for minimizing execution time on
Illiac IV. For example, in the solution of linear equations on a
conventional computer, Gaussian elimination and back substitu-
tion is generally regarded as superior to the Gauss-Jordan
algorithm because there are fewer arithmetic operations involved.
However, on Illiac IV, the execution time required to solve a set
of linear equations employing the Gauss-Jordan algorithm is
shorter than that required for Gaussian elimination and back
substitution because, among other things, the back substitution
portion of the algorithm is essentially a sequential process.

B. Two Example Applications
We shall close the application section of the paper by con-

sidering two sample problems in the area of matrix computation:
Jacobi's algorithm for finding the eigenvalues and eigenvec-
tors of real symmetric matrices, and reducing a real nonsym-
metric matrix to the upper-Hessenberg form using Householder's
transformations.

I) Jacobi's Algorithm for Finding the Eigenvalues and Eigen-
oectors of a Real Symmetric Matrix: In the classical method of
Jacobi [X], a real symmetric matrix can be reduced to a diagonal
matrix by a sequence of plane rotations,

L 4 k + 1 = R ~ A ~ R I . ' ! k = 1, 2, . . . (1)

where A I = A is the n X n original matrix, and each rotation Rr
differs from the identity matrix only in the elements,

R (I ;) = R Q Q (k) = cos e p q (k) PP

R PQ (k) = - R Q p (k) = sin O p Q (k) , p < q. (2)

By properly choosing the angle OPQ(l') , the off-diagonal elements

where

Restricting O P J k) by I O p e (k) I <?r/4, then cos O p J k) will always be
taken positive and sin O P J k) will be of the same sign as
[2ap , (k) / (u~(k) -aq , (k))] . From the definition (2) of the rotations
Rk we can see that only the rows and columns p and q of Ak are
affected by the transformation (1). Clearly the implementation of
such an algorithm on a parallel machine would be highly in-
efficient. For, even if updating of the 2(n-1) elements (Ak+l is
symmetric, and apQ(k+l)=O hence need not be computed) is per-
formed with all the PES working; it requires only one or two PES
at the most to compute RPJk) and RpQ(k) .

It is possible, however, to modify Jacobi's algorithm so as to
eliminate more than one off-diagonal element (above the main
diagonal) per transformation, and hence make the method more
suited for parallel computations (2). For example, for a matrix A
of an even order n= 4, if the orthogonal transformation R1 is
chosen as

where the RpJl) for all the pairs (p , q) are given by (2), then
e,$) and eac1) can be independently chosen such that the elements
a#) and a3*(*) of A t = R I A I R l l are annihilated. Similarly, by
appropriately choosing the elements of

the elements aI3(3) and a24(3) of A3, and a14(*) and a d 4) of A4 are
eliminated, respectively. Consequently, after (n - 1) transforma-
tions each of the +n(n - 1) off-diagonal elements (above the main
diagonal) has been eliminated once, each transformation elimi-
nating n/2 such elements. Let each (n- 1) orthogonal transforma-
tion be denoted by a sweep; then for our specific example (n=4)
the second sweep will consist of the orthogonal matrices R4, Rb,

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et a!.: THE ILLIAC IV SYSTEM 383

and Rs which have the same construction as R I , R ? , and RB,
respectively, and so on. Thus for matrices of even order (see [25]
for the general case), the elements of each of the (n- 1) orthogonal
matrices Rk within each sweep are given by

~ , , ! k) = ~ , , ‘ k) = cos e p p (k)

where p and q are sequences defined as follows.

k = 1 , 2 , 3 , . . * , n / 2 - 1
q = n / 2 - k + l , n / 2 - k + 2 , . . . , n - k

(n-%+l)-q, --k+l<q<n-2k

a) For

i n
i)

n-k-l<q.

b) For
k = n/2, n,/2 + 1, . . . , n - 1

q = n - I;, n - k + 1 , . . . , (3/2)n - k - 1

in, q<n-k+l
p = { 2 (n - k) - q , n-ki-l<q<2(n-k)-1 (6)

j(3n-2k-1)-qg, 2(n-k)-l<qq.

