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Invited Paper 

-Tho masons for the creation of llliac IV a n  described and 
Wn history  of  tho liiiac IV p t + c t  is mwntod. The archihchrn or hard- 
ware st ruetun  of * llliac IV is discuss- llllac IV array is an army 
processor with a rp.dalied control  unit (CUI that urn be vkwed as a 
small stand-alone computer. The llliac IV sohare strategy is described 
in k r m s  of  current  user  habits and needs. Brief  descriptions are given of 
the systems software itself, its history, and the maior lessons l e a d  dur- 
ing  its  development. Some i d e a s  for  future  development are suggested. 
Applications of lliiac N are discussed in terms of evaluating the fundon 
ffxJ rimultanoously on up to 64 distinct  argument  sets x<. Many of the  time- 
consuming p r o b k m s  In scientiAc computation invoke repeated evaludon 
of the same function on dihrenl agument soh. The agumenl sets which 
c o m p o s e  the problem data base must be structured in such a  fashion tho+ 
they  can bo dimtbuted omong 64 separate  memories.  Two matrix a p  
plications:  Jacobi's algorithm for Anding  the  eigenvalues and eigenvectors 
of mal symmetric matrices, and reducing a mal nonsymmetric matrix to 
the uppor-Hawnberg form using  Householder's  transformotions are dis- 
cussed in detail. The ARPA networlr, a highly sophisticated and wide 
ranging experiment in the remote access and sharing  of  computer n- 
SOUKOS, is brieAy  described and its  current  status  discussed. Many re- 
marchers located about the  country who will use Illiac IV in solving 
problems will do so via the network. The  various  systems, hardware, 
and procedures  they will use is discussed. 

I. INTRODUCI-ION 

1 T ALL BEGAN in the early 1950's shortly after EDVAC [l] 
became operational. Hundreds, then thousands of compu- 
ters were  manufactured,  and  they  were  generally organized 

on Von Neumann's concepts, as shown and  described in Fig. 1.  
In the  decade betwetm 1950 and 190, memories became cheaper 
and  faster,  and the  concept of archival storage was evolved;  con- 
trol-and-arithmetic  and logic units  became  more sophisticated: 
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Fig. 1. Functional  relations  within a conventional  computer. The CU 
has  the function of  fetching instructions which  are stored in memory, 
decoding or  interpreting  these instndons, and linally generating 
the microsequences of electronic pulses  which cause the  instruction 
to be performed. The performance of the instruction may entail  the 
use or "driving" of  one of  the  three  other  components.  The CU may 
also contain a small  amount of memory called registers that can be 
accessed faster than the main memory. The ALU contains the elec- 
tronic circuitry necess~~y to perform arithmetic and logical opera- 
tions. The ALU may also contain register storage. Memory is the 
medium by which  information (instructions or data) is stored. The 
1/0 accepts information  which is input to or output  from Memory. 
The 1 / 0  hardware may also take care of  converting  the  information 
from one coding scheme to another. The CU and  ALU taken 
together  are sometimes called a  CPU. 

1 /0  devices  expanded from typewriter to magnetic  tape units, 
disks, drums, and remote terminals. But the four basic compo- 
nents of a conventional computer (control unit (0, arithmetic- 
and-logic unit (ALLJ), memory,  and I/O) were all present in one 
form or another. 

The  turning  away  from the conventional organization came in 
the  middle lm's ,  when  the  law of diminishing returns  began to 
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Fig. 2. Pipelined  operation.  The  large  boxes  represent the circuits  required to transform  the  operands A and B into the quantity O(A,  B )  (some 
function of A and B, say the sum  of A and B).  The  smaller  boxes  represent  storage  stages  for  the  intermediate  results O(A,  B ) ,  and @ A ,  B)2, 
and  the  desired  result O(A, B).  The  operation 0 has  been broken.down  into three stages,  each  of  which  accepts as input  the  output of the  pre- 
vious stage,  and  all of  which perform a stage of the  operation at the  same  time. At esch  step of the  timing  cycle, the pipeline  accepts a new 
pair of operands ( A ,  B )  and  the  previous  pair  moves to the next  stage.  This  mode  of  operation  causes  results (the sum in this  example) to 
appear at the  end of the  pipeline at time  intervals  equal to the time of operation of the slowest  stage of the  pipeline. 

take  effect in the effort to increase the  operational  speed of a  com- 
puter. Up until this  point  the  approach was simply to speed  up 
the  operation of the  electronic circuitry which  comprised the  four 
major  functional  components. (See Fig. 1.) 

Electronic circuits are ultimately  limited  in  their  speed of 
operation by the speed of light (light travels about  one  foot in a 
nanosecond) and many of the circuits were  already  operating in 
the  nanosecond  time  range. So, although faster circuits could be 
made,  the  amount of money  necessary to produce  these faster 
circuits was not justifiable in  terms of the small  percentage  in- 
crease of speed. 

At this stage of the  problem  two new approaches  evolved. 
1) Owrlup: The  hardware  structure of the conventional or- 

ganization  was  modified so that two or more of the  major  func- 
tional  components (or subcomponents  within  a  major  compo- 
nent)  could  overlap  their  operations.  Overlap  means  that  more 
than  one  operation is occurring  during  the same  time interval, 
and  thus  total  operation  time is decreased. 

Before  operations  could be overlapped,  control  sequences be- 
tween the  components  had  to be decoupled.  Certainly the CU 
could at  least be fetching the next  instruction while the  ALU  was 
executing the present  one. 

2) Replication: One  of  the  four  major  components (or sub- 
components  within  a  major  component)  could be duplicated  many 
times.  (Ten  black  boxes  can  produce the result of one black box  
in  one-tenth of the time if the  conditions  are right.) The replica- 
tion of 1/0 devices,  for  example,  was  a  step  taken very early in  the 
evolution of digital computers-large  installations had  more  than 
one  tape drive, more  than  one  card  reader,  more  than  one  printer. 

Since the  above two  philosophies do not  mutually  exclude 
each other,  a  third  approach exists which  consists of both of them 
in  a  continuously  variable  range of proportions. 

The  overlapping philosophy  was  implemented  largely through 
the  buffer  and pipeline  mechanisms. The pipeline  mechanism (see 
Fig. 2) breaks  down an operation  into  suboperations, or stages, 
and decouples  these  stages from each other. After  the  stages are 
decoupled  they  can be performed  simultaneously or, equivalently, 
in parallel. The buffer mechanism  allows an operation to be de- 
coupled into parallel  operation by providing  a  place to  store in- 
formation. 

The replication  philosophy is  exemplified by the general  multi- 
processor  which  replicates  three of the  four  major  components 
(all but the  I/O) many  times. The cost of a  general  multiprocessor 
is, however, very high and  further design  options  were  considered 
which  would  decrease  the  cost  without  seriously  degrading the 
power or efficiency of the system. The  options consist  merely of 
recentralizing one of the  three  major  components which had been 
previously  replicated  in the general  multiprocessor-the  memory, 
the  ALU, or the  CU. Centralizing the CU gives  rise to  the basic 
organization of a  vector or array  processor  such as Illiac IV.  This 
particular  option was chosen for two  main  reasons. 

1) Cost: A very  high percentage of the  cost  within  a digital 
computer is associated with CU circuitry. Replication of this 
component is particularly  expensive,  and  therefore  centralizing 
the CU saves  more  money than can be saved by centralizing  either 
of the  other  two components. 

2) Structure: There is a  large class of both scientific and 
business  problems that  can be solved by a  computer  with  one CU 
(one  instruction  stream)  and  many  ALUs. The same  algorithm is 
performed repetitively on mzny sets of different data:  the  data 
are  structured  as  a  vector,  and  the  vector  processor of Illiac IV 
operates on  the vector data. All of the  components of data  struc- 
tured  as  a  vector  are  processed  simultaneously or in parallel. 

The Illiac IV  project was started  in  the  Computer Science De- 
partment  at  the  University of Illinois with the objective of de- 
veloping  a digital system  employing the principle of parallel 
operation  to achieve  a  computational  rate of IO9 instructions/s. 
In  order  to achieve  this  rate, the system was to employ 256 proces- 
sors  operating  simultaneously  under a central  control  divided into 
four  subassembly quadrants of 64 processors  each. Due primarily 
to subcontractor  problems  several  basic  technological  changes 
were necessitated  during the course of the  program,  principally, 
reduction  in  individual logic-circuit complexity and memory  tech- 
nology.  These  resulted in cost  escalation and schedule  delays, 
ultimately  limiting the system to one  quadrant with an overall 
speed of approximately 200 million  instructions/s. It is this  one- 
quadrant system that will be discussed  for the remainder of this 
paper. 

The  approach  taken  in Illiac IV  surmounts  fundamental  lim- 
itations  in  ultimate  computer  speed by  allowing-at least in p M -  
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ciple-an unlimited  number of computational  events  to  take place 
simultaneously. The logical  design of Illiac IV is patterned  after 
that  of  the  Solomon  [2],  [3]  computers,  prototypes of which  were 
built by the Westinghouse  Electric Corporation in  the  early 1960’s. 
In this design a single master CU sends  instructions  to  a  sizable 
number  of  independent  processing  elements  (PES) and  transmits 
addresses to individual  memory  units  associated with these  PES 
(“PE  memories,”  PEMs).  Thus, while a  single  sequence of instruc- 
tions  (the  program) still does  the  controlling, it controls  a  number 
of PES  that execute the same  instruction  simultaneously on  data 
that can  be, and usually  are, different in the memory of each PE. 

Each of the  64 PES of Illiac IV is a  powerful  computing  unit 
in its own right. It  can  perform  a wide range of arithmetical  opera- 
tions on numbers that  are 64 binary digits long.  These  numbers 
can be  in any of the six possible  formats: the  number  can be 
processed  as  a single number 64 bits long in either  a fixed or a 
“floating”  point  representation, or the 64 bits can be broken  up 
into  smaller  numbers of equal  length.  Each of the memory  units 
has  a  capacity of 2048 64-bit  numbers. The time  required to ex- 
tract  a  number  from  memory  (the access time) is  188 ns, but be- 
cause  additional  logic circuitry is needed to resolve conflicts when 
two or more  sections of Illiac IV call on  the memory  simultane- 
ously, the minimum  time between  successive operations of mem- 
ory is increased to 350 ns. 

Each  PE  has  more  than 100 OOO distinct electronic  components 
assembled  into  some  12 OOO switching circuits. A  PE  together 
with its memory  unit and associated logic  is  called a  processing 
unit (PU).  In  a system  containing  more than six million  compo- 
nents one can  expect  a  component or a  connection to fail once 
every  few hours. For this  reason  much attention has been devoted 
to testing and diagnostic  procedures.  Each  of  the 64 processing 
units will  be subjected  regularly to  an extensive  library of auto- 
matic tests. If a  unit  should fail one of these tests, it can be quickly 
unplugged  and  replaced by a  spare, with only  a brief loss of oper- 
ating  time.  When  the  defective  unit  has been taken  out  of service, 
the  precise  cause of the failure will  be determined by a  separate 
diagnostic  computer.  Once the fault has been found  and  repaired, 
the  unit will  be returned to the  inventory of spares. 

Illiac IV could  not  have been designed at all without  much 
help from  other  computers.  Two medium-sized  Burroughs 5500 
computers  worked  almost full time for two  years  preparing the 
artwork  for  the  system’s  printed circuit boards  and  developing 
diagnostic and testing  programs  for  the system’s logic and  hard- 
ware.  These  formidable  design,  programming, and  operating 
efforts were under  the  direction of Arthur B. Carroll,  who,  during 
this  period,  was the project’s  deputy  principal  investigator. 

The Illiac IV system is scheduled  for  completion by the  end of 
this calendar year;  the fabrication  phase is essentially complete 
with some final assembly and considerable  debugging yet to be 
completed.] 

11. HARDWARE STRUCTURE 
A .  Illiac IV in Brief 

As stated in the  Introduction,  the  original  design of Illiac IV 
contained four CUs, each of which controlled  a  64-ALU  array 
processor. The version  being built by the  Burroughs Corporation 
will have only one CU which drives 64 ALUs  as  shown in Fig. 3. 
It is tor this reason that Illiac IV is sometimes  referred to as  a 

All of this work  was sponsored under a Grant (Contract USAF 
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Fig. 3. Functional block diagram of nliac IV. 

quadrant (one-fourth of the original  machine) and it is this  ab- 
breviated  version of Illiac IV that will  be discussed for  the re- 
mainder of this  paper.  For  a  more complete  description of the 
Illiac IV  architecture see [4]-[6]. 

One  difference between Illiac IV and  a general  array  processor 
is that  the  CU has been decoupled  from the rest of the  array 
processor so that certain  instructions  can be executed  completely 
within  the  resources of the CU at  the  same  time  that  the  ALU is 
performing its vector  operations.  In this way another degree of 
parallelism is exploited in addition to  the inherent  parallelism of 
64 ALUs  being  driven  simultaneously.  What we have is 2  com- 
puters  inside Illiac IV:  one  that  operates on scalars, and  one  that 
operates  on  vectors. All  of the  instructions,  however,  emanate 
from the  computer  that  operates  on scalars-the CU. 

