
Computer Science 703
Advance Computer Architecture

2010 Semester 1

Lecture Notes
4May10

Transactional Memory

James Goodman

277

TEST

•  In-class
•  Date: Thursday, 6May
•  Open notes (no electronic devices)
•  Required reading list online: CS703 “Resources”
•  Sample test from 2008 (different emphasis) under

“Exams”

278

Notice

NO CLASS ON FRIDAY!

279

Topics Covered

•  Moore’s Law and rise of Multicore
•  Multiprocessing, Multithreading & Multicores
•  Instruction-Level Parallelism

–  Reducing the cost of branching
–  Branches and branch prediction
–  Dynamic Scheduling (Tomasulo’s algorithm)

280

Topics Covered (con’t)

•  Advanced Caching Topics
–  Tuning parameters

•  Size
•  Associativity
•  Line size

–  Compulsory, Capacity, Conflict & Coherence misses
–  Write policies
–  Non-blocking caches
–  Multi-level caches & the inclusion property
–  Victim caches
–  Write buffers

281

Topics Covered (con’t)

•  Shared Memory Synchronization
–  Locks
–  Atomic RMW operations
–  Locks and Cache Coherence

•  Cache Coherence
–  Snooping & Directories
–  The MOESI model

282

Topics Covered (con’t)

•  Methods & Tools
–  Analytical models
–  Simulation

•  Simulating a computer
•  Specifying the model
•  Evaluating the results
•  Validation

–  Benchmarks
–  Performance reporting

283

Topics Covered (con’t)

•  Missing Update Problem
•  Memory Ordering

–  Litmus tests
–  Sequential Consistency
–  Weak Ordering
–  Processor Consistency
–  Release Consistency

284

Transactional Memory

•  Larus/Rajwar: Transactional Memory (available as
PDF through UoA library)

•  Herlihy/Moss: Transactional Memory: architectural
support for lock-free data structures

286

Herlihy/Moss 1992

•  This paper coined the term “Transactional Memory”
•  Really an argument for lock-free data structures to

avoid
–  Priority inversion
–  Convoying
–  Deadlock

•  Argues for moving responsibility for synchronization
away from the programmer

•  Points out nice fit with hardware [Knight 1986]

287

“Experimental evidence suggests that in the absence of inversion,
convoying, or deadlock, software implementations of lockfree
data structures often do not perform as well as their locking-

based counterparts.”

288

Definition: Transaction

•  A transaction is a finite sequence of machine
instructions, executed by a single process, satisfying
the following properties:
–  Serializability: Transactions appear to execute serially,

meaning that the steps of one transaction never appear to be
interleaved with the steps of another. Committed
transactions are never observed by different processors to
execute in different orders. [includes isolation]

–  Atomicity: Each transaction makes a sequence of tentative
changes to shared memory. When the transaction completes,
it either commits, making its changes visible to other
processes (effectively) instantaneously, or it aborts, causing
its changes to be discarded.

289

New Instructions

•  Load-transactional (LT) reads the value of a shared
memory location into a private register.

•  Load-transactional-exclusive (LTX) reads the value
of a shared memory location into a private register,
“hinting” that the location is likely to be updated.

•  Store-transactional (ST) tentatively writes a value
from a private register to a shared memory location.
This new value does not become visible to other
processors until the transaction successfully commits.

Read set: locations read by LT instructions
Write set: locations read by LTX

290

New Instructions

“Manipulation” instructions:
•  COMMIT: make changes permanent (visible).

Indicates success/failure
•  ABORT: discards all updates to the write set
•  VALIDATE: TRUE indicates transaction has not (yet)

aborted
Hardware detecting conflict may cause spontaneous

abort
NOTE: no “Begin Transaction” operation

291

Use

Replace critical section with:
1.  use LT or LTX to read from a set of locations
2.  use VALIDATE to check that the values read are

consistent
3.  use ST to modify a set of locations,
4.  use COMMIT to make the changes permanent.

If either the VALIDATE or the COMMIT fails, the
process returns to Step (1).

292

Basic Idea

"The idea is that the transactional cache holds all the tentative
writes, without propagating them to other processors or to
main memory unless the transaction commits. If the
transaction aborts, the lines holding tentative writes are
dropped (invalidated); if the transaction commits, the lines
may then be snooped by other processors, written back to
memory upon replacement, etc. We assume that since the
transactional cache is small and fully associative it is practical
to use parallel logic to handle abort or commit in a single cache
cycle.”

293

Observations

•  No notion of “Begin Transaction”
•  What happens when a transaction aborts?

–  No explicit jump/trap on abort
–  Presumably

294

"The VALIDATE instruction is motivated by considerations of software
engineering. A set of values in memory is inconsistent if it could not
have been produced by any serial execution of transactions. An
orphan is a transaction that continues to execute after it has been
aborted (i.e., after another committed transaction has updated its
read set). It is impractical to guarantee that every orphan will observe
a consistent read set. Although an orphan transaction will never
commit, it may be difficult to ensure that an orphan, when confronted
with unexpected input, does not store into out-of-range locations,
divide by zero, or perform some other illegal action. All values read
before a successful VALIDATE are guaranteed to be consistent. Of
course, VALIDATE is not always needed, but it simplifies the
writing of correct transactions and improves performance by
eliminating the need for ad-hoc checks."

295

"The implementation described here aborts any transaction that
tries to revoke access of a transactional entry from another
active transaction. This strategy is attractive if one assumes (as
we do) that timer (or other) interrupts will abort a stalled
transaction after a fixed duration, so there is no danger of a
transaction holding resources for too long.”

From TR: "Deadlock (cyclic waiting) is impossible in this
implementation because transactions never wait for one
another. A high-priority transaction cannot be delayed
indefinitely by a lower-priority transaction, because the latter
will be aborted by a timer interrupt if it runs too long.
Starvation, however, is still possible. We believe that the best
way to avoid starvation is to advise programmers to adopt an
adaptive backoff strategy: a transaction that repeatedly aborts
should wait for some duration before retrying.

296

"[F]or programs to be written in a uniform and portable
manner, one needs to guarantee at the instruction set
architecture level the minimum transaction size that
the architecture supports. At present we do not have
a good feel for what such a size might be, but it
should probably be between 10 and 100. Since one
might not want to put a fully associative cache of this
size into every implementation of the architecture,
schemes that use some hardware but handle larger
transactions via software traps seem to be desirable.
In fact, one can avoid hard limits on transaction size
by offering the software overflow mechanism with all
implementations." [TR]

297

Implementation
[Larus/Rajwar]:

 “The transactional cache is a fully associative cache that holds all
transactional writes without propagating their values to other
processors or to main memory until the transaction commits. The
transactional cache has additional tags with each line that add special
meaning to the regular cache states. If tag is empty, the line has no
data. If tag is normal, the line has committed data. An xcommit tag
means the contents must be discarded on commit, and an xabort tag
means the contents must be discarded on an abort.

298

Implementation
[Larus/Rajwar]:

 “The cache coherence protocol is augmented by three new bus cycles.
The t_read bus cycle is for a transactional read request that goes
across the bus. This request can be refused (NACK) by a busy cycle.
The t_rfo bus cycle is for a transactional read-for-exclusive request
that goes across the bus. This can be refused (NACK) by a busy cycle.
The busy bus cycle prevents too many transactions from aborting one
another too often. This approach may starve some transactions but a
queuing mechanism can address starvation. A busy response does not
cause the transaction execution itself to abort immediately but records
hardware state to allow the transaction to check for whether the
transaction has aborted from the hardware’s perspective. Until this
check, the transaction may continue to execute without aborting.”

299