The remaining elements of Rk are, of course, zero. For each k the
angles Onq(l., are determined such that the elements u , ~ (~) are an-
nihilated for all the pairs (p , q). For example, for n = 8 and k = 4
the pairs @, q) are determined by (6): {(8, 4); (3, 5) ; (2, 6) ;
(1 , 7) 1, and R 4 is of the form

Let us consider now the implementation of this modified
scheme on a parallel machine. For the sake of simplicity of the
illustrations we will assume that the size of the matrix is equal to
the number of PES, and furthermore we will ignore the fact that
the matrix is symmetric and hence we need only operate on those
elements on and above the main diagonal. Because each row of
the matrix B=RkAk is obtained by summing multiples of two
rows of Ak, and each column of AkT1=BRkt is obtained by sum-
ming multiplq of two columns of B, in order to minimize the
number of idle PES in the matrix multiplication RkAeRkt, it is
essential to store the elements of Ak such that each row or column
can be accessed withone memory fetch. This is achieved by stor-
ing Ak in the “skewed” form. In such a storage scheme we map
the array elements into PEM as follows:

a i j +row i, of I’E (i + j - 1) (mod X) (8)
where N is the number of PES being used. For example, for n = 8
the elements of an 8 X8 matrix are stored as follows:

PE1 PE2 PE3 PE4 PES PE6 PE7 PE8
m.
1

2

3

4

5

6

7 7.3 7 , 4 7 , 5 7 . 6 7 .7

e 8 , 6 8.7

Therefore, denoting each element eliminated in a given sweep in Let us consider the transformation A5=R4A4R4t where R 4 is given
the kth transformation by the integer k , the pattern of the an- by (7). By routing, the following configuration can be obtained.
nihilated elements for a matrix of order 16 is

PE1 PE8 PE7 PE6 PES PE4 PE3 PE2 * r *
$1 a35 33 26 =22 17
(4) (4) (4) (4) .(4) (4) .(4)

II (4) .(4) .(4) 77 55 66
(4)

However, some of the PES have to remain idle since the routing
distances for all of the elements are not the same. Now;from (3)
sin O p q (j) and cos O p q (j) for the pairs (p , q) : { (1, 7); (2, 6); (3, 5) ;
(4, 8) 1 are computed simultaneously with roughly half the PES

* l being idle. Once all the elements of R 4 are computed, the matrix
* multiplication R4A4R41 is performed with all the PES working.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

PROCEEDINGS OF THE IEEE, APRIL 1972 384

PE 1 2 3 4 5 6 7
L O C . I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

8 9 10 11 12 13 14 15 16

15.13 15,14 15,15 15.16 16,13 16.14 16,15 16,16 13.13

Fig. 12. Storage scheme.

For example, to compute the first row of B = R 4 A 4 : 1) broadcast
R11(4) and R,;(4) to all PES, 2) fetch the first row of A4 and multiply
all its elements by RI1(4); 3) fetch the seventh row of A*, multiply
all its elements by R17(4), route all the elements of the resultant
vector a distance of 2 to the right, and add to 2).

This process j s repeated until all the rows are computed. Stor-
ing the matrix B in the skewed form, each column of A5 is ob-
tained by a similar process; for example the eighth column of AS
is obtained as follows: 1) broadcast -R4s(" and to all PES;
2) fetch the fourth column of B, multiply all its elements by

and then route them a distance of 4 to the right; 3) fetch
the eighth column of B, mdtiply all its elements by R d 4) , add to
2), and store in the same locations of the eighth column of A4.

Assuming that the matrixA has converged (using some cri-
terion [24]), to the diagonal form after u sweepsor afterrorthogo-
nal transformations, where r = u(n - l), then the diagonal elements
of Aril = WA W' are taken to be the eigenvalues. The columns of
W'= V11V2' . . . V,,l are the corresponding eigenvectors, where
for thejth sweep

T'j' = (R l l) j , (R?') , . * * (l ? n - l f) j .

