
Question and Answer Booklet COMPSCI 703

Continued...

THE UNIVERSITY OF AUCKLAND

COMPUTER SCIENCE
Advanced Computer Architecture

(Time Allowed: fifty minutes)

For this test you are allowed to use printed material: books, printouts, notes, etc. You
may not use any electronic devices.

This test has 6 questions, all of equal value. Answer any four. If you answer more
than four questions, the first four not crossed out will be graded.

Some questions are harder than others—they will be graded more generously.

Be concise. Long answers are not generally better answers.

FIRST SEMESTER, 2010
Campus: City

FAMILY NAME: Model Answers
PERSONAL NAMES:

STUDENT IDENTIFICATION NUMBER:

LOGIN NAME:

SIGNATURE:

QUESTION MARKS SCORE

10

10

10

10

TOTAL 40

Question and Answer Booklet - 2 - COMPSCI 703

Continued...

Question 1

In a recent New Zealand Herald feature about Bloom Energy, a company that builds
fuel cells, the CEO K.R. Sridar was asked the question, “How can you ever be more
efficient than a big power plant?” to which he answered, “The question to ask is, in a
traditional power plant, is there a Moore's Law kind of learning that can happen? The
answer is no. There are 100 years of history associated with that [technology].
Whereas we have shown in the past five years that every year we are able to improve
upon the physics and chemistry to get more value out of the same material that we
put in.”

Is this a reference to the same Moore's Law discussed in CS703? Explain.

Question 2

Explain the difference between dynamic scheduling and static scheduling. Is dynamic
scheduling always better? What are the arguments for static scheduling? What are the
arguments for dynamic scheduling.

Question 3

What is the purpose of a reorder buffer (ROB)?

Question 4

A high-performance processor may prefetch operands from memory before previous
instructions have completed. Consider the following code:

REP mv R1, R2 # Copy R2 to R1

swap R1, Lock # Atomically swap location Lock with R1

bne R1, R2, REP # Branch to REP if R1 != R2

lw R3, TailPtr # Copy contents of memory location TailPTr into R3

lw R4, (R3) # Copy contents of memory location with address in R3 into R4

add R3, R3, 1 # Increment R3

sw R3, (R4) # Write contents of R3 into memory location with address in R4

What can happen if and only if the memory model allows load and store instructions
to complete out of order?

Question 5

What problem does Test&Test&Set solve that Test&Set does not solve?

Question 6

Explain the difference between an atomic transaction as described by Herlihy and the
classical critical section.

Question and Answer Booklet - 3 - COMPSCI 703

End of questions

Question #____1_

The speaker Sridar is clearly referring to the phenomenon of
“the popular Moore’s Law, namely, exponential increases in
capability and decreases in cost over a relatively extended
period of time. The notion of “Moore’s Law” has become ever
more widely recognized as we have seen increasing examples of
technology growth at exponential rates. There is even an anal-
ogy with “the big power plant,” namely, that mainframe “big-
iron” computers experienced steady but limited improvements
over decades, and was made obsolete by fast-moving technol-
ogy tracking Moore’s curve.

Note in both cases, the “law” is largely self-fulfilling, with busi-
nesses adjusting their investment to respond to, and antici-
pate, projections of change in the marketplace.

Question and Answer Booklet - 4 - COMPSCI 703

Answer Page

Question #____2_

Straight from H&P section 2.4 (assigned reading):

“A simple statically scheduled pipeline fetches an instruction
and issues it, unless there was a data dependence between an
instruction already in the pipeline and the fetched instruction
that cannot be hidden with bypassing or forwarding. (Forward-
ing logic reduces the effective pipeline latency so that the cer-
tain dependences do not result in hazards.) If there is a data
dependence that cannot be hidden, then the hazard detection
hardware stalls the pipeline starting with the instruction that
uses the result. No new instructions are fetched or issued
until the dependence is cleared.

“In [sec 2.4] we explore dynamic scheduling, in which the hard-
ware rearranges the instruction execution to reduce the stalls
while maintaining data flow and exception behaviour. Dynamic
scheduling offers several advantages: It enables handling some
cases when dependences are unknown at compile time (for
example, because they may involve a memory reference), and it
simplifies the compiler. Perhaps most importantly, it allows the
processor to tolerate unpredictable delays such as cache
misses, by executing other code while waiting for the miss to
revolve. Almost as importantly, dynamic scheduling allows code
that was compiled with one pipeline in mind to run efficiently on
a different pipeline.”

Static scheduling is much simpler to implement and a good
compiler can achieve equal performance if instruction times
are all predictable.

Question and Answer Booklet - 5 - COMPSCI 703

Answer Page

Question #____3_

To assure the clean handling of exceptions and interrupts,
instructions must commit in-order even if they are allowed to
execute out of order. When instructions finish their execution,
they are “retired” with each result being place in a buffer--the
reorder buffer--and their results are available for future
instructions, though not yet committed (i.e., made visible to
the system). When all previous instructions have committed,
the instruction may be committed, assigning the value to a
register or memory location, thus making the operation visible.

The ROB further serves as an extension to the Tomasulo algo-
rithm, allowing instructions to be executed speculatively.

Question and Answer Booklet - 6 - COMPSCI 703

Answer Page

Question #____4_

This question had a mistake in the code, making it unclear
exactly what was expected. Any answer was accepted if it
identified a different result if two of the load or store instruc-
tions were executed out-of-order.

Question and Answer Booklet - 7 - COMPSCI 703

Continued...

Question #____5_

Test&Set continuously creates serious memory contention
when more than one processor is spin-waiting to acquire a lock
held by another node. Test&Test&Set creates serious memory
contention only after a lock is modified (a release or an
acquire, whether successful or not). Because T&T&S does not
attempt to write while spin-waiting, the contention ceases as
soon as all processors can observe that the lock is held.

Question and Answer Booklet - 8 - COMPSCI 703

Continued...

Question #____6_

The critical section is guaranteed exclusive access to a set of
resources while holding a lock, obeying a protocol to provide
mutual exclusion with regard to a set of variables guarded by
the lock. The thread must acquire the lock using a mechanism
that guarantees it will be the only holder of the lock, and
release it when finished. The critical section exhibits the prop-
erties of atomicity, isolation, and consistency by mutual
agreement defined by the protocol.

The atomic section is a language construct that informs the
system that the block of code is to have the appearance of
instantaneous execution, i.e., atomicity, isolation, and consist-
ency, but the support for this atomic action is provided by the
system and does not depend on the programmer to obey a
protocol.