Each  element of the  ALU  array is not  called by its  generic 
name (ALU) but is called  a  PE.  There are 64 PES,  and  they  are 
numbered  from 0 to 63. Each PE responds to  appropriate instruc- 
tions if the  PE is in an active mode. (There exist instructions in the 
repertoire  which  can  activate or deactivate  a  PE.)  Each  PE  per- 
forms  the  same  operation  under  command  from  the CU in the 
lock-stepped  manner of an array  processor.  That is, since  there 
is only  one CU, there is only one  instruction  stream  and all of the 
ALUs respond  together  or  are  lock-stepped  to  the  current in- 
struction. If the  current  instruction is ADD for  example,  then all 
the  ALUs will  add-there can be no instruction  which will cause 
some of the  ALUs to be adding while others  are  multiplying. 
Every ALU in the  array  performs  the  instruction  operation in this 
lock-stepped  fashion,  but the  operands  are  vectors  whose  com- 
ponents  can be, and  usually are, different. 

Each  PE  has  a full complement of arithmetic  and logical cir- 
cuitry, and under  command  from  the CU will perform an instruc- 
tion  “at-a-crack”  as  an  array  processor.  Each PE has its own 2048 
word 64-bit memory  called  a  PE  memory (PEM) which can be 
accessed in no longer  than 350 ns. Special  routing  instructions  can 
be  used to move data from  PEM to PEM.  Additionally,  operands 
can be sent to  the  PES  from  the CU via a  full-word (64-bit) one- 
way communication line and  the CU has  eight-word  one-way 
communication with the  PEM  array (for instruction and  data 
fetching). 

An Illiac IV  word is  64 bits, and  data  numbers can be repre- 
sented in either 64-bit floating  point, 64-bit logical. 48-bit fixed 
point, 32-bit floating  point, 24-bit  fixed point, or 8-bit fixed point 
(character)  mode. By utilizing the  64-bit, 32-bit, and 8-bit data 
formats,  the  64  PES  can  hold  a  vector of operands with either 64, 
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Fig. 4. Illiac IV system  organization. 

128, or 512 components. Since Illiac IV  can add 512 operands  in 
the 8-bit integer  mode  in about 66 ns, it is capable of performing 
almost 101O of these  "short"  additionsl's. Illiac IV  can perform 
approximately 150 million 64-bit rounded  normalized  floating- 
point  additionsis. 

The 1/0 is handled by a B6500 computer  system.  The  operat- 
ing  system,  including  the  assemblers and compilers,  also  resides 
in the B6500. 

B.  The Ilfiac IV System 
The IUiac TV system  can  be  organized  as in. Fig. 4. The Illiac IV 

system  consists  of the Illiac IV  array  plus  the Illiac IV I/O system. 
The Illiac IV  array  consists of the  array  processor  and  the CU. 
In  turn,  the  array processor is made  up of  64 PES and their 64 
associated memories-PEMs. The Illiac IV 11'0 system  comprises 
the 1/0 subsystem, the disk file system (DFS),  and  the B6500 con- 
trol  computer.  The 110 subsystem is broken  down  further t o  the 
CDC, BIOM,  and 10s. The B 6 5 0  is actually  a  medium-scale 
computer  system by itself. 

The Illiac IV  array will  be discussed first, in  a  general  manner, 
followed by two illustrative problems which indicate  some of  the 
similarities and differences in approach to problem  solving  using 
sequential and parallel computers. The prablems  also  serve to 
illustrate how the  hardware  components  are tied together.  Fi- 
nally, the Illiac IV 11'0 system is discussed briefly. 

I) The Ifliuc IF' Array:  Fig. 5 represents  the Illiac IV  array- 
the CU plus  the  array  processor. 

a) CU: The CU is not just the CU that we are used to  think- 
ing of on a  conventional  computer,  but  can be viewed as  a  small 
unsophisticated  computer in its own right. Not  only  does it cause 
the 64 PES to respond to instructions,  but  there is a  repertoire of 
instructions that can be completely  executed  within the resources 
of the  CU,  and  the execution of these  instructions is overlapped 
with the execution of the  instructions which drive  the  PE array. 
Again, it is worthwhile to view Illiac IV as  being  two  computers, 
one which  operates on scalars and  one which  operates  on  vectors. 

The CU contains  64  integrated-circuit registers called  the 
ADVAST data buffer (ADB), which can be used as  a high-speed 
scratch-pad  memory.  ADVAST is an  acronym for advanced  sta- 
tion and is one of the five functional  sections of the CU. Each 
register of the  ADB (DO through  D63) is 64 bits long.  The CU 

TO 

m1 , 
CONTROL UNIT BUS 

I 

Fig. 5 .  llliac 1V array. 

also has 4 accumulator registers called ACARO, ACARI, 
ACAR2, and  ACAR3,  each of which is also 64 bits long. The 
ACARs  can  be  used  as  accumulators  for  integer  addition, shift- 
ing, Boolezn  operations,  and  holding  loop-control  information- 
such as  the lower limit, increment,  and  upper limit. In  addition 
the  ACARs  can  be  used  as  index registers to modify  storage refer- 
ences  within the memory  section  (PEM). 

b)  PE: Each PE is a  sophisticated ALU  capable of a wide 
range of arithmetic  and logical operations.  There  are 64 PES  num- 
bered 0 through 63. Each PE in the  array  has  6  programmable 
registers: the  A register (RGA) or accumulator,  the  B register 
(RGB),  which  holds the second operand  in  a binary operation 
(such  as  ADD, SUBTRACT, MULTIPLY, or DIVIDE), the  R or routing 
register (RGR), which  transmits  information  from  one  PE to 
another,  the S register (RGS) which  can be used as  temporary 
storage by the  programmer,  the  X register (RGX) or index register 
to modify the address field of an instruction,  and  the D or mode 
register (RGD), which  controls  the  active or nonactive status of 
each  PE  independently. The  RGD determines  whether  a  PE will 
be active or passive  during  instruction  execution.  Since  this regis- 
ter is under the programmer's  control,  individual  PES  within  the 
array of 64 PES  may be set to enabled (active) or disabled  (pas- 
sive) status  based  on  the  contents of one of the  other  PE registers. 
For example,  there are instructions  which  disable all PES  whose 
RGR contents  are  greater  than their RGA contents.  Only  those 
PES in an enabled state  are  able  to execute  the  current  instruction. 
All registers are 64 bits except RGX which is 16 bits, and RGD 
which is 8 bits,. 

c) PEM: Each  PE  has its own 2048-word  64-bits per  word 
random-access  memory.  Each  memory is called  a PEM,  and they 
are numbered 0 through 63 also. PE  and  PEM  taken  together  are 
called  aprocesving unir or PU. PEi may only  access PEMi so that 
one  PU  cannot modify the memory of another  PU.  Information 
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Fig. 6. PE routing  connections. 

can,  however, be passed  from  one PU to  another via the  routing 
network,  which is one of the 4 paths by which data  flow  through 
the Illiac IV array. 

6) Data  paths: There are  four  paths by which data flow 
through  the Illiac IV  array.  These  paths  are  called  the CU bus, 
the  common-data  bus  (CDB),  the  routing  network,  and  the mode- 
bit line. 

1) CU bus: Instructions or data  from  the PEMs in  blocks of 
eight  words  can be sent to  the  CU via the CU bus. The instruc- 
tions to be executed are distributed  throughout the PEMs and 
are fetched  in  blocks of eight  words to  the CU via the CU bus  as 
necessary.  Although the  operating  system  takes  care of fetching 
and executing  instructions, data can  also be fetched  in  blocks of 
eight  words  under  program  control  using the CU bus. 

2) CDB: Information  stored  in  the CU can be “broadcast” 
to  the  entire 64 PE array  simultaneously via the  CDB.  A value 
such  as  a  constant to be used  as  a  multiplier  need  not be stored 64 
times in each PEM; instead  this  value  can be stored  within a CU 
register and  then  broadcast to each  enabled PE in  the  array.  Ia 
addition  the  operand or address  portion of an instruction is sent 
to  the PE array via the  CDB. 

3) Routing  network: Information  in  one PE register can be 
sent to  another PE register by special  routing  instructions.  (In- 
formation  can be transferred  from PE register to PEM by stan- 
dard LOAD or STORE instructions.)  High-speed  routing lines run 
between  every RGR of every PE and its nearest left and right 
neighbor  (distances of - 1 and +1, respectively) and  its neighbor 
8 positions to the left and 8 positions to the right (-8 and +8, 
respectively). Other  routing  distances  are effected by combinations 
of routing - 1, + 1 ,  -8, or f 8  PEMs; that is, if a  route of 5 to 
the right is desired, the  software will figure out  that  the fastest way 
to  do this is by a  right  route of 8 followed by three left routes of 1. 
Fig. 6  shows one way to view the  connectivity  which exists be- 
tween PES. As can be seen from the figure, PEo is connected to 
PES, PEI, PEs, and P G .  

4) Mode-bit  fine: The mode-bit line consists of one line coming 

from  the RGD of each PE in the  array.  The mode-bit line can 
transmit  one of the eight  mode bits of each RGD in  the  array  up 
to  an  ACAR  in  the  CU. If this bit is the bit which  indicates 
whether or  not  a PE is on or off, we can  transmit  a  “mode  pat- 
tern’’ to  an  ACAR.  This  mode  pattern reflects the  status or on- 
offness  of each PE in  the  array;  then  there  are instructions  which 
are executed  completely  within the CU that  can test this  mode 
pattern  and branch on a  zero or nonzero  condition.  In  this way 
branching in the  instruction  stream  can  occur  based  on  the  mode 
pattern of the  entire 64-PE array. 

2)  Some  Illustratice  Problems 
a )  Adding  two  aligned  arrays: Let us first consider the prob- 

lem of adding  two  arrays of numbers  together. The  Fortran  state- 
ments  for  a  conventional  computer  might  look like: 

DO 10 I = 1, S 
10L4(I) = B ( I )  + C ( I ) .  

The two Fortran instructions are compiled to a set of machine- 
language  instructions  which  include initialization of the  loop, 
looping  instructions, and  the  addition of each  element of the B 
array to  the  proper element  in  the C array,  and  storage  to  the A 
array.  Except  for  the initialization instructions,  the set of machine- 
language  instructions is executed N times.  Therefore, if it takes 
M ps to pass  once through  the  loop, it will take  about N times M 
ps to perform the  above  Fortran  code. 

Now  suppose the same  operations  are  to be performed on 
Illiac IV.  Arrangement of the  data in memory  becomes  a  primary 
consideration-the data must be arranged to exploit  the parallel- 
ism  of operation of the PES as effectively as  possible. The worst 
way to use the PES would be to allocate  storage for  the A ,  B, and 
C arrays in just one PEM. Then  instructions  would  have to be 
written just as  they were in a  conventional  machine to loop 
through  an  instruction set N times. 

Let us consider the problem  as  consisting of three  cases: 
N=64,  N<64,  and N>64, and  then see what  each  case entails in 
terms of programming  for Illiac IV. 

1) N =  64: To reflect the  case  where N=64, we have  arranged 
the  data  as shown  in Fig. 7. In  order to execute the two lines of 
Fortran code,  only  the  three  basic Illiac IV  machine-language  in- 
structions  are  necessary: 1) LOAD all PE Accumulators (RGA) 
from  location a+2 in all PEMs. 2) ADD to the PE Accumulators 
(RGA)  the  contents of location a+l in all PEMs. 3) STORE result 
of all PE Accumulators to location cr in all PEMs. 

Since every PE will execute  each  instruction at the same  time 
or in parallel, accessing  its  own PEM when necessary,  the  64  loads, 
additions,  and  stores will be performed while just  three  instruc- 
tions  are executed.  This is a speedup of 64 times  for this case, in 
execution  time. 

The  three  instructions to perform  the 64 additions in Illiac IV 
assembly  language  (Ask) would actually  look like: 

LDA  ALPHA -t 2 ;  
A D R S  ALPHA + 1: 
STA ALPHA; 

(note  that  since  each  instruction  operates on a  vector,  a  memory 
location  can be considered  a row of words  rather  than  a single 
word). 

2) N<64: Since there  are  exactly  64 PES to perform  calcula- 
tions,  a  proper  question is: what  happens if the  upper limit of the 
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LOCATION a t 2  

LOcA1K)N 2047 

Fig. 7. Arrangement of data in PEM to accomplish 
DO 10 I = 1, 64 

10 .4(Z) = B ( I )  + C ( I ) .  

loop is not exactly  equal to 64? If the upper limit is less than 64, 
there is no problem other  than  that  the  total PE array will not be 
utilized. 

The tradeoff the  potential  user of Illiac IV  must  consider  here 
is how  much (or how  often) is Illiac IV  underutilized? If the under- 
utilization is “too much”  then  the  problem  should be considered 
for  running on a  conventional  computer.  However, the user 
should  keep in mind that he  usually  does  not feel too guilty if he 
underutilizes the resources of a  conventional system-he does  not 
use every tape drive, every  bit of available  core, every printer,  and 
every  byte of disk  space  for  most of his conventional  programs. 