2) Reducing a Real Nonsymmetr;ic Matrix to the Upper-Hessen-
berg Form: The second example is that of reducing a real non-
symmetric matrix to the upper-Hessenberg form using House-
holder's transformations [24]. Such a reduction always precedes
the application of Francis' QR transformations [26], [27] for
finding the eigenvalues of a nongymmetric matrix. For an n X n
matrix the reduction is completed in (n - 2) steps, the kth of
which is given by

,lk ~ 4 k - 1 - !*kpl ; ' - (q k - (Y I ; U k) l ' k f (9)

where k = 1 , 2, . . . , n-2 and Ao= A is the original matrix,

ukt = (0, . . . , 0, ak+l ,k k St , a k + ? . k , - , a n d

Sk = [2 a i , k q 1 i 2
i=k+l

p k l = U k f A k - - 1

y k = ~ 4 k - l U k

!'k = !lt/Sk(sk ak-l,k) (10)
and

(Yi = P k ' C k .

This reduction requires approximately (513) n3 operations. From
(9) and (10) it is clear that the major computations involved in
each step are those of forming the vectors pk and q k . For comput-
ing pk , we would like to store the matrix A k - I such that we can
access any row by one memory fetch, and similarly for the col-
umns when computing q k . One solution would be to Store the
matrix A in the skewed form described in the previous example.
However, since the order of the remaining matrix under operation
is reduced by one after each transformation, then it is highly de-
sirable to store A in such a form that we can have simultaneous
access to each of the N elements of any .\/NXv'/N submatrix of
A . Here, N is the number of PES of the parallel machine. Thus
during each step we can operate on any .\/\/NX dN submatrix that
does not contain eliminated elements, with none of the PES idle.
For n = N = 16, the storage scheme [28] is shown in Fig. 12. This
storage scheme maps an element uij into the memory as follows:

ai j +row [d/vl<i - I) / ~ @ J + L(j - 1)/v'Zl + 11
PE[{ ((i - 1) mod d?V)dT+ [(i - l),'d?Vl

+ j - 1) (mod d-6 + 11 (11)

where [x] is the greatest integer less than or equal to x.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et al. : THE ILLIAC IV SYSTEM 385

Let us demonstrate the computations involved in the first
transformation (k = 1). The elements ai,12 (i=2, 3, . * , 16) are
obtained simultaneously by one multiplication, while SI* in (10)
is obtained in log? 16=4 additions. Evaluating the square root
SI is, of course, an inefficient operation since only few PES can be
used. Obtaining the vectors u1 and cl is rather trivial. Now, if we
observe that the elements of each of the rows { 16, 12, 8,4; 15,11,
7, 3; 14, 10, 6, 2; 13, 9, 5 , 1 1 are separated by a routing distance
of 1 from those of the following row, then pl‘ = ultAo is obtained
as follows:

1) broadcast the element u1,16=a1,16 to all PES, fetch the 16th
row of Ao, multiply all its elements by a1,16, and route the elements
of the resulting vector a distance of 1 to the left;

2) broadcast uI.12=al. l? to all PES, fetch the 12th row, mul-
tiply all its elements by u1,12, add to l), and route all the elements
of the resulting vector a distance of 1 to the left, and so forth for
the rest of the rows 8,4, 15, 11, 7, . . . , 1 in order until we obtain
the row vector pit. Similarly, we can see that the column vector
ql= A0 u1 may be obtained as follows: a) broadcast u1.1 to all
PES, fetch the first column of Ao, multiply all its elements by uI , l ,
and route all the elements of the resulting vector a distance 1 to
the right; b) broadcast ul.? to all PES, fetch the second column of
Ao, and multiply all its elements by uI,?. Add the elements of the
resultant vector to those of a), and route thsm a distance of 1 to
the right.

Repeating the process for the rest of the columns 3,4, . . . ,16,
we obtain the vector ql . Thus each element of pl and q1 has been
obtained by 16 multiplications and 16 additions. The scalar c y I is
computed by one multiply and log2 16=4 adds, and the vector
wJl=ql-culul is computed by one multiply and one add. Partition-
ing the matrix A. into 4 x 4 submatrices ARC]^. (R , C= 1,2, 3,4),
and similarly partitioning the vectors cl, pl, and wlI into subvectors
each of t ’%=4 components, then (9) can be written as follows:

for k = 1, 2, . . 9 , n-2. Thus by properly storing the vectors
ci;, pk, and wk, all the elements of each submatrix [A R C] L can be
computed simultaneously.

