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Abstract

The HEP computer system is a large scale scientific parallel computer employing shared-
resource MIMD architecture. The hardware and goftware facilities provided by the system

are described, and techniques found to be useful in programming the system are also
discussed.

Introduction

! is a large scale scientific parallel computer employing

The HEP computer system
shared-resource MIMD architecture2. 1In this particular implementation, the processors are

pipelined to support many concurrent processes, with each pipeline segment responsible for
a different phase of instruction interpretation. Each processor has its own program
pemory, general purpose registers, and functional units; a number of these processors are
connected to shared data memory modules by means of a wvery high speed pipelined packet
switching network, The extensive use of pipelining in conjunction with the shared
resource idea is synergistic in several useful and important ways, and results in a very
flexible and effective architecture. For example, the switch used to interconnect pro-=
cessors and memories is modular, and is designed to allow a given syastem to be field-
gexpanded. The increased memory access times that result from greater physical distances
can be compensated for by using more processes in each processor because the switch is

pipelined.

An overall bleck diagram of a typieal HEP configuration is shown in Figure 1. The
switch network shown has 28 nodes; it interconnects four procesasors, four data memory
modules, an I/0 cache module, an I/0 control processor, and four other I/0 devices.
Systems of this kind can be built to include as many as 16 processors, 128 data memory
modules, and 4 I/0 cache modules. Each processor performs 10 million instructions per
gecond (MIPS), and the switch bandwidth is 10 million 64 bit words per second in every
network link. Data memory module bandwidth is 10 million &4 bit words per second, and
each I/0 cache supports seguential or random access I1/0 at sustained rates of 32 million

bytes per second.

software architecture of the

The remainder of this paper discusses the hardware and
followed

system. An overview will be given of each of the major components of the system,
by a programmer's view of the facilities provided by these components.

Processor and data memory

A simplified diagram of the HEP processor internal organization is shown in Figure 2.
The process status word (PSW) contains the program counter and other state information for
a HEP process; these PSW's circulate in a control loop which includes a gqueue, an incre-
menter, and a pipelined delay. The delay is such that a particular PSW cannot circulate
around the control loop any faster than data can circulate around the data loop consisting
of register memory and the function units. As the program counter in a circulating PSW
increments to point to successive instructions in program memory, the function units are
able to complete each instruction in time to allow the next instruction for that PSW to be
influenced by its effects. The control and data loops are pipelined in eight 100 namo-
second segments, so that as long as at least eight PSW's are in the control loop the pro-
cessor executes 10 million instructions per second. A particular process cannot execute
faster that 1.25 million instructicns per second, and will execute at a lesser rate if

more than eight PSW's are in the control loop.

The PSW contains a 20 bit program counter to allew for program memory configurations
ranging from 32K to 1024K words. Each instruction in program memory is 64 bits long, and
typically consists of an opcode and three register memory addresses. These addresses can
be modified by the addition of an index value from the PSW to allow reentrant programming.
The register memory consists of 2048 general purpose 64 bit registers, augmented by a 4096
location constant memory. Constant memory may only be modified by supervisor processes.
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One of the function units, the scheduler function unit (SFU), is responsible for imple-
menting load and store instructions to transmit data between register memory and data
MEMOTY . When such an instruction is executed, the S5FU sends a switch message packet
containing a 32 bit data memory address, a return address identifying both processor and
process, and 64 bits of data {f a store instruction was executed. The S5FU also removes
the process that executed the instruction from the control loop, and does not reinsert it
until a response packet is received from the switch. When that response packek arrives,
the SFU writes the data portion of the response in the appropriate register if a load
instruction was executed. In order to perform these functions, the 5FU is equipped with a
gueue similar to the queue in the control loop of the processor proper, and a process
migrates freely between these two gqueues as it initiates and completes data memory refer-

ence instructions.

The wvarious function units of the HEP processor support the data types shown in Figure
3. The floating point formats are sign-magnitude and use a seven bit, excess 64 hexa-
decimal exponent. Integer formats are twos complement. The wvarious precisions for each
data type are implemented by loading and storing partial words in data memory using either
the leftmost or rightmost part of .the register. In addition, load instructions can
specify sign extension instead of zero extension for right justified partial word load

instructions.