3 )  N >  64: When the upper limit of the  loop is greater than 6 4 ,  
the  programmer is faced  with  a  storage  allocation  problem. That 
is, he has various  options  for  storing  the A ,  B, and C arrays  and 
the  program  he  writes to perform  the 2 Fortran  statements will 
vary considerably with the  storage  allocation  scheme  chosen. To 
illustrate  this let us consider the special  case  where N = 6 6  with 
the A, B, and C arrays  stored  as  shown in Fig. 8. 

To perform the 66 additions on  the  data  stored  as shown  in 
Fig. 8, six Illiac IV  machine-language  instructions are now neces- 
sary: 

LOAD RGA from  location a+4. 
ADD to RGA contents of location a+2 .  
STORE result to  location a. 
LOAD RGA from  location a+5. 
ADD to RGA contents of location a+3. 
STORE result to location a+ 1. 

The  addition of two  more  data items to  the A ,  B, and C arrays 
not  only  necessitates  extra Illiac IV  instructions  but  complicates 
the  data  storage scheme. In  this  instance,  the  programmer  might 
as well DIMENSION the A ,  B, and C arrays  to 128 as 66. Note  that 
the  particular  storage  scheme  shown in Fig. 8 wastes  almost 3 
rows of storage (186 words). The  storage could  have  been  packed 
much  closer so that B ( l )  followed A(66) in PE, of  row a + l ,  but 
the  program to  add  the  arrays  together would  have to  do much 
more shuffling to properly  align the  arrays  before  adding.  An 
Illiac IV  program is highly  dependent on  the  storage scheme 
chosen. 

b)  Uncoupling sequential code: Finally let  us consider the 

L o M K m O  

LOCATON a 
LOCATION a t  1 
LOCATION a t  2 
LCCATKN a t 3  
LOCATION a+4 
LOCATWa+5 

Lac14TDn 2047 

/ i /  
Fig. 8. Arrangement of data in PEM to accomplish 

10 A(Z) = R(Z)  + C(Z). 

DO 10 I = 1, 66 

Fortran code : 

D 0 1 0 1 = 2 , 6 4  
10 A(Z) = B(Z) + A ( I  - 1). 

How would we do  the above  instructions on a parallel  computer 
such  as Illiac IV? At first, it appears we cannot  perform the  above 
algorithm on Illiac IV  because it is inherently  sequential. If  we 
recognize that  the 2 Fortran  statements above are only  a  short- 
hand  for 63 Fortran  statements: 

A ( 2 )  = B(2)  + A ( 1 )  
A(3)  = B(3)  + A ( 2 )  

A(63)  = B(63) + A(62) 

A(64) = B(Ci4) + A(63) 

and  that  each of the 63 statements is executed  sequentially, we see 
that each  statement in the sequence relies on  the result computed 
from  the previous  statement. That is, 4 3 )  cannot be computed 
until  the  statement  above it has  computed 4 2 ) .  Therefore,  the 63 
additions  cannot be done in parallel if we literally try to apply the 
2 Fortran  statements  as they  stand.  However,  using  mathematical 
subscript notation: 

A2 = B2 + A I  
A3 = B3 + A ?  = B3 + B2 + A I  

A * = B ~ + A ~ = B I + B ~ + B : ! + A ~  

A N  = B.v + B.v-1 * * BZ + A I .  
We see that  the elements of the A array  can be computed  inde- 
pendently  using the  formula 

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore.  Restrictions apply. 



BOUKNIGHT et al. : THE ILLIAC IV SYSTEM 315 
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Fig. 9. Status of data in PEM, RGA, RGR, and  mode  status (RGD) while  executing 
DO 10 Z = 2, 64 

10 A(Z) = B(Z) + A(Z - 1). 

The  mode  status (RGD) and  the contents of PEM,  RGA, and RGR are shown  after  step 8) ( i = 2 )  of the  program. 

s 
;Is = A I  + Bi, for .2 I S I 64. 

i= 2 

The  Fortran code to perform the  above  formula  would be: 

i(; = 9 (1) 

s = AS + R ( S )  
DO 10 S = 2,64 

10 A(.\-) = 6 s .  

The above Fortran code is equivalent to the  original  code (its end 
results are  the same)  but  now  the  computation of the A array  has 
been decoupled so that  each  value of A in the  airay can be com- 
puted independently. 

An  arrangement of data  to effect this  program is shown in Fig. 
9 and  the  program  might  be  as  follows. 

1) Enable all PES.  (Turn ON all PES.) 
2) Ali PES LOAD RGA from  location a. 
3) i d .  
4) All PES LOAD RGR from their RGA. [This  instruction is 

performed by d l  PES,  whether  they  are ON (enabled) or OFF (dis- 
abled).] 

5 )  All PES ROUTE their RGR contents  a  distance of 2' to  the 
right. (This  instruction is also  performed by all PES, regardless of 
whether  they are ON or OFF.) 

6) j -2'-  1 .  
7) Disable PES number 0 through j .  (Turn them OFF.) 
8) All enabled PES ADD to RGA the  contents of RGR. (Fig. 

9 shows  the  state of RGR,  RGA, and RGD (the  mode status- 
which PES  are ON and which are OFF-after this step  has been  ex- 
ecuted when i = 2.) 

9) i c i + l .  
10) If i<6 go back to step 3), otherwise to the  step 11). 
11) Enable all PES. 
12) All PES STORE the  contents of RGA to location a+l.  
Note  that this same  algorithm  can be applied to  the solution 

of problems  where  the  recurrence is of the  form:. F, = C, * F$-I 

a 86500 CONTROL COMPUTER 

DISK FILE 
SYSTEM SVBSYSTEM 

Fig. IO. Illiac IV 1 / 0  system. 

which decouples to F.v=((ITL2 Ci)Fl. All that need be done is 
that  step 8) be changed to MULTIPLY rather  than ADD. Note  also 
that if Ci = i (i= 1,2, . ,64) and F1 = 1 we have an algorithm  for 
computing N !  on Illisc IV; thst is,  when the  algorithm is com- 
plete PE.v will contain (N+l)! 

This  example tries to illustrate that it is not  always  immedi- 
ately clear if an algorithm  can be decoupled so thst it can operate 
in parallel, or is so dependent on what  happened  before that it can 
only be executed  sequentially. In this example, it appears  that  the 
algorithm is sequential,  but  upon  closer  inspection,  the  parallelism 
appears.  Potential Illiac IV users  will probably  need  much  prac- 
tice  in analyzing  problems  using  a parallel viewpoint,  especially if 
they  have  already been conditioned to viewing their problems  only 
in terms of solving  them on  a sequential  conventional  computer. 
The  tool,  for  better or for  worse,  shapes  the uses it is pxt to. 

3) Illiac IV 1'0 System: The Illiac IV array is an extremely 
powerful  information  processor,  but it has of  itself no I .  0 capa- 
bility. The I 0 capability, along with the  supervisory  system (in- 
cluding  compilers and utilities), resides  within  the Illiac IV I ' ' 0  
System. The Illiac IV I, '0 system (see Fig. 10) consists of the I '0 
subsystem,  a DFS,  and  a B6500 control  computer  (which in turn 

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore.  Restrictions apply. 



376 PROCEEDINGS OF THE IEEE, APRIL 1972 

B6500 Peripherals: C a d  Reader,  Cord Punch, 
Line Printer. 4 Magnetic TODB Units. 2 Disk Files. 
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Fig. 11. Illiac IV system. 

supervises a large  laser  memory and  the ARPA network link). 
The  total Illiac IV system consisting  of the Illiac IV 1, 0 system 
and  the Illiac IV array is shown  in  Fig. 11. All system configura- 
tions  shown are  transitory,  and more than likely  will have change3 
several times in  the next year or so. 

a )  Z,’O subsystem: The I 0 subsystem consists of  the  control 
descriptor  controller (CDC), the buffer I, 0 memory (BIOM), 
and  the 110 switch (10s). 

1) CDC: The CDC monitors a section  of  the CU waiting for 
an 1;O request  to  appear.  The CDC can  then  interrupt  the B6500 
control  computer which can, in turn, try to  honor  the request and 
place a response code back in  that section of the CU via the CDC. 
This response code  indicates the  status  of  the I, 0 request to  the 
program in the Illiac IV array. 

The CDC causes the B6500 to initiate the  loading of the  PEM 
array with programs  and  data  from  the Illiac IV disk (also called 
the DFS). After PEM  has been loaded,  the CDC can  then pass 
control to the CU to begin execution of the Illiac 1V program. 

2) BIOM: The B6500 control  computer  can  transfer  informa- 
tion from its memory through  its CPU at the  rate  of 8OX1O6 
bits’s.  The Illiac IV DFS accepts information at  the  rate  of 

500X1O6  bits,’s. This  factor  of  over six in  information  transfer 
rates between the two systems necessitates the placing of a rate- 
smoothing buffer  between them.  The  BIOM is that buffer. A 
buffer is also necessary for  the conversion of  48-bit  B6500 words 
to 64-bit Illiac IV words which can come out of the  BIOM two 
a t  a time via the 128-bit wide path to  the  DFS.  The  BIOM is ac- 
tually four  PE memories pro\liding 8192 words of  64-bit storage. 

3) 10s: The 10s performs  two  functions. As its name im- 
plies, it is a switch and is responsible for switching information 
from  either  the  DFS or from a port which can accept input  from 
a real-time device. All bulk data transfers to  and  from  the PEM 
array  are via 10s. As a switch it must  ensure  that only one  input 
is sending  to  the  array at a  given time. In addition,  the 10s acts 
as a  buffer  between the  DFS  and  the  array, since  each  channel 
from  the Illiac 1V disk to  the 10s is  256 bits wide and  the bus 
from  the 10s to  the PEM array is 1024 bits wide. 

b)  DFS: The  DFS consists  of two  storage  units,  two elec- 
tronics units and two  disk file controllers. The DFS is also  called 
the Illiac IV disk or simply,  the  Disk.  The Disk is of 109-bit  capac- 
ity, having 128 heads, with one head per track.  The DFS has  two 
channels, each of which can  transmit or receive data  at a rate  of 
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0.5 X lo9 bitsjs over  a path 256 bits wide;  however, if both chan- 
nels are sending or receiving  simultaneously the  transfer  rate is 
IO9 bitsis. 

c )  B6500 control  computer: The B6500 control  computer  con- 
sists of a  central  processing  unit  (CPU),  a  memory,  a  multiplexor, 
and  a set of peripheral devices (card  reader,  card  punch,  line 
printer, 4 magnetic  tape units, 2 disk files and  a console  printer, 
and  a keyboard). It is the  function of the B6500 to manage all 
programmers’  requests  for  system  resources.  This  means that  the 
operating  system will reside on  the B6500.  All compiling and  as- 
sembling of programs is also  performed on  the B6500. Utilities, 
such  as  card-to-disk,  card-to-tape,  etc., are also  executed on  the 
B6500. From  a  total system standpoint,  the Illiac IV array can be 
considered  as a special-purpose  peripheral device  of the B6500 
capable of solving  certain classes  of problems with extremely  high 
speed. 

1) Laser  memory: The B6500 supervises  a 101*-bit write-once 
read-only  laser  memory  developed by the Precision  Instrument 
Company.  The  beam  from an  argon laser records  binary  data by 
burning  microscopic  holes in a thin film  of metal  coated  on  a  strip 
of polyester  sheet,  which is carried by a  rotating  drum. Each data 
strip  can  store  some 2.9 billion bits. A  “strip file” provides  storage 
for 400 data  strips  containing  more  than  a trillion bits. The  time to 
locate  data  stored on any one of the 400 strips is 5 s. Within  the 
same  strip  data  can be located in 200 ms. The read and record 
rate is four  million bits per  second on each of two  channels.  A 
projected use of this  memory will allow  the user to “dump”  large 
quantities of programs  and  data  into this storage  medium  for 
leisurely review at a  later  time;  hard  copy  output can  optionally 
be made  from files within the laser memory. 

2) ARPA network  link: The  ARPA  network is a  group of com- 
puter  installations  separated  geographically but connected  by 
high-speed (50 OOO bitsjs)  data communication lines. On these 
lines, the members of the  “net”  can  transmit  information-usu- 
ally in  the  form of programs,  data, or messages. The link  performs 
an information  switching  function  and is handled by an interface 
message  processor (IMP)  and a network  control  program  stored 
within  each  member installation’s “host”  computer.  Each IMP 
operates in a  “store  and  forward mode,” that is, information  in 
one IMP is not lost until the receiving IMP has  signalled  complete 
reception and retention of the  message. The  IMP interfaces with 
each member’s computer  system  and converts  information  into 
standard  format  for transmission to  the rest of the net. Con- 
versely, the IMP accepts  information  in  a  standard  format  and 
converts it to  the  particular  data  format of the member installa- 
tion.  In  this  way,  the  ARPA  network is a  form of a  computer 
utility with  each  contributing  member  offering  its  unique  resources 
to all of the  other members. The Illiac IV  system  then is an  ARPA 
network  resource that will be  shared by the members of the  ARPA 
network; even the  host site of the Illiac IV,  Ames  Research  Center 
at Moffett  Field, Calif., will be constrained to access Illiac IV  via 
the  ARPA network. 