The same storage scheme can be used for the reduction of a
nonsymmetric matrix to an upper triangular one using House-
holder’s transformations. Such a reduction is used in solving sys-
tems of linear equations.

V. THE ARPA NETWORK
A . Introduction

One of the unusual things about Illiac IV as a new computer
architecture is the fact that there elready exists a large body of
prohlems to be solved for which Illiac IV is particularly well suited
in terms of size, speed, and sophistication. Additionally, there is
a growing community of scientists and researchers located all
about the country who are eagerly awaiting the ability to use
Illiac IV in solving these problems.

It became apparent in the mid 1960’s with the explosive
growth and variety of computer systems and services being de-
veloped in the country that some means were going to have to be
found in order to couple computer systems and computer users
together so that unique features at different sites could be utilized

Fig. 13. ARPAnet. April 1971

called the ARPAnet. The ARPAnet network proposes to connect
together, via high-speed data transmission lines, a number of
ARPA research centers and projects located all about the United
States [9], [3O], [31].

B. The Design
Fig. 13 shows the current status of the ARPAnet as of April

1971. Indicated are the universities and research centers who are
members of the network as well as various computer systems that
exist at each of those centers. Illiac IV is one of those computer
systems and will be located at NASA’s Ames Research Center,
Moffett Field, Calif.

The network itself is a full duplex high-speed (50 OOO bits s)
data-transmission network developed by Bolt Beranek and New-
man, at Cambridge, Mass2 The network itself is a store-and-for-
ward message-transmission network with the nodes of the net-
work occupied by a sophisticated terminal called the IMP [32].
The heart of the IMP is a Honeywell DDP-516 computer which
takes care of such tasks as error control, message routing, net-
work “tuning” (adjusting its operation to maximize its efficiency),
and statistics gathering. Much care has been devoted in the design
and implementation of the network to insure an ultra-high level of
reliability (currently no more thsn one single bit error per year
should go undetected). By the store-and-forward mechanism,
error control is implemented by retransmission of a message or
section of message on which an error was detected. Error correct-
ing codes are appended to each message to allow the detection of
a wide class of errors and contribute to the reliability of transmis-
sion. All of the IMPS are passive devices in that they perform no
other service besides message routing and control.

At any given node in the network, one or more HOST com-
puters may be attached providing a service center or research
project with access to the network.3 The connection between a
HOST and the IMP is made over a high-speed interface at 100 OOO
bits s, full duplex. Typical HOST computers in use around the
network are the DEC PDP-IO, IBM 360,75, IBM 360l91, IBM
360;67, and Burroughs B6500. While most of the HOST com-
puters are associated with specific projects sponsored by ARPA,
several locations are designated as service HOST sites. For in-
stance, the 360191 at the Campus Computing Network at the
University of California at Los Angeles (UCLA) is available on
the network most of the time for use as a general computing ser-

by people other than at that site, and in this way sharing of mutu-
ally beneficial could be to provide * Full duplex means that the user has the ability to send and receive
economical and convenient ability to solve [29]. A simultaneously--as Opposed to where the user can Only he
prodigious experiment to this end was initiated by the Advanced 3 HOST refers to a computer system capable of supplying a full
Research Projects Agency of the Department of Defense and is range of computer services to users on the network or at that site.

sending or receiving at any instant in time.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

386 PROCEEDlNGS OF THE IEEE, APRIL 1972

vice. Several other places, the University of California at Santa
Barbara (UCSB), Bolt Beranek and Newman in Cambridge, and
Massachusetts Institute of Technology’s Multics system also serve
as HOST sites providing capabilities and services praticular to
their installations and computer systems.