The floating point operations implemented by the processor are floating point add, sub-
tract, multiply, divide, and floating point compare instructions that optionally produce
integer 1, floating point 1.0, or a 64 bit vector of all 1's as "true® values and zeroc as
"false” values. Unnormalized Floating point add and subtract are also implemented, as are
conversion instructions between floating point and integer (the Fortran functions FLOAT,
INT, and AINT). Integer functions are add, subtract, multiply, arithmetic shift, and com-
pare instructions analogous to those for floating point., Both halves of the 128 bit twos
complement product of two integers are available. Bit wvector instructions include all
sixteen Boolean functions, logical and circular shifts, instructions which return the
numeric bit position of the leftmost "1" or "0" in a register, and instructions which set
or reset a bit at a given numeric position in a register.

The control instructions available provide not only for the loading, storing and modi-
fication of the executing P5W to implement conditional branches and subroutine calls, but
also for the conditional creation and termination of processes. These latter functions
are performed by ordinary (unprivileged) instructions, and allow the user to control the
amount of concurrency with very low overhead. A supervisor call instruction allows user
processes to create supervisor processes, which in -turn may execute privileged instruc-

tions to manage the user processes and perform I/0.

Cooperating parallel processes must have some way of synchronizing with each other to
allow data sharing. 1In HEP, this facility is provided by associating an access state with
gach register memory and data memory location. Iin data memory, the access states are
"full”™ and "empty®; a load instruction can be made to wait until the addressed location is
"fyl1”" and indivisibly (i.e., without allowing an intervening reference to the location)
set the location "empty™. Similarly, a store instruction can wait for "empty" and then
set "full" at any location in data memory. In register memory, an instruction can regquire
that both sources be "full®™ and the destination "empty", and then set both sources "ampty "
and the destinationm "full®. To ensure the indivisibility of this kind of operation, a
third access state, "reserved”, is set in the destination register location when the
source data are sent to the funetion units, and only when the function unit stores the
result is the destination set "full®™. No instruction can successfully execute if any of

the registers it uses is "reserved”.

A process failing to execute an instruction because of improper register access state
is merely reinserted in the gqueue with an unincremented program counter so that it will
reattempt the instruction on its next turn for execution. A process executing a load or
store instruction that fails because of improper data memory access state is reinserted in
the SPU gueue and generates a new switch message on its next attempt.

One simple way to exploit the parallelism available in HEP is to run several inde-
pendent programs simultaneously. To protect independent programs from each other, base
and limit registers in program memory, register memory, and data memory are associated
with processes., A set of processes having the same protection domain (the same base and
limit register values) is called a task. HEP support up to seven user tasks and seven
corresponding supervisor tasks in each processor. When a usSer process executes a create
instruction, the new process runs in the same task as the originating process; privileged
instructions exist to allow supervisors to create processes in any task or te kill all of

the processes in a task.
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A HEP job consists of one or more tasks, normally intended to execute on a like number
of processors. The tasks making up a job have disjoint allocations in program and regis-
rer memory, but an identical allocation in data memory to allow them to share data and
synchronize. Supervisor calls are used by a process in one task to create a process in &
different task of the same job. When a job is submitted to the system, the user specifies
the maximum number of processes that will ever be active in each task; the operating
system only loads the job when it can guarantee that there are enough processes available
in esach processor., The maximum number of user processes supported by a processor is 50,
and these may be distributed in any way whatsoever among the seven (or fewer) user tasks.

Switch

The HEP switch is a synchronous, modular packet switching network consisting of an
arbitrary number of nodes. Each node is connected to its neighbors (which may be pro-
cessors, data memory modules, or other nodes) by three full=duplex ports. Each node
receives three message packets on each of its three ports every 100 nanoseconds, and
attempts to route the messages in such a way that the distance from each message to its
addressed destination is reduced. To accomplish this, each node has three routing tables,
one per port, which are initialized when the system iz initialized. The tables are
indexed by the destination address and contain the identification of the preferred port

cut of which the packet should be sent.

When a conflict for a port occurs, the node does not engueue Mmassages; instead, it
routes all messages immediately to output ports. It is the responsibility of the neigh-
bors of the node to make sure that incorrectly routed messages eventually reach their
correct destinations. To help accomplish this, each message contains a priority which is
initially 1 and is incremented whenever a message is routed incorrectly. In a conflict
between messages of differing priority, the message with the highest priority is routed
correctly. As a consequence, devices connected to the switch must immediately reinsert
arriving messages not addressed to them in prefaerence to inserting new messages.