111. SOETWARE 
A. Introduction 

It  should be  remembered that  the Illiac IV  project was initially 
directed  toward  experimenting  with  the feasibility of building a 
massive  hardware  configuration  and  most of the software  de- 
scribed  here  (defined  as  operating  system,  compilers,  debugging 
aids, and necessary  library  functions)  could  have  been  developed 

with  suitably  sophisticated  simulators,  without  any  reference to a 
“real” Illiac IV; indeed,  most of the truly  innovative  software 
envisioned  has  yet to be built. This  Section, then, is devoted pri- 
marily to a  discussion of a  sound  software  strategy  rather  than to 
a  minutely  detailed  description of the initial software [ 6 ] - [ 8 ] .  

B. Software  Strategy 
The main  reason for building Illiac IV  was to  provide  a facility 

of massive computing  power  especially  suited to  the  solution of 
partial differential equations  and  matrix  manipulation.  A  con- 
siderable amount of this work  was  already  being  done on less 
powerful serial machines by users  who  demanded  execution  speed 
at almost  any  price and who used their machines  largely  in  batch- 
processing  mode  (as  opposed to time  sharing),  relying very much 
on punch-card  input devices and magnetic tape  and line printer 
for  intermediate  storage and  for  printing final results. It was esti- 
mated that users  would utilize a  substantial  proportion of Illiac IV 
time during its first year of operation  in debugging and refining 
their programs or “code,” thus justifying the creation of the 
machine.  Nearly all these  users  desired that languages and  oper- 
ating  systems  provide  machine efficiency rather  than “ease of use” 
or “programmability.”  Many of the codes for existing Illiac IV 
applications  have evolved over  the  last  ten  years and have dis- 
played  a  remarkable  architectural similarity. They  comprise the 
following  three parts: 

1) A  “preprocessor”  section,  wherein the  problem is initial- 
ized and decimal-to-binary  conversion  (reading data) is per- 
formed.  This is usually  a serially oriented  section. 

2) A  “kernel”  where  the  main  problem is addressed,  usually 
inherently parallel, and therefore  considered  a job  for Illiac IV. 
The kernel  occupies  between 5 percent and 10 percent of the 
source  and object  code, and  on serial  machines uses 80 to 95 per- 
cent of the time. 

3) A  “postprocessor”  section,  wherein results are  stored  on 
archive files, necessary  binary-to-decimal  (writing data) conver- 
sions  are msde,  graphs  are  plotted,  and line printer  output  for- 
matting is set. This is ususlly  a serially oriented  section. From 
here  control may loop back to  the kernel  in order  to complete  a 
further set of iterations on the  data. 

Generally  speaking, Illiac IV jobs will  be presented to  the 
B6500 as  card  decks,  tape files, or as files  received over  the  ARPA 
network  [9]. B6500 disk files  which have  originated  from  one of 
these  sources,  but  have  been edited’ through local or remote  on- 
line consoles, may also be presented as Illiac IV  jobs. 

Results  produced by  B6500 or Illiac IV  programs  msy be 
printed  in  the  conventional  manner locally, displayed on local or 
remote  on-line  consoles, or transmitted  over  the  ARPA  network 
to output devices local to  the user. Later, it  is expected  that pro- 
vision for microfilm graphics and selective  viewing and editing of 
results will  be made  available locally. 

However,  because of the high  disk  latency (40 ms)  compared 
with  processor  speed, it should be remembered that  the Illiac IV 
hardware,  as it stands, is not  particularly  amenable to a  “time- 
sharing’’  operation if “time-sharing”  implies  “time-slicing.” All 
the  usual  interactive and debugging facilities will  be provided on 
the B6500. 

From  the intended user’s point of  view, then, it  seemed ade- 
quate initially to provide  simple  batch-processing  software that 
would  enable jobs to be run efficiently,  even though  only  one job 
kernel  would be active at a  time.  This attitude was reenforced by 
questions of reliability. The initial mean  time  between failures for 
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the Illiac IV  array  was  envisioned to be 2-4 h. Debugging  “state- 
of-the-art’’ software on untried  “state-of-the-art”  hardware  de- 
manded  either  more  bravery or more  foolhardiness than most 
ordinary  mortals  were  prepared to volunteer. On  the  other  hand, 
the B6500 promised to be much  more reliable and offered Bur- 
roughs Algol as  an implementation  language. 

The wisest course was clearly to aim  for  simple  batch-process- 
ing  systems  software  executed  as  much  as  possible on  the B5500. 
As experience  leads to greater  familiarity and confidence  with the 
array  hardware  and initial software  performance,  those  modules 
whose  operation is inherently parallel could be moved onto 
Illiac IV if the B6500 became  overloaded, or if it seemed  otherwise 
advisable to  do so. 

One of the first software  tasks  was to write an Illiac IV  simula- 
tor  that would  handle all operations in the CU and PES and all 
Illiac IV  machine  instructions.  Although  this  simulator ran  ap- 
proximately  a  million  times  more slowly than Illiac IV on a B6500, 
and  later,  about 200 OOO times  more slowly on a B6500, it became 
the basis for all language and  algorithm development for Illiac IV. 
Recently, the  simulator  was  extended to simulate Illiac IV 1/0 
subsystem  logic and its interaction  with  the Illiac operating sys- 
tem.  At the time of writing,  potential  users may “run Illiac IV 
jobs” on this  complete  simulator as if they were using the com- 
plete Illiac IV  installation,  although  the  length of the Illiac IV 
program  must, of course, be of limited  execution  time.  This  simu- 
lated  operating  system is built so that it may  be incrementally 
transferred  onto  the  real Illiac IV hardware.  The  present  software 
will be operational very shortly  after  the  hardware is built and 
working. 

It is also  worth  noting that all Illiac IV  languages  except the 
Assembler,  but  including the Illiac control  language  (the  oper- 
ating-system  control-card  language),  have  been  implemented us- 
ing  a  compiler-compiler  system  called  TWST [lo]. This  has  al- 
lowed  a  certain amount of language  experimentation,  and  has re- 
sulted  in  the  early availability of usable  languages  despite the  fact 
that  the  team providing  the  basic Illiac IV  software  included  never 
more  than fourteen  professionals.  This relatively small  team  has 
provided  a  coherent set of software,  although the relatively mech- 
anized  approach  has  caused  some  degradation in compile-time 
speed for instance.  Consequently,  there is a  considerable amount 
of refinement to be done.  However,  this will not affect the users, 
whose  programs will not  have to be changed while the overall 
compiler efficiency increases. 

C. Operating System 
The Illiac IV  operating  system [ 111 operates  in  a  “diagnostic” 

or “normal”  mode.  The  main  task of the diagnostic  mode is the 
testing and diagnosis of possible faults in the Illiac IV  I/’O  subsys- 
tem and  the Illiac IV  array itself. These  disgnostic  programs are 
designed to identify  faults and  to automatically  identify  the  plug- 
gable  unit  in  which  they  occur. The unit is then  replaced and  the 
operating  system  automatically  reruns  the test program  that  iden- 
tified the  fault  to  ensure  that it has  in  fact been remedied.  While 
in this mode,  an  interactive  routine is available to the  engineers to 
enable  them to either call specific diagnostic  programs or generate 
new ones.  This  system may also be used to  interrogate Illiac IV 
registers and  to change their values.  While  in the diagnostic  mode, 
the B6500  is available to carry on its usual work of preparing  jobs 
to be run  on Illiac IV and to process the  output from  those  which 
have  already run. However, it cannot use any  major  unit  that is 
being  diagnosed at  the  time by the diagnostic  routines. In  the 
“normal”  mode,  the  operating  system  administers  the  running on 
Illiac IV and  the use of the I!O subsystem. 

The Illiac IV  operating  system  consists of a set of asynchro- 
nous  processes  which run under the  control of the B6500 master 
control  program  (MCP).  When  a  user  submits an Illiac IV job to 
the B6500, it usually  consists of the following parts: 

1) B6500 programs  usually  written  in B6.500 Algol or For- 
tran, which  transform  and  prepare binary input files (input  under 
format  control, i.e., character-to-binary  conversion) to be used 
by the IUiac IV  program  called  “Preprocessor.” 

2) Illiac IV  programs  usually  written  in  Ask,  Glypnir, or 
Illiac IV  Fortran, which use Illiac IV to operate  on  the files pre- 
pared by the B6500 programs and  to prepare  binary  output files 
(“Kernel”). 

3) B6500 programs  usually  written  in B6500 Algol or Fortran 
which  transform  binary files from Illiac IV to  the required  external 
form  for use or storage  (“Postprocessor”). 

4) An Illiac control  language  (ICL)  program  which defines 
the  job.  The  ICL  controls  the  operating system  for the  job which 
it defines, and  thus may  be  seen as “driving” the  operating  system 
for  that  particular  job,  although  the  operating  system  may be 
operating on several ICL  programs concurrently. 

As  each job enters the system through  the B6500, it is assigned 
a priority (if one  has  not  been specified by the user). Higher 
priority jobs, as well as  being  processed  more  favorably by the 
B6500, have the privilege of having  their Illiac IV  program  parts 
preempting  running Illiac IV  programs of lower  priority.  The 
preempting  program will run to completion  unless it is  itself pre- 
empted by a  program of higher  priority.  The  number of stacked- 
up  preempted  jobs may be  arbitrarily  set  when  the  system is 
initialized. However, the main  function of the  preemption  scheme 
is to allow  debugging  runs and  short  production  runs  to move 
along  the  job  stream  quite rapidly,  while  longer  production  runs 
and  jobs of lower  priority  ensure that  the Illiac IV itself is rarely 
idle for  any  length of time. If the work load permits,  non-Illiac  IV 
jobs may be run  on  the B6500 while it is not  compiling,  prepro- 
cessing,  postprocessing, and administering Illiac IV  jobs. 

The B6500 programs  and Illiac IV  programs  communicate via 
Illiac IV  disk files (for data)  and  the 48-bit path  through  the  TMU 
of the  CU (interrupt signals). The protocol  for  these  signals  over 
the 48-bit path is administered by two  modules. The first is a 
small  executive  program  residing in Illiac IV itself (called OS4) 
which  processes all interrupts  for  the  array, handles all communi- 
cations between the user  program  and  the rest of the  operating 
system, and provides  a few standard functions  for use in  the 
array. OS4 communicates  with a module  (known as  the  “job 
partner”)  in  the B6500, which  acts as  a clearing  house  for all com- 
munication between OS4 and  thus  the user program  running on 
Illiac IV. The  job  partner  thus initiates all data transfers  between 
the B6500 and Illiac IV, B6500 and  Wac IV disk, and between 
Illiac IV and Illiac IV disk. This  arrangement  emphasizes  the  rate 
of the B6500 as  an 1/0 computer  for  the Illiac IV or, conversely, 
the Illiac IV as  a  peripheral for the B6500. 

ICL is used to coordinate  the  execution  and  communication 
of the set of B6500 and Illiac IV  programs  that  constitute  an 
Illiac 1V job.  ICL is an Algol-like  block-structured  language  in 
which FILES, PROGRAMS, and INTEGERS may be declared. 

FILES may  be declared  in  formats and number  representations 
appropriate  to either  machine.  Additionally, Illiac IV files  may 
be laid out  on  the Illiac IV  disk  in  a very  flexible manner to allow 
the user to maximize their availability as they  spin on the disk. 
When files are moved from  one  machine to  another, i.e., when 
M a c  1V files are  equated to B6500  files, they are automatically 
transformed  to  the  appropriate  format  and  binary  representation. 

PROGRAMS may be declared  as Illiac IV  programs, B6500 com- 
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pilers, job  partners,  ICL  programs, or other B6500 programs.  A 
program  may  be viewed as  acting  much like as INTEGER PRO- 
CEDURE in Algol with  monstrous  side effects. The files which the 
program uses for  data  and results and  the file on which the  pro- 
gram is to be found  are  also  included  in  the  declaration. 

INTEGERS are used  mainly  for  manipulating  a  single-integer 
result always  delivered by a  program  when it is called by the  ICL 
program.  This  integer may be set by the  user, and normally in- 
dicates the degree of  success of the  program  execution. 

The availability of IF and CASE statements  allows  considerable 
flexibility in job  control,  and facilities are  also provided to 
allow  simultaneous  execution of interlocking B6500 and Illiac IV 
programs  within  the  same  job. 

The  ICL allows the user to construct  a  simple  operating sys- 
tem appropriate  to each of his jobs.  The Illiac IV  operating  system 
then  allows  each of these  “job-operating  systems” to overlap  each 
other  in  their utilization of time  and  resources. It also  encourages 
the division of the  job  into manageable  modules, thus making it 
more resilient to hardware  and  software  malfunction. 