C. The Tower of Babel
The current conceptionalization of the ARPAnet presents,

what some people call, “the Tower of Babel” problem in com-
puter resource sharing. One can easily see that there are a wide
variety of computer systems in geographically distant locations
involved in many dissimilar projects, all speaking a variety of
computer languages. While it was easy, relatively speaking, to
bring up the hardware portion of the network, i.e., design and
build IMPs, establish phone line connections for the 50 000-bits/s
transmission lines, etc., much effort has been expended in trying
to solve the “software” problem of the network; in other words,
how does a human user talk to a remote HOST computer system,
and also how does each HOST system talk to the other remote
HOST systems?

For several years now, a collection of representatives from
each site has been periodically meeting and corresponding with
each other to design and implement a series of protocols (pro-
cedures) which lay down the ground rules of access and conversa-
tion between people and computers on the network. The most
basic of these protocols is the IMP to HOST protocol. This proto-
col contains the procedures by which each host talks to its IMP
and data and routing information are exchanged.

The next level of protocol is that of HOST-to-HOST com-
munication [33]. This protocol contains the procedures and
ground rules for information transfer between HOSTs and in-
corporates such features as connection procedures, space alloca-
tion, flow control, error control, etc. The HOST-to-HOST proto-
col was, in fact, the most difficult protocol to develop since it
deals most closely with the specifics and idiosyncracies of the
various computer hardware configurations and their respective
operating systems.

Once the HOST-to-HOST protocol was formulated, a number
of applications protocols have followed. These protocols in
general allow the proper use of the HOST-to-HOST protocol by
systems and applications programs desiring network access. The
most important of these is the initial connection protocol which
allows the establishment of a full-duplex path of transmission
between two systems or programs on the network. This protocol
in general is masked from the user and is handled automatically
by the network control programs in the HOST sites.

For transmission of data on the network, there is the data-
transfer protocol which is concerned with the transmission of
large blocks of data from point to point. Since most computer
systems treat these large blocks of data as files and have various
and elaborate file naming and access mechanisms implemented
for the handling of these files, there is also a file-transfer protocol
which facilitates the handling of files between arbitrarily different
systems on the network and allowing the mapping of their naming
and access conventions. In addition to the variances in naming
and access, there is the data formatting problem which exists in
data transfers. The approach taken to solve this problem was to
develop a data reconfiguration protocol and supporting systems
whereby the user may specify a transformation function on his
data string. He passes it through a reconfiguration service moving
it from the sending site to the receiving site satisfying the format
constraints at both sites. An example of this might be the conver-

.r

I G J 1

Fig. 14. Projected ARPAnet, April 1972.

sion of a 36-bit floating-point format for the PDP-10 into a #-bit
floating-point format for the Burroughs B6500.

Most activities on the network for the individual user will be
accomplished in a remote-access manner to the various time-shar-
ing systems on the network. Since there is a wide variance in the
types of terminals that exist on the network, a terminal network
protocol (TELNET) was developed which attempts to mask all
terminals into a network virtual terminal, pass the streams of data
and control between that terminal and remote sites in both direc-
tions, then unmask the network virtual terminal at the receiving
site into the form best desired by that site. For example, both
Teletype terminals (33, 35, 37) and IBM 2741 terminals may have
access to programs which expect one or the other of those termi-
nals, both with equal facility.

The TELNET protocol handles the usual alphanumeric and
hard-copy terminals but does not handle the graphics terminals
such as storage scopes or refresh graphics display terminals. To
that end, a graphics network protocol is under development at
this time. Results so far show, however, that a unified approach
to the entire problem of graphics display and interaction is prob-
ably not feasible. Indeed, there may eventually be several proto-
cols at various levels dealing with various classes of graphics de-
vices and various modes of graphics display.

D. Expansion Plans
With the initial success of the protocol efforts, the second

phase of network development has been entered. During this
phase, additional nodes will be added to the network. These
nodes, however, differ widely from the IMP of the initial configu-
ration. These new nodes provide for connection of terminal hard-
ware directly to the network and, therefore, are called terminal
IMPs or TIPS. A TIP is a parasite node and provides no service
capability to the network on its own. Users attached to the net-
work via a TIP must derive all of their computational power and
service from remote HOSTs on the network. Thus the second
phase of network development sees the introduction of user
oriented groups to complement the present research and service
organizations. Fig. 14 depicts a projected arrangement of the
network and its members as of April 1972.