Empty messages are just those of priority zero; zero priority messages do not increase
in priority and always lose conflicts. Also, since the ports of the switch nodes and the
devices connected to it are full duplex, an Eulerian ecircuit of the switch is guaranteed
to exist. Such an Eulerian circuit traverses every port exactly once in each direction.
Packets with the maximum priority of 15 are sent on such an Eulerian circuit, independent
of destination address, to ensure that no conflicts between two of these mesgages oCCUr.
When a priority 15 message eventually reaches ite addressed destination, it is recognized
and removed from the switch in the normal manner. Like the routing table data, the Euler-
ian cirecuit information is loaded into each switch node when the system is initialized.

gach switch node checks the parity of the incoming messages, and alsc checks that the
routing it performs is a permutation of the ports, If a check fails, the switch node
signals the diagnostic and maintenance subsystem of the HEF that an error has occurred.
The failing port or node, or a failed processor or memory for that matter, can be removed
from the system just by reprogramming the routing tables to reflect the reduced config-
uration. To avoid splitting the system in half, the graph of the switch must be at least
biconnected; that is, there must exist two disjoint paths from any node to any other. If
the port connecting a processor or & memoty to the switch Ffails in either directicn, the
effect is the same as if the processor or memory itself fails.

in the switch is 50 nanoseconds for each port
traversed. The pipeline rate is one message per 100 nanoseconds per port. To ensure that
mesgage routing conflicts are synchronized, the switch must be two-colorable, so that
megsages conflict at nodes of one coleor on even multiples of 50 nanoseconds and at the
other color on odd multiples. Excepting this constraint, the graph of the switch is
totally arbitrary. Adjacent nodes may be separated by up to four meters of connecting
wire to allow a great deal of flexibility in system configuration. A HEP system may be
field-expanded by adding processors, memories, and switch nodes up to the maximum allowed.

The propagation delay for a message

I/0 facilities

The HEP High Speed I/0 Subsystem (HSIOS) includes from one to four 1/0 cache modules,
sach of which serves as a buffer between the switch and 32 I,/0 channels. Each I/0 channel
can gupport transfer rates up to 2.5 million bytes per second. The I/0 cache supports
this transfer rate by all channels simultaneously, and can concurrently transfer B80
million bytes per second via its switch port for a total bandwidth of 160 million bytes
per second. An I1/0 cache can range in size from 8 million to 128 million bytes in B
million byte increments, so that the maximum amount of 1/0 cache memory implementable in a
single HEP system is 512 million bytes. The reason for this large amount of memory is to
allow a large page size to be used in conjunction with a large number of disks or tapes.
The large page size (40 kilobytes nominal) means that mechanical delays can be made
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insignificant compared to data transfer times to increase channel utilization, and the
large number of channels allows data to be distributed across many disks to provide high
I/0 bandwidth through the use of parallelism. The distribution of data is provided for by
interleaving logical records among many files, one file per disk, and is accomplished not
by the file system itself but by the library 1/0 routines that the user calls. In this
way, the management of distributed data is entirely under the user's control, allowing him
to exchange reliability for speed as required by his application.

The I/0 channels are controlled by an 1/0 control processor (IOCF). The IOCP is inter-
rupted both by the channels, when 1/0 operations are completed, and by arrivals of switch
messages from supervisor processes running in the processors. The function of the IOCP is
to schedule the I/0 reguests from the supervisors on the channels. To a supervisor, the
[OCP=-switch interface appears as a sequence of special memory locations in the data memory
address space, and an I/0 regquest is made by storing the regquest at one of these special
locations. When the switch message arrives at the I0CP-gwiteh interface, the I0CP ser=
vices the interrupt by acgquiring the message from the interface and engueueing it inter-
nally on a gueue served by the 1/0 channel that was requested. When the request reaches
the head of the gqueue, it is serviced; on completion, a response message is loaded into
the switch interface and sent back to the processor from which the regquest came. The
effect seen by the supervisor process itself is extremely simple;r a page I/0 request was
made and completed by executing a store instruction., The fact that the store instruction
may have taken several milliseconds to execute has no effect on the performance of the
processor if enough processes remain in the control loop.