The present  operating  system  can  undergo  considerable  de- 
velopment  with the present  hardware  configuration.  Apart  from 
simply  enhancing the existing  code and making it part of the Bur- 
roughs  MCP,  many of the  file-conversion  modules and  the disk 
allocator, whose operations  are  inherently parallel, may be  moved 
to  the Illiac IV array.  Preparation  for  this  work is  well underway. 
Major  changes in operating  philosophy,  however, are best left 
until hardware  performance  has been evaluated in the real world. 

D .  Languages 
I) Background: The strategy  adopted in language  development 

for Illiac IV was more liberal than  that  adopted  for  the  operating 
system.  Apart  from the assembler,  three  “higher level languages” 
were attempted.  Two  survived  to be usable. The  problem of defin- 
ing  requirements  for the languages was more difficult than  that 
of the  operating  system,  where user habits  and needs  were fairly 
well understood. 

The first major difficulty is that of formal  representation. 
Fortran, Algol, and  other numerically  oriented  higher level lan- 
guages are based  primarily  upon  traditional  mathematical  formal- 
ism.  However,  there is no comparably  suitable  formalism that  can 
be easily used as  a  basis  for  describing the kind of operations  that 
Illiac IV  does easily and,  at  the same  time,  can be extended to a 
truly  nontrivial set of array or matrix  operations. For while  vec- 
tor  and matrix  operations  such  as  addition  and  multiplications by 
a  scalar  quantity  are trivial to implement,  matrix  multiplication 
and inversion  require  reasonably sized subroutines.  In  addition, 
in  the field  of partial differential equations  the  large  number of 
treatments of boundary  conditions,  discontinuities,  and  other 
special  cases  have  presented  a  variety of approaches  that  has  only 
recently  been attacked  from  the higher level language  point of 
view [12]. 

The second  problem is that Illiac IV can be fiendishly difficult 
to  program  properly if one  does  not  banish  nearly all serial ma- 
chine  preconceptions and  habits.  Realizing  this,  the  language 
designer is faced  with choosing between completely  disguising the 
architecture of M a c  IV, thus helping  the  programmer by doing 
quite  a  lot of dirty housekeeping  for  him, or fearlessly exposing 
the  architecture of Illiac IV,  thus in all probability,  forcing  the 
programmer to rethink his algorithm in Illiac IV  terms.  The first 
approach was applied in the design of the  Tranquil  programming 
language,  the  second in Glypnir.  The  nature  and success  of each 
project will  be discussed  later. 

The  third problem  was  the  unexpected amount of code that 

had to be  produced for any given problem, and  the difficulty of 
optimizing  this  code  automatically.  A  study of Illiac IV  assembler 
codes  indicates that  for every  arithmetical  operation  (including 
fetch and store), at least two  others  were  required to direct and 
define  the  scope of the  arithmetic  instructions.  About  half of these 
extra  instructions were CU instructions  setting  up  loops,  con- 
stants,  administering ADB  storage,  and  storing stacks of.mode 
patterns.  The  other half  were concerned with mode-pattern  calcu- 
lation.  Thus it was  difficult to see what efficient code  generation 
meant  for Illiac IV,  and  to make  allowance for  it, especially in 
view  of the  fact  that  Tranquil  and  Glypnir  were being imple- 
mented  before  the Illiac IV  instruction  code  had  been finalized. 

In this latter  respect, it may be  interesting to  note  that all com- 
pilers were designed to translate  source  code  into Illiac IV  assem- 
bler code.  This will make the compilers  themselves  more resilient 
in  the face of machine  modification, and  also,  since  neither of 
the higher level languages do any  automatic  optimization, give 
the enthusiastic user a  chance to optimize his own code  should 
he wish to  do so. 

The Illiac IV  assembler [ 131 is fairly conventional  as  assem- 
blers go nowadays. It has  a very sophisticated  macro-definition 
facility which may  be  used to include standard  I/O facilities and 
other communications  with  OS4. It also  has  “pseudo  operations” 
to help  with  storage  layout and  PE address  allocation, of which 
there  are  four  types: syllable (half-word)  addresses,  word ad- 
dresses,  row  addresses, and 1;’O word  addresses. All of these  may 
be used by some  instructions. 

Before embarking  upon  a  more  detailed  discussion  of  the 
Illiac IV  higher level languages, it is worth  pointing out  that  their 
differences  with  existing  languages  center around  the following 
subjects. 

1) Storage  allocations  in  a  two-dimensional  store. The  “nat- 
ural’’ method of addressing PEM is by row (or 64  words).  Single 
words of PEM  may be addressed  individually.  However,  a  “col- 
umn,”  that is, a  group of words in the  memory of a  single  PE, may 
not bk addressed  as  a  group. 

2) The expression of parallelism and  mode  control. To a 
certain  extent,  a  vector  may  be  the  natural  expression of paral- 
lelism, and Illiac IV  languages  should in some sense  be able 
to allow  operations on vectors or rows of matrices. The length of 
the vector and  the elements  within it to be operated  upon  are 
defined by the mode  pattern. Illiac IV  languages  should  allow 
efficient and comprehensive  calculation and manipulation of 
mode  patterns. 

3) The expression of routing  and  indexing.  The  language 
should  allow  reasonable  expression of routing,  and of indexing 
by a different amount in each PE. 

2) Tranquil: The first Illiac IV  language  attempted  was 
“Tranquil” [14], an Algol-like  language entirely independent of 
machine  organization.  It was designed to allow  programmers to 
operate on arrays of data in a  simultaneous way. An  algorithm 
may  be  viewed as  being  applied to  any set of elements of an  array 
at  the same  logical  time, thus often  allowing  a  programmer to 
avoid  thinking  about  such details as  how to index through an 
array  and  which  elements to save in temporary  arrays. 

The  Tranquil  compiler  was  brought to a fairly advanced state 
of completion  when  experience  with the object  code  indicated 
that  the overhead  involved in completely  masking the machine’s 
architecture was too high in relation to the users’ demand  for fast 
execution of their  programs.  This was not  just  a  matter of the 
payoff  between the cost of programming  time  and  execution  time, 
but of making  existing  programs, whose execution  times  for 

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore.  Restrictions apply. 



380 PROCEEDINGS OF THE IEEE, APRIL 1972 

proposed  problems were unfeasibly  long on existing  equipment, 
run in a realistic time on the Illiac IV.  Users were thus  prepared 
to  do a  certain  amount of reprogramming in, say, Fortran  and  to 
restructure  their  algorithms to suit Illiac IV  architecture,  but  they 
were unwilling to reprogram the whole  problem  in Illiac IV 
assembler. 

As it seemed unlikely that  Tranquil  could be made sufficiently 
efficient before the machine was then  projected to be delivered, 
work on Tranquil  was  halted,  and  the  job of providing an ex- 
tended Fortran was  begun.  However,  Tranquil  should  not  be 
shrugged off. It represents the level of language that  implementors 
would like to provide.  Continued  experience  with  extended 
Fortran  has  shown, moreover, that  the inefficiencies of  Tranquil 
could  have been remedied with time, and  that with slight modifica- 
tion  to  the  language,  Tranquil  could  have  become  a  viable  and 
extremely  interesting and useful Illiac IV  language. 

3) Glypnir: Glypnir [15], [I61 is also an Algol-like  block 
structured  language  and  in  many  ways  an Illiac IV  equivalent of 
Burroughs B6500  Algol in the sense that it  was written to allow 
the knowledgeable  user to exploit Illiac IV  architecture to con- 
siderable  advantage. 

Progam data types or procedures may  be declared as being 
either CU or PE variables. In  the first case, they refer to  one 
%bit  value  corresponding to  an Illiac IV  word, and in the second 
case,  they refer to a  row of Illiac IV  words and  thus may  have  up 
to 64 different values  simultaneously.  Boolean  values,  however, 
are neither CU or PE variables  but refer to 64 true-false  values. 
Thus .a Boolean  variable is said to be TRUE when all its con- 
stituent bits are TRUE and FALSE when all its constituents  bits are 
FALSE. Two  extra  operators, SOME and EVERY, are used to provide 
a  bridge between word and bit level  logic. 

All arithmetic  operations  are  carried  out  under  the  control of 
a MODE pattern.  The MODE allows the 64 truefalse values of a 
Boolean to be associated with each of the PES. When  a bit of the 
MODE pattern is TRUE, the corresponding PE is enabled and may 
thus  deliver the results of an operation. 

The  Glynpir  expression A :  = B * C; ,  where A,  B, and Care PE 
variables,  means that each  value of A is multiplied by C and de- 
livered to A for each  enabled PE. If C were a CU variable, it 
would be repeated 64 times in an invisible PE variable  before  the 
statement was evaluated. 

Special facilities exist to allow the  rotation  and  shifting of 
rows to  the right and left, in  a way similar to  the  more familiar 
operations  conventionally  carried out  on words, thus allowing 
the  “route” instruction to be utilized. 

FOR and IF statements  are  also  provided,  but  often give un- 
conventional results. For instance, given PE variables A ,  B, and 
C, the  statement 

IF  -4 > B THEK c : = -4 ELSE c : = B 
will deliver the maximum  elements of A and B to C, and may re- 
sult  in  both  the THEN and ELSE statements  being  executed. 

Glypnir will alow  the explicit inclusion  of  blocks of assembler 
language for  the  optimization of any  section of code, and also  has 
facilities within  the  language to refer explicitly to selected  hard- 
ware registers for  those  who wish to optimize  without  going into 
assembler  language. 

The language  has  now been in use  with the Illiac IV  simulator 
for over  a  year and  a considerable amount of useful  experience 
has been gained  from  it.  Projected  future  developments  include 
the  addition of a 32-bit mode and  the facility to allow  binding to 
separately  compiled  assembler,  Glypnir, or Illiac IV Fortran 
subroutines. 

4 )  Zlliac ZV Fortran: Illiac IV Fortran [17] was provided  more 
for  the  general Illiac IV  user than  for  the specialist. Glypnir 
demands  that  the  programmer  undertake  the detailed  supervision 
of storage  allocation  and  be  constrained to think  in  terms of 
Illiac IV  rows or vectors  of Illiac IV  rows. IUiac IV  Fortran allows 
the user to think  in  terms of rows of any length  in “straight”  and 
“skewed”  storage (see Section IV-B). Skewed  storage  allows  rows 
and columns to be accessed  with equal facility. 

In  order  to provide  mode  control, the  data  type BINARY has 
been  added to  the language  which  allows  arbitrary arrays of bits 
(or true-false values) to be declared  in  a way similar to arrays of 
LOGICAL values. 

The DO statement  has been extended to allow  parallel execu- 
tion of arithmetic  expressions, and  extra  constructs  have  been 
added to  the language to allow the shifting and  rotation of vectors 
and  array rows. 

The  only sigrulicant change  in  definition  applies to EQUIV- 
ALENCE and COMMON statements,  where the two-dimensional store 
of Illiac IV  imposes restrictions on the  usual serial definition. 
However,  as  these restrictions are  those  usually  forced  upon  the 
programmer by  ‘‘real’’ problems,  they  may  often be a  help 
rather  than  a hindrance. 

One very important  option allowed  in Illiac IV Fortran is that 
of taking an existing serial Fortran code with suitably  adjusted 
1/0 statements  and  running it on Illiac IV serially (in one PE) 
to test its validity before  incrementally  parallelizing  it. 

An Illiac IV  Fortran-to-Glypnir  translator  has  now been in 
use for  several  months and is considered to be very successful. 
Illiac IV Fortran exhibits  many of the  operational  features of 
Tranquil,  and  has benefitted  from  both the  Tranquil  and  the 
Glypnir  experiences. 

5)  Some  Other  Considerations: Because  of the  large  disk 
latency  compared  with  processing  speed,  the 1/0 software  for 
Illiac IV  languages  tends to be elaborate in order to enable  the 
programmer to synchronize his I/’O functions with  his computing. 
A considerable amount of disk  latency may be  removed by using 
the  elaborate disk-layout facilities provided by the  operating 
system.  This  latency  msy be reduced  further by the IjO intrinsics 
in  both  Glypnir  and IUiac IV Fortran. 

File declarations are modeled on those of the  Burroughs 
B6500, with the  option of implicit  buffering to a level  given by the 
user. The user  is also given the  option of driving  his program by 
I / O  interrupt.  At  a  lower level, standard assembler  macros pro- 
vide a  similar facility for  the  assembler  programmer. 

In terms of what  could  be  done, and, by analogy, has been 
done in producing  software  for  some serial machines, Illiac IV 
software  development is  still  very much  in its infancy.  While the 
present  software is more  than  adequate  to get a  considerable 
amount of useful work out of Illiac IV  for  a few years  after its 
completion  there are several areas where new work  would  pro- 
duce  valuable  payoffs. 