In addition to the TIP, an effort has been underway for some
time at the University of Illinois to develop a “mini HOST” com-
puter system based on the configuration of a small minicomputer
(DEC PDP-11) acting as a full cpacity HOST (from the protocol
standpoint) and attached to a standard IMP or a TIP. The PDP-11
based system (called the ARPA network terminal system or

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

BOUKNIGHT et al. : THE ILLIAC IV SYSTEM

ANTS) serves essentially the same functions as a TIP. However,
with the splitting of the network node and terminal functions into
two separate computers, and providing additional capability in
the PDP-11 in the form of a disk, a wider variety of peripherals,
more memory, etc., a limited amount of on-site processing power
is provided for the user to do housekeeping functions such as net-
work accounting, on-site card deck-to-printer listings, data stor-
age on magnetic tape and disk, etc., and to provide him with a
higher level interface into the various protocol stresms which will
be directed to and from his site.

E. Promising Results
A prominent example of network usage during its earliest im-

plementation phase, when a subnet comprised of University of
Utah, Stanford, UCLA, and UCSB existed for a short time, oc-
curred during the development of Stanford Research Institute’s
SRI’s Intellect Augmentation research project. SRI had been using
an XDS 940 computer to service their documentation aids and
support system. During 1969-1970, they were in the process of
selecting and moving to a new central processing system to sup-
port that effort, a Digital Equipment Corporation PDP-10.

Prior to receiving their system, SRI had good contact with the
University of Utah’s graphics research project who already had.
a PDP-10. After the initial subnet implementation was completed,
the SRI group had remote access to Utah’s PDP-10 on which they
began the conversion of their XDS 940 systems programs. The
use of this subnet to connect their terminals and hard-copy de-
vices (printers, etc.) to the Utah PDP-10 system, as if they were
at the Utah site, enabled the systems programmers at SRI to com-
plete their initial conversion project in less than half a year. Activ-
ities during this time included remote text editing, compilations
of systems programs, debug executions, and subsequent shipment
of printer listings, debug results, etc., back to SRI for listing on
their printer.

As an example of the more current type of operation on the
network, the UCLA IBM 360 91 computer system at the Campus
Computing Network division has been selected for inclusion in the
network as a major service site. Software development on the
360,91 has been directed mainly at providing capability for any
remote user to access UCLA and obtain the standard services
provided by the OS 360 system. The most prominent feature of
this implementation is the remote job entry (RJE) capability
where a given site can supply an input device, a listing output
device and a punch output device plus a full-duplex operator‘s
console, and bind these all together via the network to the 360 91.
allowing submission and control of batch-type jobs for the OS 360
system. A number of people at Rand Corporation have been op-
erating from Rand to UCLA in this manner for some months
now and their success is highly promising.

Since any one of the TIPs or the “mini-host” PDP-11 terminal
systems can provide RJE capability, the group of users who need
and can gain access to large computer facilities such as the model
91 is greatly expanded. At costs in line with many RJE terminal
systems on the market today, these users gain high-speed access
and wide ranging services.

Finally, an example of the use of the network in the future
when a large number of TIPs and PDP-11 “mini-host’’ systems
will be attached is a research effort to be undertaken at the Na-
tional Bureau of Standards. Using the ANTS “mini-host” sys-
tem, researchers at the National Bureau of Standards site intend
to do performance-measuring research utilizing the network as a
test bed. Such areas as the performance of remote access to and

387

from various sites on the network, performance measurement of
activity between sites on the network both at the user level and at
the system level, and simulation of activity sequences to obtain
normalized measurements of the response and processing activi-
ties of the various sites will be investigated.

F. ILLIAC IV Approaches
In 1972, Illiac IV will join the ARPAnet to provide it with

one of its most powerful service sites. Users of Illiac IV will also
heavily access the mass data storage system (laser-memory data
computer) to aid them in preparing and processing the gigantic
amounts of data and enormous problems which they will attempt
to solve utilizing Illiac IV. Conversely, the future development of
Illiac IV appears to benefit from the network in two ways. First,
there are quite a number of people located all over the country
who need direct access to Illiac’IV for their particular applications
and the network provides a very economical framework in which
to dispense this service. Secondly, network users represent a large
body of technical knowledge and experience in the craft of com-
puter systems building, and the development of Illiac IV should
be very much enriched by being placed within this flow of knowl-
edge throughout the ARPAnet community.

