
Computer Science 703
Advance Computer Architecture

2010 Semester 1

Lecture Notes
29Apr10

Multiprocessing Issues

James Goodman

224

TEST

•  In-class
•  Date: Thursday, 6May
•  Open notes (no electronic devices)
•  Required reading list to be posted shortly

225

Projects

My expectation: A project should involve collecting
information (data) and evaluating it.

Projects:
•  Generally require a substantial amount of effort
•  Should not be fully defined
•  Should allow students to pursue specific interests
•  Can be group effort (with some caveats)

Substitute a large assignment for project???

226

Reading

Tomorrow: Mark Hill, “Multiprocessors Should Support
Simple Memory-Consistency Models”

Multiprocessing Issues

•  Cache Coherence
•  “Missing Update Problem”
•  Memory Consistency

Multiprocessing Issues

•  Cache Coherence
•  “Missing Update Problem”
•  Memory Consistency

The “Missing Update” Problem

•  Assume there is a shared int x = 3;
•  CPU1 executes a program fragment x = X - 1;
•  CPU2 executes a program fragment x = X - 2;
•  What is the final value of the shared variable x?

CPU1 CPU2

Memory

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $2,x

Possible (expected) Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

Possible (expected) Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

Possible Answer: 1

lw $1, x
sub $1, $1, 1 lw $1, x
sw $1,x sub $1, $1, 2
 sw $1,x

CPU 1 CPU 2

Result: x = 1

Is this acceptable?

Possible Answer: 2

 lw $1, x
lw $1, x sub $1, $1, 2
sub $1, $1, 1 sw $1,x
sw $1,x

CPU 1 CPU 2

Result: x = 2

Is this acceptable?

Expectation of Atomicity & Isolation

•  In the example, we expect that the code
 x = x - 1

will be executed atomically and in isolation

Isolation: the appearance that a sequence of
operations occur at a single instant in time.

Atomicity: the requirement that the sequence of
operations either occurs in its entirety or not
at all.

Parallel “Correctness”

•  Our programs must execute “correctly” no matter how
the two sequences of instructions are interleaved

•  But correctness must be defined. The example
introduces a data race

•  If only a result of zero is acceptable, the code must
explicitly eliminate data races

•  Data races can be eliminated by the use of locks
(semaphores) and critical sections

Observation: This problem has nothing to do
with cache consistency or coherence!

Programming a Multiprocessor

•  Multiprocessors may simply execute independent
tasks that require more computing power that is
available on a single processor.
–  Particularly useful if one or more jobs is computationally

intensive
–  Often a maximum of two processors can handle all the jobs

•  Major challenge: divide up a single job into pieces
that can be computed concurrently.

•  Two general models of parallel computation
–  The epoch model
–  The work queue model

The Epoch Model

•  The program involves similar operations on large amounts
of data (large, regular data structures)

•  The data is partitioned into non-overlapping parts and
assigned to various threads

•  A fixed amount of computation is performed
independently, then coalesced through synchronization
–  All nodes run the same code, over a different range of data
–  This is an epoch

•  This process is repeated
–  A barrier assures that none of the threads proceed beyond

the synchronization point until all have arrived at it
•  Within an epoch, usually no races are allowed, i.e., no

variable can be written by some node and read by another.

Synchronization Mechanism
for Epochs

The barrier: wait for all nodes to arrive here before
continuing:

Initially, Count = # of threads
barrier() {
 Count -= 1;
 while (Count > 0)
 ;
}

Note: decrementing Count on multiple nodes
introduces a race condition!

The Work Queue Model

•  The system is initialized by identifying a set of tasks to
be performed. These are placed on a queue with
information identifying the task and its parameters.

•  Processors remove an assignment from the queue and
perform the task. In the process, they may identify new
tasks to be performed and place them on the queue.

•  This process continues until all the tasks have been
completed.

•  The challenge is to divide tasks up fine enough so that
all the threads can be kept busy, but course enough so
that the threads don’t spend all their time dealing with
the work queue

Multiprocessing Issues

•  Cache Coherence
•  “Missing Update Problem”
•  Memory Consistency

Memory Ordering

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Initial state: A = 0
 B = 0

CPU 1 CPU 2

Is it acceptable?

Is this possible?

Sequential Consistency

Definition: “...the result of any execution is the
same as if the operations of all the processors
were executed in some sequential order, and
the operations of each individual processor
appear in this sequence in the order specified
by its program.”

Memory Ordering Requirement (1)

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Is this permitted?
SC: No
Intel: No
Alpha: Yes

Initial state: A = 0
 B = 0

CPU 1 CPU 2

Alpha Memory Ordering
Requirements

•  Reads and writes may appear out of order
•  A memory barrier assures that all previous

operations have been made globally visible before any
subsequent operations are made visible

Memory Ordering Requirement (1)

Write A = 1
MemBar
Write B = 1

Read B = 1
MemBar
Read A = 0

Is this permitted?

SC: No
Intel: No
Alpha: No

Initial state: A = 0
 B = 0

CPU 1 CPU 2

Memory Ordering Requirement (2)

Write A = 1
Read B = 0

Write B = 1
Read A = 0

Is this permitted?

SC: No
Intel: Yes
Alpha: Yes

Initial state: A = 0
 B = 0

CPU 1 CPU 2

Yet Another Memory Model

•  Release Consistency
– Assumes that locks are used to protect shared data
– No reads may be performed before acquiring the

lock
– All writes must be completed before releasing the

lock

Summary of Memory Ordering

•  Identical code sequences may result in
different acceptable answers on
multiprocessors with different memory
models

•  Compilers must account for memory model
– Recognize potential data races
–  Insert barriers if necessary to assure correctness