Illiac IV offers hardware facilities for  a  “32-bit  mode,” that is, 
the ability to store  and  operate  on  two 32-bit numbers of differing 
value  stored in one Illiac IV  word.  None of the present  compilers 
offer a 32-bit mode  as  a  complete  data  type  that  can be  used in 
harmony  with the 64-bit mode.  Work in this  area is continuing 
at  the University of Illinois, and consists  not  only of inserting the 
necessary  language  constructions  into the compilers and develop- 
ing the necessary standard algorithms,  but  also  bringing 32-bit 
user  experience to some sort of parity with 64-bit user experience. 
The effective  use  of a  32-bit  mode may essentially double  the 
power of Illiac IV,  but  much  remains to be done  before  patterns 
of effective use are established. 
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The  automatic overlaying of array  and  program segments is 
also  particularly important  in view  of the relatively small  core- 
storage  capacity of the Illiac IV.  This, of course,  impinges upon 
the  operating  system  as well as  the compilers, and  although 
automatic  overlay  has  always been desirable,  its  detailed investi- 
gation  has  always,  quite rightly, been  postponed until sufficient 
experience  with  existing  hardware  sheds  more light on its feasi- 
bility. At  present, the same effect  may be  gained by coupling  pro- 
gram  modules  together  with  a  suitable Illiac control  program, or 
by explicitly overlaying file segments  into  array  space. 

Lastly,  neither of the compilers  optimize  code  in the sense that 
they  scramble  instructions to make the best  use  of CU-PE  over- 
lap. Considerable  savings are envisioned  with this kind of 
optimization  but,  once  again,  this is  difficult to  do with  a  simula- 
tor which  takes no account of this  overlay. 

All the software  described in this  paper,  and much  more that 
is not,  has been tried by users  through  the  agency of simulation. 
The major  task of transferring  this  software to  the real machine 
still lies ahead,  but all of the software, especially the languages, 
has  gone  through  several  stages of appraisal  and  revision  in  the 
light of informed user comment.  It is hoped  that  this relatively 
conservative  software policy  will provide  a  usable Illiac IV  very 
soon  after  the  hardware is completed, and  a firm  base  for  a  more 
adventurous  second  generation of software. 

IV.  APPLICATIONS 
A .  General  Considerations 

Most of the  numerical  algorithms  available on conventional 
machines  cannot be readily  modified  for efficient parallel com- 
putations.  Two difficulties face  the users  of parallel machines. 
First,  algorithms  must be devised that  are suited to  the  array 
nature of their  arithmetic units. Second, data may have to be 
stored  in  highly  interleaved  memories so that  proper  combina- 
tions of elements are available  simultaneously at various  steps of 
the  algorithm. 

Fig. 5 illustrates that  Illiac  IV is designed to execute the  same 
instruction  streams  simultaneously on 64 data sets that  are  stored 
in separate  memories. Thus Illiac IV is  well suited to evaluate the 
same  function f on 64 sets of arguments,  provided  that  the  data 
base  from  which the  argument sets are  drawn  can be structured in 
a  certain  fashion. The  data base  must be distributed among  the 
PES so that  the  argument sets required in the  ith  evaluation of the 
functionfcan be stored  in  the ith memory or in a  memory that is 
“close” to  the ith memory. 

A primary  requirement for many of the time-consuming prob- 
lems in scientific computation is repeated  evaluation of the same 
functional  form on different argument sets. Consider the follow- 
ing  examples : 

I) Matrix-Mulriply: The elements zi of a  column of the  matrix 
Z =  A X  are  produced by forming 

J=1 

where xj are  the elements of the  corresponding  column  in X .  This 
requires  evaluation of the function 

n 

f(y, X )  = C ujsj 
i- 1 

where the  argument 0 1 1 ,  y2, + 9 , y n )  is repeatedly  replaced by 
(ail ,  ai2, * . . , ain), for i=  1, 2, . . . n. 

2) Solution of Simultaneous  Linear Equations: Using the 

Gauss-Jordan  method, the  dominant  computation is 

ai,’ = a . .  I J  - c J k J )  .a j = k > k + l > ’ ”  ’ n 

i = k , k + l , . . .  ’ n  

or repeated  evaluation off(x, y ,  c)=x-cy,  where the three-tuple 
argument (x ,  y ,  c) is repeatedly  replaced by (a+ akj, cj). 

3) Two-Dimensional Finite Difference  Schemes: An explicit 
scheme  for  solving the  “heat  equation” au,.’du = A2u is 

. . n+ l  = I (  . n + C(tli-l,jn + U i - l , j n  + U i , j + l n  

+ u i . j - 1 n  - 4 2 L i , j n )  

where n refers to  the nth  time  step. 
This  requires that 

&f(.r., y, Z! 1 I .  1 ’ )  c) = .r + c(l/  + Z + I I  + 1’ - 4.r) 

be evaluated  with  suitable  argument sets in which  x  takes on 
values of uij, and y ,  z ,  u, and u take on corresponding  values of  the 
“neighbors” of u;j .  

Note  that if one sampled the  instruction  stream  on  a  conven- 
tional  machine  during  execution of these  algorithms,  the  computa- 
tion offwould dominate  the  calculation.  For  these  illustrations, 
the  data base can be stored  among  the distinct PEMs so that  there 
is no difficulty in  accessing the  appropriate  arguments  and per- 
forming  up to 64 simultaneous  evaluations  off. 

The two  central  considerations in programming Illiac IV are 
1) the  exploitation of the simultaneous  arithmetic  capability, and 
2) the  distribution of operands in the memories so that  the re- 
quired  argument sets can be  accessed without  time-consuming 
rearrangement of storage.  Exploiting  simultaneous  arithmetic is 
generally  straightforward.  Often  cursory  inspection of  the  loops 
in  a  conventional  program will reveal  methods of utilizing the 
simultaneous  arithmetic feature. There  are cases where it is not 
straightforward, i.e., cases  where,  because of  data dependent 
conditions or other  considerations, it may be desirable to evaluate 
several different functional  forms fl, f2, . . . , fk in  different  PES 
at  the same  time.  This  can be accomplished  either by turning 
off groups of PES and sequentially evaluatingfi,f?, * . ,fk or by 
imbedding one functional  form fi in  the  instruction  stream of 
another  functional  form fi [18]. On a digital computer all func- 
tions, regardless of how  dissimilar their forms  are,  are  expressed 
as  sequences of fetches, stores,  and  arithmetic  instructions.  It is 
trivial to imbed the  evaluation off= xy in  the  instruction  stream 
calculating g=a+bc and  it is possible to imbed  the  evaluation 
offfg in the  computation h = sin (x). 

Memory  allocation is somewhat less straightforward.  Gen- 
erally if the  data base  for the  problem lends itself to representa- 
tion either in vector  form or in matrix  form  there are schemes for 
storing  the  vectors or matrices among  the 64 distinct memories 
which  preserve the topology or connectedness of the elements in 
the  data base  [19]-[22]. The  function  evaluation  involved  in 
example 3 requires that  the  PEM which contains  the  element uij 

also  have  easy access to ~ i , j + ~ ,  u ~ , ~ - ~ ,  ~ i + ~ , j ,  ui-1.j. There  are 
storage  schemes  which  ensure that access to  the “neighbors” of 
an element are always  convenient. Furthermore  there  are schemes 
which  allow  simultaneous  access of both  rows  and  columns of a 
matrix. 

The applicability of Illiac IV to large  problems  inscientific 
computation  has been studied  for  a wide variety of problems [23]. 
As one might  expect,  problems  have been found  which are ideally 
suited  for Illiac IV or which  can  be  made ideally suited  with very 
little modification to  the algorithms.  Problems  have  also been 
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TABLE I apQ(k+l) = ( k + l )  

ILLIAC APPLICATIONS AND EFFICIENCY 
aQP 

of Ak+l in (1) are eliminated. It can  be easily shown [25] that 
Applicable with High P E  Utilization Op,(k)  is  given by, 

Finite-difference  calculations  in  one,  two.  and  three  dimensions. 
Matrix  arithmetic. 
Quadrature  (including  fast  Fourier  transform). 
SgnaI processing. - 
Linear  programming  (this  application  could  drop to low PE utilization 

when 1/0 is taken  into  consideration). 

Applicable with Moderate PE Utilization 

Particle-moving  problems  (nonlinear  Monte  Carlo transport, etc.). 
Nonsymmetric  eigenvalue  calculation. 
Solution of linear  equations  and  matrix  inversion (if iterative  methods 

Solution of nonlinear  equations. 
Polynomial  root  finding (in some  instances,  this  application moves up 

are used this  application  could move up to high utilization). 

to high PE utilization). 

Applicable with Low P E  Utilizatiotl 

Inversion of tridiagonal  matrices. 
Table  lookup in large  unstructured  tables. 

found  which  can be adapted  for Illiac IV  at  some sacrifice in 
utilization of the PES, and some  problems  have  been  found  which 
defy modification to exploit the machine  architecture.  Table  I 
gives some  examples of types of calculations  which fall in  each of 
these  categories. 

It is not  uncommon to find that numerical  techniques which 
are generally  regarded  as  superior to others  for  conventional 
machines  might  not be superior  for  minimizing  execution  time on 
Illiac IV. For example,  in the  solution of linear  equations on a 
conventional  computer,  Gaussian  elimination  and  back  substitu- 
tion is generally  regarded  as  superior to the  Gauss-Jordan 
algorithm  because  there  are fewer arithmetic  operations  involved. 
However, on Illiac IV, the execution  time  required to solve  a  set 
of linear  equations  employing  the  Gauss-Jordan  algorithm is 
shorter  than  that  required for Gaussian  elimination and back 
substitution  because,  among  other  things,  the  back  substitution 
portion of the algorithm is essentially a  sequential  process. 

B. Two Example  Applications 
We shall close the  application section of the paper by con- 

sidering  two  sample  problems  in  the  area of matrix computation: 
Jacobi's  algorithm  for  finding the eigenvalues and eigenvec- 
tors of real symmetric  matrices, and reducing  a real nonsym- 
metric  matrix to  the upper-Hessenberg  form  using  Householder's 
transformations. 

I )  Jacobi's Algorithm for  Finding the  Eigenvalues and Eigen- 
oectors of a Real Symmetric  Matrix: In  the classical method of 
Jacobi [X], a real symmetric  matrix  can  be  reduced to a  diagonal 
matrix by a  sequence of plane  rotations, 

L 4 k + 1  = R ~ A ~ R I . ' !  k = 1, 2,  . . . (1) 

where A I =  A is the n X n  original  matrix, and each  rotation Rr 
differs from  the  identity  matrix  only in the elements, 

R ( I ; )  = R Q Q ( k )  = cos e p q ( k )  PP 

R PQ ( k )  = - R Q p ( k )  = sin O p Q ( k ) ,  p < q. ( 2 )  

By properly  choosing the angle OPQ(l') ,  the off-diagonal  elements 

where 

Restricting O P J k )  by I O p e ( k ) I  <?r/4, then  cos O p J k )  will always be 
taken  positive and sin O P J k )  will be of the  same sign as 
[2ap , (k) / (u~(k) -aq , (k) ) ] .  From  the definition (2) of the  rotations 
Rk we can see that only the rows and columns p and q of Ak are 
affected by the  transformation (1). Clearly the implementation of 
such an algorithm on a parallel machine  would be highly in- 
efficient. For, even if updating of the 2(n-1) elements (Ak+l is 
symmetric, and apQ(k+l)=O hence  need  not be computed) is per- 
formed  with all the PES working;  it  requires  only  one or two  PES 
at  the most to compute RPJk) and RpQ(k) .  

It is possible,  however, to modify  Jacobi's  algorithm so as to 
eliminate  more than  one off-diagonal  element  (above the  main 
diagonal)  per  transformation,  and  hence  make  the  method  more 
suited for parallel  computations (2). For example, for  a matrix A 
of an even order n= 4, if the  orthogonal  transformation R1 is 
chosen as 

where the RpJl)  for all the  pairs (p ,  q) are given by (2), then 
e,$) and eac1) can  be  independently  chosen  such that  the elements 
a#) and a3*(*) of A t = R I A I R l l  are  annihilated.  Similarly, by 
appropriately  choosing  the  elements of 

the elements aI3(3) and a24(3) of A3, and a14(*) and a d 4 )  of A4 are 
eliminated,  respectively.  Consequently,  after ( n -  1) transforma- 
tions  each of the +n(n - 1) off-diagonal  elements  (above the main 
diagonal)  has  been  eliminated  once,  each  transformation  elimi- 
nating n/2 such  elements.  Let each (n- 1) orthogonal  transforma- 
tion  be  denoted by a sweep;  then  for our specific example (n=4) 
the second sweep  will consist of the  orthogonal  matrices R4, Rb, 
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and Rs which have the same  construction  as R I ,   R ? ,  and RB, 
respectively, and so on.  Thus for  matrices of  even order (see [25] 
for the general case), the elements of each of the (n- 1) orthogonal 
matrices Rk within  each sweep are given  by 

~ , , ! k )  = ~ , , ‘ k )  = cos e p p ( k )  

where p and q are sequences defined as  follows. 

k = 1 , 2 , 3 , . . * , n / 2 - 1  
q = n / 2 - k + l , n / 2 - k + 2 , . . . , n - k  

(n-%+l)-q,  --k+l<q<n-2k 

a) For 

i n 
i) 

n-k-l<q. 

b) For 
k = n/2,  n,/2 + 1, . . . , n -  1 

q = n - I;, n - k + 1 , .  . . ,  (3/2)n - k - 1 

in, q<n-k+l 
p =  { 2 ( n - k ) - q ,  n-ki-l<q<2(n-k)-1 ( 6 )  

j(3n-2k-1)-qg,  2(n-k)-l<qq. 