G . The Future

Up to now, concern has been with the network itself, its con-
cept, and physical manifestation. Now that the first edition is out,
efforts will be directed at developing applications utilizing the
diverse capabilities of. the member HOST systems and the intel-
lectual community surrounding them. The keyword of the future
will be sharing.

Hardware, software, and expertise will be the first sharable
quantities. Initially their forms will be traditional, the large 360191
at UCLA as a service facility, for instance. Specialization will then
set in yielding network usage of particular specialized functions
at several sites in the solution of individual problems. Systems
will subdivide to subsystems and programs, evolving to a veritable
smorgasbord of hardware and software problem-solving tools.

Data sharing will become prominent. Specialized data bases
ail1 appear as a function of the growing needs of users of the net-
work and their freedom of access to remote network resources.
Library and documentation production retrieval systems will
evolve to enhance and extend the intellectual capabilities of net-
work researchers.

In the end, the network as a concept may foster a new intel-
lectual revolution as it multiplies the number of minds and tools
which can be applied to specific research projects. As one of the
first, the ARPAnet should occupy a classical position in the evolu-
tion of computer systems and applications technology.

 REFERENCE^
“Electronic computers: A historical survey,” Computitrg Surreys,
vol. 1 , no. 1 , pp. 7-36, Mar. 1969.
D. L. Slotnick, W. C. Borck, and R. C. McReynolds, “The
SOLOMON computer.” in 1962 Fa// JoCtt Computer Cotrf.,
AFIPS Cot$ Proc. Washington, D. C.: Spartan, 1962. pp. 97-
107.
D. L. Slotnick, “Unconventional systems,” in 1967 Spritrg Joitrt
Computer Cot$. AFIPS Cor$ Proc. Washington, D. C.; Spartan,

87, Feb. 1971.
-, “The fastest computer,” Sci. Amer., vol. 224. no. 2, pp. 76-

S . A. Denenberg, “An introductory description of the ILLIAC IV
system,” Center for Advanced Computation, University of Illinois

1967, pp. 477-48 1.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

388 PROCEEDINGS OF THE IEEE, APRIL 1972

at Urbana-Champaign, Urbana, Ill., ILLIAC IV Doc. 225, Dep.
Computer Sci. File 850, July 15, 1971.

[6] G . H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick,
and R. A. Stokes, “The ILLIAC IV computer,” IEEE Trans.
Comput., vol. (2-17, pp. 7 6 7 5 7 , Aug. 1%8.

[7] D. E. McIntyre, “An introduction to the ILLIAC IV computer,”
Datamation, Apr. 1970.

[8] D. J. Kuck, “ILLIAC IV software and applications program-
ming,” IEEE Trans. Comput., vol. C-17, no. 8, pp. 758-770, Aug.
1968.

[9] L. G. Roberts and B. D. Wessler, “Computer network develop-
ment to achieve resource sharing,” in 1970 Spring Joint Computer
Conf., AFIPS Conf. Proc. Washington, D. C.: Spartan, 1970,

[lo] H. R. G. Trout, “A BNF-like language for the description of syn-
tax directed compilers,” M.S. thesis, Dep. Computer Sci. Also
ILLIAC IV Project, University of Illinois at Urbana-Champaign,
ILLIAC N Doc; 161, Jan. 13, 1969.

[I l l ILLIAC IV Software Reference Manual, ILLIAC N Project, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Ill., 1971, vol. I ,
ch. 2.

[12] J. Gary, “PDELAN-A programming language for the solution
of partial diffential equations,” ILLIAC IV Project, University of
Illinois at Urbana-Champaign, Urbana, Ill., ILLIAC IV Doc. 229,
July 16, 1970.

[13] ILLIAC IV Software Reference Mru~uul, ILLIAC IV Project, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Ill., vol. 2,
ch. 1.