When a file is opened, the number of cache frames allocated to the file may be speci-
fied as a parameter (the default gquantity is 2). Another parameter specifies the sequen=
tial direction (forward or backward). All data transfer instructions perform gequential
1/0 in the specified direction, and the supervisor handling the requests attempts to "read
ahead” and "write behind® the pages surrounding the current file position. To accomplish
random 1/0, a separate command is implemented to allow the current file position to be
changed. This feature allows caching of data to proceed concurrently with wuser

processing.

A HEP file consists of a header page and zerc or more data pages. The header is kept
in the I/0 cache as long as the file is open, and contains either the data itself or pairs
of pointers to the disk locations of the data pages and the cache frames holding those
pages, if any. Since all pages are the same size, both disk and cache space allocation
are performed using bit tables and are extremely fast; this is an important consideration
when a large number of supervisor processes are all attempting to allocate space in par=
allel. To the user, a file appears to be a randomly addreseable sequence of records or
words, and there are no "access methods® provided by the file system itself.

When & user process executes a supervisor call to perform 1/0, the supervisor process
first computes the page or pages containing Ethe data from the current file position and
from the amount of data to be transferred. It then verifies that those pages are in the
cache, requesting them, from the IOCP as necessary. Mext, it transfers the data between
the cache and the user's buffer, and changes the current file position based on the
sequential direction (forward or backward]. Finally, the supervisor schedules page "write
bahind® and "read ahead” with the IOCP as required, and returns to the user without wait-
ing for the IOCP. If a page was never modified, it is not written on the disk by *write
behind”. Moreover, a reference count is maintained for each cached page and for the file
as a whole to allow a file to be multiply opened by a large number of processes. A page
is actually uncached only when its reference count is zero, and the file header itself is
uncached when the file reference count is zero.

Fortran extensions

Two kinds of extensions were added to HEP Fortran to allow the programmer to write
explicit parallel algorithms. The first class of extensions allows parallel process cre=
ation. In HEP Fortran, a CREATE statement, syntactically similar to a CALL, causes a sub-
routine to rFun in parallel with its creator. The RESUME statement, syntactically like
RETURN, causes the caller of a subroutine to resume sxecution in parallel with the sub-
routine. If a subroutine was CREATEd, a RESUME has no effect, and a RETURN causes the
termination of the process executing the subroutine if the subroutine was CREATEd or if it

previously executed a RESUME.

The second extension allows the programmer to use the access states provided by the HEP
hardware. Any variable whose name begins with the character mc® g called an asynchronous
variable, and has the property that an evaluation of the variable waits until the assoc-
iated location is "full®™ and sets it "empty®™ while fetching its value. An assignment to
the variable waits until the variable is "empty” and then sets it "full® while storing the
new value. A PURGE statement is used to unconditionally set the access state to "empty"”.
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HEP Fortran generates fully reentrant code, and dynamically allocates registers and
local variables in data memory as required by the proaram. For example, it is often use=
ful to place a CREATE statement in a loop 50 that several parallel processes will execute
{dentical programs on different local data. An example is shown in Pigure 4; in this
instance, the program creates NPROCE-1 processes all executing subroutine &, and then
jtself executes the subroutine S by calling it, with the result that NPROCS processes are
ultimately executing S, The parameter SIP is used here to identify each process unigquely.
since parameter addresses rather that values are passed, $IP is asynchronous and is filled
by the creating program and emptied within 5. This prevents the creating program from
changing the value of $IP until 5 has made a copy of it. The asynchronous variable SNP is
used to record the number of processes executing S. When S is finished, S$NP is decre-
mented, and when the creating program discovers that $NP has reached zero, all NPROCS
processes have completed execution of 5 (excepting pogsibly the RETURN statement).

HEP programming

The facilities provided by the HEP hardware and software are clearly well suited to
pipelining as a means of parallel algorithm implementation. The access states "full®™ and
*smpty® can be viewed as a mechanism for passing messages between processes using single-
word queves., It is also clear that a lacation can be used to implement a critical section
merely by requiring processes to empty the location upen entry and fill it upon exit.
Other common synchronization mechanisms can be implemented using similar techiques. FPro-
cesses can be dynamically initiated and terminated to avoid busy waiting.

one frequently occurring situation in parallel programming involves the computation of
recurrences of the form

X = XopY

where op is commutative and associative and Y does not depend on X. One example occurs in
the use of $NP in Figure 4; another obvious example is vector inner product. The diffi-

culties with merely writing
$X = 5 op ¥

are twofold. First, all processes are competing for access to $X and interfere with each
other; second, the final wvalue of $X often must be made available to the various processes

in some independent way, perhaps involving another recurrence similar to the recurrence
for SNP in Figqure 4.