The remaining  elements of Rk are, of course,  zero. For each k the 
angles Onq(l., are determined  such that  the elements u , ~ ( ~ )  are  an- 
nihilated  for all the  pairs (p ,  q). For example, for n = 8 and k = 4 
the  pairs @, q) are determined by (6): {(8, 4); (3, 5 ) ;  (2, 6) ;  
( 1 ,  7) 1, and R 4  is of the  form 

Let us consider  now the  implementation of this  modified 
scheme on a parallel machine. For the sake of simplicity of the 
illustrations we will assume that  the size  of the matrix is equal to 
the  number of PES,  and  furthermore we  will ignore  the fact that 
the  matrix is symmetric and hence we need  only operate  on  those 
elements on  and above  the  main  diagonal. Because each  row of 
the  matrix B=RkAk is obtained by summing  multiples of two 
rows of Ak, and each  column of AkT1=BRkt is obtained by sum- 
ming multiplq of two  columns of B, in order to minimize the 
number of idle PES in the  matrix  multiplication RkAeRkt, it  is 
essential to store  the elements of Ak such that each  row or column 
can  be  accessed withone memory fetch. This is achieved by stor- 
ing Ak in  the “skewed”  form. In such  a  storage  scheme we map 
the  array elements  into PEM  as follows: 

a i j  +row i, of I’E ( i  + j - 1 )  (mod X )  (8) 
where N is the  number of PES  being  used. For example,  for n = 8 
the elements of an 8 X8 matrix are  stored  as  follows: 

PE1 PE2 PE3 PE4 PES  PE6  PE7  PE8 
m. 
1 

2 

3 

4 

5 

6 

7 7.3 7 , 4  7 , 5  7 . 6  7 .7  

e 8 , 6  8.7 

Therefore,  denoting  each  element  eliminated  in  a given  sweep in Let us consider the  transformation A5=R4A4R4t  where R 4  is  given 
the  kth  transformation by the integer k ,  the  pattern of the  an- by (7). By routing,  the following  configuration  can be obtained. 
nihilated  elements  for  a  matrix of order 16 is 

PE1 PE8 PE7 PE6 PES PE4 PE3 PE2 * r  * 
$1 a35 33 26  =22 17 
(4) (4) ( 4 )  ( 4 )  .(4) ( 4 )  .(4) 

II (4) .(4) .(4) 77 55 66 
(4) 

However,  some of the PES  have to remain idle since  the  routing 
distances for all of the elements are  not  the  same. Now;from (3) 
sin O p q ( j )  and cos O p q ( j )  for  the  pairs ( p ,  q)  : { (1, 7); (2, 6); (3, 5 ) ;  
(4, 8) 1 are  computed simultaneously with roughly  half  the PES 

* l  being idle. Once all the  elements of R 4  are  computed,  the  matrix 
* multiplication R4A4R41 is performed with  all the PES  working. 
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PE 1 2 3 4 5 6 7 
L O C .  I 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

8 9 10  11  12  13 14 15 16 

15.13 15,14  15,15 15.16 16,13 16.14 16,15  16,16 13.13 

Fig. 12. Storage  scheme. 

For example, to compute  the first row of B = R 4 A 4 :  1) broadcast 
R11(4) and R,;(4) to all PES,  2) fetch the first row of A4 and multiply 
all its elements by RI1(4); 3) fetch the seventh  row of A*, multiply 
all its elements by R17(4), route all the elements of the resultant 
vector  a  distance of 2 to  the  right,  and  add  to 2). 

This  process j s  repeated until all the  rows are  computed.  Stor- 
ing  the  matrix B in the skewed form,  each  column of A5 is ob- 
tained by a  similar  process;  for  example the eighth  column of AS 
is obtained  as  follows: 1) broadcast -R4s(" and  to all PES; 
2) fetch the  fourth  column of B, multiply all its  elements by 

and  then  route  them  a distance of 4 to  the  right; 3) fetch 
the eighth  column of B, mdtiply all its elements by R d 4 ) ,  add  to 
2), and  store  in  the  same  locations of the eighth  column of A4. 

Assuming  that  the matrixA has  converged  (using  some cri- 
terion [24]), to  the  diagonal  form  after u sweepsor  afterrorthogo- 
nal  transformations,  where r = u(n - l), then  the  diagonal  elements 
of Aril  = WA W' are  taken to be the  eigenvalues. The columns of 
W'= V11V2' . . . V,,l are  the corresponding  eigenvectors,  where 
for thejth sweep 

T'j' = (R l l ) j ,  (R?') ,  . * * ( l ? n - l f ) j .  

2) Reducing  a  Real Nonsymmetr;ic Matrix to the Upper-Hessen- 
berg  Form: The second  example is that of reducing  a real non- 
symmetric  matrix to  the upper-Hessenberg  form  using  House- 
holder's  transformations [24]. Such  a  reduction  always  precedes 
the  application of Francis' QR transformations [26], [27] for 
finding the eigenvalues of a  nongymmetric  matrix. For  an n X n  
matrix the reduction is completed  in ( n - 2 )  steps, the  kth  of 
which is  given by 

,lk ~ 4 k - 1  - !*kpl ; '  - ( q k  - ( Y I ; U k ) l ' k f  (9) 

where k = 1 ,  2, . . . , n-2 and Ao= A is the  original  matrix, 

ukt = (0, . . . , 0, ak+l ,k  k St ,  a k + ? . k ,  - , a n d  

Sk = [ 2 a i , k q 1 i 2  
i=k+l  

p k l  = U k f A k - - 1  

y k  = ~ 4 k - l U k  

!'k = !lt/Sk(sk ak-l,k) (10) 
and 

(Yi = P k ' C k .  

This  reduction  requires  approximately (513 )  n3 operations.  From 
(9) and (10) it is clear that  the  major  computations involved  in 
each  step are  those of forming the vectors pk and q k .  For comput- 
ing pk ,  we would like to store  the matrix A k - I  such that we can 
access any  row by one  memory fetch, and similarly for  the col- 
umns  when  computing q k .  One  solution  would be to Store the 
matrix A in the skewed form described in the previous  example. 
However, since the  order of the remaining  matrix  under  operation 
is reduced by one  after  each  transformation,  then it  is highly  de- 
sirable to store A in such  a  form that we can  have  simultaneous 
access to each of the N elements of any .\/NXv'/N submatrix of 
A .  Here, N is the  number of PES of the parallel machine. Thus 
during  each  step we can  operate on any .\/\/NX dN submatrix  that 
does  not  contain  eliminated  elements, with none of the PES idle. 
For n =  N =  16, the  storage  scheme [28] is shown in Fig. 12. This 
storage  scheme  maps an element uij into  the  memory as follows: 

ai j  +row [d/vl<i - I ) / ~ @ J  + L(j - 1)/v'Zl + 11 
PE[{ ((i - 1) mod d?V)dT+ [(i - l),'d?Vl 

+ j - 1)  (mod d-6 + 11 (11) 

where [x] is the greatest  integer less than or equal to x. 
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Let us demonstrate  the  computations  involved in the first 
transformation ( k =  1). The elements ai,12 (i=2, 3, . * , 16) are 
obtained  simultaneously by one multiplication, while SI* in  (10) 
is obtained in log? 16=4 additions.  Evaluating  the square  root 
SI is,  of course, an inefficient operation  since  only  few  PES  can be 
used.  Obtaining  the  vectors u1 and cl is rather trivial. Now, if we 
observe that  the elements of each of the rows { 16, 12, 8,4;  15,11, 
7, 3; 14, 10, 6, 2;  13, 9, 5 ,  1 1 are separated by a  routing  distance 
of 1 from  those of the following  row,  then pl‘ = ultAo is obtained 
as  follows: 

1) broadcast  the  element u1,16=a1,16 to all PES,  fetch the 16th 
row of Ao, multiply all its  elements by a1,16, and  route  the  elements 
of the resulting  vector  a  distance of 1  to  the  left; 

2) broadcast uI.12=al. l? to all PES, fetch  the  12th  row,  mul- 
tiply all its  elements by u1,12, add  to  l),  and  route all the  elements 
of the  resulting  vector  a  distance of 1 to the left, and so forth  for 
the rest of the rows 8,4, 15, 11, 7, . . . , 1 in order until we obtain 
the row  vector pit. Similarly, we can see that  the column  vector 
ql= A0 u1 may be obtained  as  follows: a) broadcast u1.1 to all 
PES,  fetch the first column of Ao, multiply all its  elements by uI , l ,  
and  route all the  elements of the resulting  vector  a  distance 1 to 
the  right;  b)  broadcast ul.? to all PES,  fetch  the  second  column of 
Ao, and multiply all its elements by uI,?.  Add the elements of the 
resultant  vector to those of a),  and  route  thsm  a distance of 1 to 
the right. 

Repeating  the  process  for  the rest of the columns 3,4, . . . ,16, 
we obtain  the vector ql .  Thus  each  element of pl and q1 has  been 
obtained by 16  multiplications and 16  additions.  The  scalar c y I  is 
computed by one multiply and  log2 16=4 adds,  and  the vector 
wJl=ql-culul is computed by one multiply and  one  add.  Partition- 
ing  the  matrix A. into 4 x 4  submatrices  ARC]^. ( R ,  C= 1,2,  3,4), 
and similarly  partitioning  the  vectors cl, pl, and wlI into subvectors 
each of t ’%=4 components,  then (9) can be written  as  follows: 

for k = 1, 2, . . 9 , n-2.  Thus by properly  storing the vectors 
ci;, pk, and wk, all the  elements of each  submatrix [ A R C ] L  can be 
computed  simultaneously. 

The same  storage  scheme  can be used for  the  reduction of a 
nonsymmetric  matrix to  an upper  triangular  one  using  House- 
holder’s  transformations.  Such  a  reduction is  used in solving sys- 
tems of linear  equations. 

V. THE ARPA NETWORK 
A .  Introduction 

One of the unusual  things about Illiac IV  as  a new computer 
architecture is the fact that  there  elready exists a large  body of 
prohlems to be solved  for which Illiac IV is particularly well suited 
in terms of size, speed, and sophistication.  Additionally,  there is 
a  growing  community of scientists and researchers  located all 
about  the  country who are eagerly  awaiting the ability to use 
Illiac IV in solving  these  problems. 

It  became apparent in the mid  1960’s  with the  explosive 
growth and variety of computer  systems  and services being  de- 
veloped in the  country  that  some  means were going to have to be 
found in order  to couple  computer  systems  and  computer  users 
together so that unique  features at different sites could be utilized 

Fig. 13. ARPAnet. April 1971 

called the  ARPAnet.  The  ARPAnet  network  proposes to connect 
together, via high-speed data transmission lines, a  number of 
ARPA research  centers and projects  located all about  the  United 
States  [9], [3O], [31]. 

B. The Design 
Fig. 13  shows the  current  status of the  ARPAnet  as of April 

1971. Indicated  are the universities and research  centers  who are 
members of the  network  as well as various  computer  systems  that 
exist at each of those centers. Illiac IV is one of those  computer 
systems and will be located at NASA’s Ames Research Center, 
Moffett Field, Calif. 

The network itself  is a full duplex  high-speed (50 OOO bits s) 
data-transmission  network  developed by Bolt Beranek and New- 
man,  at  Cambridge, Mass2  The network itself  is a  store-and-for- 
ward  message-transmission  network  with  the  nodes of the  net- 
work  occupied by a  sophisticated  terminal  called the  IMP [32]. 
The  heart of the IMP is a  Honeywell  DDP-516  computer  which 
takes  care of such  tasks  as  error  control, message routing,  net- 
work  “tuning”  (adjusting its operation  to maximize  its efficiency), 
and statistics gathering.  Much  care  has  been  devoted  in the design 
and implementation of the network to insure an ultra-high level of 
reliability (currently no  more thsn  one single bit error  per  year 
should go undetected). By the store-and-forward  mechanism, 
error  control is implemented by retransmission of a  message or 
section of  message on which an error was detected. Error correct- 
ing  codes are  appended  to each message to allow the detection of 
a wide class of errors  and  contribute  to  the reliability of transmis- 
sion. All of the  IMPS  are passive devices in  that they  perform no 
other service  besides message routing  and  control. 

At  any given node  in  the  network,  one or more  HOST  com- 
puters may be attached  providing  a service center or research 
project with  access to the network.3 The  connection between a 
HOST  and  the  IMP is made  over  a  high-speed  interface at 100 OOO 
bits s, full duplex.  Typical  HOST  computers in use around  the 
network are  the  DEC PDP-IO,  IBM  360,75,  IBM  360l91,  IBM 
360;67, and Burroughs B6500. While  most of the  HOST  com- 
puters are associated  with specific projects  sponsored by ARPA, 
several  locations  are  designated  as service HOST sites. For  in- 
stance, the 360191 at  the  Campus  Computing Network at  the 
University of California at Los Angeles (UCLA) is available on 
the  network  most of the time  for use as  a general  computing ser- 

by people  other than  at  that site, and in this way sharing of mutu- 
ally beneficial could be to provide * Full duplex  means  that the user  has the ability to send  and  receive 
economical and  convenient ability to solve [29]. A simultaneously--as Opposed to where the user can Only he 
prodigious  experiment to this end  was initiated by the  Advanced 3 HOST refers to a computer  system  capable of supplying a full 
Research  Projects Agency  of the  Department of Defense and is range of computer  services to users on the  network or at that site. 

sending or receiving at any instant in time. 