[14] N. E. Abel et a/., “TRANQUIL, a language for an array pro-
cessing computer,” in 1969 Spring Joint Computer Co@, AFIPS
Conf Proc. Washington, D. C.: Spartan, 1%9.

[15] ILLIAC IV Software Reference Manual, ILLIAC IV Project, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Ill., 1971, vol. 2,
ch. 2.

[16] Duncan H. Lawrie, GLYPNIR Programming Manual, ILLIAC IV
Project, University of Illinois at Urbana-Champaign, Urbana,
Ill., ILLIAC IV Doc. 232, Aug. 27, 1970.

[I71 ILLIAC IV Software Reference Manual, ILLIAC IV Project, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Ill., 1971, vol. 2,
ch. 3.

[I81 Toshio Yawi, “Programming the Tillotson equation of state for
ILLIAC IV Project,” ILLTAC IV Project, University of Illinois at

pp. 543-549.

Urbana-Champaign, Urbana, TU.! ILLIAC IV Doc. 189, Aug. 20,
1969.

[191 M. Knowles, B. Okawa, and Y. Muraoka, “Matrix operations on
ILLIAC IV.” ILLIAC IV Project, University of Illinois at Ur-
bana-Champaign, Urbana, Ill., ILLIAC IV Doc. 52, Mar. 1 , 1%7.

[20] James E. Stevens, Jr., “Matrix multiplication algorithms for
TLLIAC IV,” Center for Advanced Computation, University of
Illinois at Urbana-Champaign, Urbana, Ill., ILLIAC IV Doc.
231, Aug. 26, 1970.

[21] V. Benokraitis, “Alternate storage methods for two-dimensional
hydrodynamics calculations,” ILLIAC IV Project, University of
Illinois at Urbana-Champaign, Urbana, Ill., ILLIAC IV Doc. 136,
May 27, 1968.

[22] Paul W. Kraska, “Array storage allocation,” ILLIAC IV Project,
University of Illinois at Urbana-Champaign, Urbana, Ill.,
ILLTAC Doc. 186, Aug. 1, 1%9.

[23] ILLIAC IV Research Documents Abstracts, ILLIAC IV Project,
University of Illinois at Urbana-Champaign, Urbana. Ill., July 1 ,
1971.

[24] J. H. Wilkinson, The Algebraic Eigenoalue Problem. Oxford:
Clarendon, 1965.

[U] A. H. Sameh, “On Jacobi and Jacobi-like algorithms for a parallel
computer,” in Mathematics of Computation, vol. 25, pp. 579-590,
1971.

[26] J. G . F. Francis, “The QR-transformations,” pts. I and 11, Comput.
J., vol. 4, pp. 265-271 and 332-345,]%I-1962.

[27] R. S. Martin et a/., “The QR-algorithm for real Hessenberg
matricesl” Numer. Math., vol. 14, pp. 219-231, 1970.

[28] D. Kuck and A. Sameh, “Parallel computation of eigenvalues of
real matrices,” in Proc. IFIP Cong., Yugoslavia, 1971.

[29] T. Marill and L. G. Roberts, “Toward a cooperative network of
time-shared computers,” in 1966 Fa// Joint Computer ConJ,
AFIPS ConJ Proc. Washington, D. C.: Spartan, 1966.

[u)] L. G . Roberts, “The ARPA network,” in Incitational Workshop
on Networks of Computer Proc., Nat. Security Admin., 1968.

[31] -, “Resource sharing computer networks,” presented at IEEE
Int. Conf., Mar. 1969.

[32] F. E. Heart, R. E. Kahn et a/ . , “The interface message processor
for the ARPA network,” in 1970 Spring Joint Computer Conf.,
AFIPS Conf Proc. Washington, D. C.: Spartan, 1970.

[33] S. Carr, S. Crocker, and V. Cerf, “HOST-HOST communication
protocol in the ARPA network.” in 1970 Sprihg Joint Computer
Conf., AFIPS Conf. Pror. Washington, D. C.: Spartan, 1970.

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore. Restrictions apply.