One attractive method which avoids these difficulties requires log P locations for each
of the P processes., The method simultanecusly computes the final value of X and broad-
casts it to the P processes in time O(log P). The idea is to implement an appropriate
interconnection network (in software) that has the required computational property at each
element. 1In this case, the property required is that the two identical element ocutputs be
the result of applying op to the two inputs. One HEP Fortan progr to accomplish this
task is shown in Figure 5 with op = + and with a Staran flip network? interconnection.

Motice that since the function used to compute K from I is always a bijection, there is
no conflict for the slements of SA by the processes. That is, only one process is at-
tempting to fill a given location in $A and only one process is attempting to empty it.
Overtaking by processes is not possible because of this fact. In addition, the same array
58 can be reused immediately to perform a different function (e.g., glebal minimum) as
long as the same network topology is used. Analogous techniques, sometimes requiring
other network topologies, can be used to permute the elements of X, to sort X, to perform

fast Pourier transforms, and so forth.

Another important HEP programming technique allows processes to schedule themselves.
In the simplest case, a number of totally independent computation:l steps is to be per-
formed that significantly exceeds the number of processes available; moreover, the exe-
cution time of the steps may be widely varying. The self-scheduling idea is to allow esach
process to acquire the next computational step dynamically when it finishes the previous
one. In a more complex situation invelving dependencies and priorities, the proceases
might perform a significant amount of computation in scheduling themselves, but in mast
cases the method is quite efficient. Flgure 6 shows an example of an ordinary DO leoop in
which all iterations are presumed independent; Figure 7 is a parallel wersion of Figure 6
which uses self-scheduling. One of the most attractive benefits of self-scheduling a loop
is that there is no need to worry about poor process utilization resulting from an unsat=

isfactory a priori schedule.
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Conclusions

The HEP computer system represents a unigue and very flexible architecture. Firat,
Second, the availability of a

its modularity is exceptional even for an MIMD computer.
very natural synchronization primitive at every memory location allows the programmer a
ng parallel algorithms. Finally, a mechanism is

large amount of freedom in developi
provided to allow the user to control the number of processes dynamically in order to take
advantage of varying amounts of parallelism in a problem.
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Figure 2, Simplified HEP processor
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PURGE 51F, SHP

SNP = NPROCS

Do 10 I = 2, NPROCS
SIP = I=-1

CREATE S({S5SIP,5NP)
CONTINUE

§IP = NPROCS

CALL S($IP,SNP)

WAIT FOR ALL PROCESSES TO FINISH
N = 5MP

ENPF = N

IF (N .NE. 0) GO TO 20

SUBROUTINE S(SIF,3NP)
MYMUM = SIP

.
.

SNP = SNP-1
RETURN
END

Figure 4. HEP Fortran example

REPLACE EACH ELEMENT OF THE VECTOR X
BY THE SUM OF THE ELEMENTS OF X

USING THE INITIALLY EMPTY ARRAY SA.

P = 2**L PROCESSES EXECUTE THIS PROGRAM.

THE PROCESS IDENTIFER IS I.

DIMENSION X(P), A(P,L)

JPOW = 2

JPOW IS 2 TO THE J POWER

DO 10 J = 1,L _

COMPUTE THE PROCESS K = (I-1) EXOR(JPOW/2)+1

WITH WHICH THIS PROCESS WILL EXCHANGE DATA

K = ((I-1)/JPOW)*JPOW + MOD (I-1 + JPOW/2,JPOW)+!
JPOW = JPOW*2

NOW EXCHANGE DATA AND ACCUMULATE

SA(K,J) = X(I)

X(1) = X{I) + SA(I,J)

CONTINUE

Figure 5. Summation by network gimulation

DO 10 I =J, K, L

éDHTIHUE
Figure 6. A DO loop
PURGE SIV
$IVv = J
CREATE ANY NUMBER OF PROCESSES EXECUTING

I = SIV

THIS PROCESS HAS SEIZED AN ITERATION INDEX
LET ANOTHER PROCESS OBTAIN THE NEXT INDEX
IV =1 + L

TERMINATE IF THROUGH

IF (I .GT. K) RETURN

GO TO 1
Figure 7. A self-scheduled loop