Authorized licensed use limited to: The University of Auckland. Downloaded on May 27,2010 at 01:22:55 UTC from IEEE Xplore.  Restrictions apply. 



386 PROCEEDlNGS OF THE IEEE, APRIL 1972 

vice. Several other places, the University of California  at  Santa 
Barbara  (UCSB),  Bolt  Beranek  and  Newman  in  Cambridge, and 
Massachusetts  Institute of Technology’s  Multics  system  also  serve 
as  HOST sites providing capabilities and services praticular to 
their installations and  computer  systems. 

C. The Tower of Babel 
The  current conceptionalization of the  ARPAnet  presents, 

what  some  people call, “the Tower of Babel”  problem in com- 
puter  resource  sharing.  One  can easily  see that  there  are  a  wide 
variety of computer  systems in geographically  distant  locations 
involved in many  dissimilar projects, all speaking  a  variety of 
computer  languages.  While it was easy, relatively speaking, to 
bring  up the  hardware  portion of the network, i.e., design and 
build  IMPs,  establish  phone line connections  for  the 50 000-bits/s 
transmission lines, etc., much effort has been expended in trying 
to solve the “software”  problem of the  network;  in  other  words, 
how  does  a  human user talk  to a  remote  HOST  computer  system, 
and also  how  does  each  HOST  system  talk to  the  other remote 
HOST  systems? 

For several years  now,  a  collection of representatives from 
each site has been periodically  meeting and corresponding  with 
each other  to design and implement  a series of protocols  (pro- 
cedures) which  lay down  the  ground rules of access and conversa- 
tion between  people and  computers on  the network. The most 
basic of these  protocols is the IMP  to HOST protocol.  This  proto- 
col contains the procedures by which  each  host  talks to its IMP 
and  data  and  routing  information  are exchanged. 

The next  level  of protocol is that of HOST-to-HOST  com- 
munication [33]. This  protocol  contains  the  procedures  and 
ground  rules  for  information  transfer between HOSTs  and in- 
corporates  such  features  as  connection  procedures,  space  alloca- 
tion, flow control,  error  control, etc. The  HOST-to-HOST  proto- 
col  was, in fact, the  most difficult protocol to develop  since it 
deals  most closely  with the specifics and idiosyncracies of the 
various  computer  hardware  configurations  and  their  respective 
operating  systems. 

Once the  HOST-to-HOST  protocol was formulated,  a  number 
of applications  protocols  have  followed.  These  protocols in 
general  allow the  proper use of the  HOST-to-HOST  protocol by 
systems and applications  programs  desiring  network  access. The 
most  important of these is the initial connection  protocol  which 
allows the establishment of a  full-duplex path of transmission 
between  two  systems or programs on the  network.  This  protocol 
in general is masked  from the user and is handled  automatically 
by the network  control  programs in the  HOST sites. 

For transmission of data  on  the  network,  there is the data- 
transfer  protocol which  is concerned with the transmission of 
large  blocks of data  from  point to point. Since most  computer 
systems  treat  these  large  blocks of data  as files and have  various 
and  elaborate file naming and access  mechanisms  implemented 
for the  handling of these files, there is also  a file-transfer protocol 
which facilitates the  handling of files  between arbitrarily  different 
systems on the network and allowing the mapping of their  naming 
and access conventions. In  addition to  the variances  in  naming 
and access, there is the  data  formatting  problem which exists in 
data transfers. The  approach  taken  to solve  this  problem was to 
develop  a data reconfiguration  protocol and  supporting  systems 
whereby the user  may  specify a  transformation  function on his 
data  string.  He passes it through  a  reconfiguration  service  moving 
it from  the sending site to  the receiving site satisfying the  format 
constraints  at  both sites. An  example of this might be the conver- 
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Fig. 14. Projected ARPAnet, April 1972. 

sion of a 36-bit floating-point format  for  the PDP-10 into a  #-bit 
floating-point  format for  the  Burroughs B6500. 

Most activities on the network for  the individual user will be 
accomplished in a  remote-access  manner to  the various  time-shar- 
ing  systems on the network.  Since  there is a wide  variance in  the 
types of terminals that exist on the network,  a  terminal  network 
protocol (TELNET) was  developed  which  attempts to mask all 
terminals into a  network  virtual  terminal,  pass the  streams of data 
and  control between that terminal and remote sites in both direc- 
tions,  then  unmask  the  network virtual terminal at  the receiving 
site into  the  form best desired by that site. For example, both 
Teletype  terminals (33,  35,  37) and  IBM 2741 terminals  may  have 
access to programs  which  expect  one or the  other  of  those termi- 
nals, both with equal facility. 

The  TELNET protocol  handles the usual  alphanumeric and 
hard-copy  terminals  but does not  handle  the  graphics  terminals 
such  as  storage scopes or refresh  graphics  display  terminals. To 
that  end,  a  graphics  network  protocol is under  development at 
this  time.  Results so far  show,  however, that a unified approach 
to  the  entire problem of graphics  display and  interaction is prob- 
ably  not feasible. Indeed,  there may eventually be several proto- 
cols at various levels dealing  with  various  classes of graphics  de- 
vices and  various  modes of graphics  display. 

D. Expansion Plans 
With the initial success of the  protocol efforts, the second 

phase of network  development  has  been  entered. During  this 
phase,  additional  nodes will be added  to  the network.  These 
nodes,  however, differ  widely from  the  IMP of the initial configu- 
ration.  These new nodes  provide  for  connection of terminal  hard- 
ware directly to  the network and, therefore, are called  terminal 
IMPs or TIPS.  A TIP is a  parasite  node  and provides no service 
capability to  the network on its own. Users attached  to  the net- 
work  via a TIP must  derive all of their  computational power and 
service  from  remote  HOSTs on the network. Thus  the second 
phase of network  development sees the  introduction of  user 
oriented  groups to complement the present  research  and service 
organizations.  Fig.  14  depicts a projected  arrangement of the 
network and its members  as of April 1972. 

In addition to  the  TIP,  an effort has been  underway for  some 
time at  the University of Illinois to develop  a  “mini HOST” com- 
puter  system  based on  the configuration of a  small  minicomputer 
(DEC PDP-11)  acting as a full cpacity HOST (from  the  protocol 
standpoint)  and  attached to a standard  IMP or a TIP.  The PDP-11 
based  system  (called the  ARPA network  terminal  system or 
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ANTS)  serves essentially the same  functions  as  a TIP. However, 
with  the splitting of the network  node and terminal  functions  into 
two  separate  computers,  and  providing  additional  capability  in 
the PDP-11  in the  form of a disk, a  wider  variety of peripherals, 
more  memory,  etc.,  a  limited amount of on-site  processing  power 
is provided for  the user to  do housekeeping  functions  such  as  net- 
work  accounting,  on-site  card  deck-to-printer listings, data  stor- 
age on magnetic  tape and disk, etc., and  to  provide him  with  a 
higher level interface into  the various  protocol  stresms  which will 
be directed to  and  from his site. 

E.  Promising Results 
A  prominent  example of network  usage  during its earliest im- 

plementation  phase,  when  a  subnet  comprised of University of 
Utah,  Stanford,  UCLA,  and  UCSB existed for a  short time,  oc- 
curred  during  the  development of Stanford  Research Institute’s 
SRI’s Intellect Augmentation  research project. SRI  had been  using 
an XDS 940 computer to service  their  documentation  aids and 
support  system.  During 1969-1970, they  were in the process of 
selecting and moving to  a new central  processing  system to sup- 
port  that effort, a  Digital  Equipment Corporation PDP-10. 

Prior to receiving  their  system, SRI had  good  contact  with  the 
University of Utah’s  graphics  research  project  who  already  had. 
a  PDP-10.  After  the initial subnet  implementation was completed, 
the  SRI  group  had  remote access to Utah’s  PDP-10 on which  they 
began the  conversion of their XDS 940 systems  programs.  The 
use  of this subnet to connect  their  terminals and  hard-copy de- 
vices (printers, etc.) to  the  Utah  PDP-10 system,  as if they were 
at  the  Utah site, enabled the systems  programmers at  SRI  to com- 
plete  their initial conversion  project in  less than half a  year.  Activ- 
ities during  this  time  included  remote text editing, compilations 
of systems  programs,  debug  executions,  and  subsequent  shipment 
of printer listings, debug results, etc.,  back to SRI for listing on 
their  printer. 

As an example of the  more  current  type of operation on  the 
network,  the  UCLA IBM 360  91 computer  system  at  the  Campus 
Computing  Network  division  has been  selected for  inclusion in  the 
network  as  a  major  service site. Software  development on  the 
360,91  has been directed  mainly at providing  capability for any 
remote user to access UCLA  and  obtain  the  standard services 
provided by the OS 360 system. The most prominent  feature of 
this  implementation is the  remote job entry (RJE) capability 
where  a given site can  supply an  input  device,  a listing output 
device and  a  punch  output device plus  a  full-duplex  operator‘s 
console, and bind  these all together via the  network to the 360 91. 
allowing  submission and control of batch-type  jobs  for  the OS 360 
system. A number of people at  Rand  Corporation have been op- 
erating  from  Rand  to  UCLA in this manner for some  months 
now and their success is highly  promising. 

Since  any  one of the  TIPs or the  “mini-host”  PDP-11  terminal 
systems  can  provide RJE capability,  the  group of  users who need 
and can  gain access to large  computer facilities such  as  the model 
91  is greatly  expanded.  At  costs in line with  many RJE terminal 
systems on the  market  today,  these users gain  high-speed  access 
and wide  ranging services. 

Finally, an example of the use  of the network in the  future 
when a  large  number of TIPs and PDP-11  “mini-host’’  systems 
will be attached is a  research effort to be undertaken  at  the  Na- 
tional  Bureau of Standards.  Using  the  ANTS  “mini-host” sys- 
tem,  researchers  at the  National  Bureau of Standards site intend 
to  do performance-measuring  research utilizing the network  as  a 
test bed.  Such  areas  as the performance of remote access to  and 
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from  various sites on  the  network, performance  measurement of 
activity between sites on the  network both  at  the user  level and  at 
the  system level, and simulation of activity sequences to  obtain 
normalized  measurements of the response and processing activi- 
ties of the various sites will  be investigated. 

F. ILLIAC IV Approaches 
In 1972, Illiac IV will join  the  ARPAnet to  provide it with 

one of its most  powerful  service sites. Users of Illiac IV will also 
heavily  access the mass data storage  system  (laser-memory  data 
computer)  to  aid  them in preparing  and  processing  the  gigantic 
amounts of data  and  enormous problems  which  they will attempt 
to solve utilizing Illiac IV.  Conversely, the  future  development of 
Illiac IV appears  to benefit from the network  in  two ways. First, 
there  are  quite  a  number of people  located all over  the  country 
who need direct access to Illiac’IV for  their  particular  applications 
and  the  network  provides  a very economical  framework  in which 
to dispense this service. Secondly,  network users represent  a  large 
body of technical  knowledge  and  experience  in  the  craft of com- 
puter  systems  building, and  the  development of Illiac IV should 
be  very much  enriched by being  placed  within  this flow of knowl- 
edge  throughout  the  ARPAnet  community. 

G .  The  Future 

Up  to now,  concern  has been with  the  network itself, its con- 
cept,  and physical manifestation.  Now that  the first edition is out, 
efforts will be directed at developing  applications utilizing the 
diverse capabilities of. the  member HOST systems and  the intel- 
lectual community  surrounding  them.  The  keyword of the  future 
will  be sharing. 

Hardware,  software, and expertise will be the first sharable 
quantities. Initially their forms will be traditional,  the  large 360191 
at  UCLA  as  a service facility, for  instance.  Specialization will then 
set in yielding  network usage  of particular  specialized  functions 
at several sites in the  solution of individual  problems.  Systems 
will subdivide to subsystems and  programs, evolving to a  veritable 
smorgasbord of hardware  and  software  problem-solving  tools. 

Data  sharing will  become prominent.  Specialized data bases 
ail1 appear  as  a  function of the growing  needs of users of the net- 
work and  their  freedom of access to remote  network  resources. 
Library and  documentation  production retrieval systems will 
evolve to enhance  and  extend  the intellectual capabilities of net- 
work  researchers. 

In  the  end,  the  network  as  a  concept may foster  a new intel- 
lectual revolution  as it multiplies the number of minds and tools 
which  can be applied to specific research projects. As one of the 
first, the  ARPAnet  should  occupy  a classical position in the  evolu- 
tion of computer  systems  and  applications technology. 
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