Computer Science 703 Advance Computer Architecture 2010 Semester 1 Lecture Notes 27Apr10 Methods 2: Tools & Benchmarks

214

Validation

- Can you believe the results?
 - Do you know how to interpret the results?
 - Do you understand what is being modelled?
 - Do you understand how it is being modelled?
- Results can mislead regarding accuracy
 - Exact, repeatable counts are precise
 - Accuracy depends on assumptions
- Studying results: sanity checks
 - Compare against real system (or similar real system)
 - Compare small variations in parameter(s)
 - Compare against other methods
 - Other simulators
 - Analytical models
 - Experience is important

Evaluating Simulation Results

- Results are counts of occurrences
 - How many clock cycles
 - How many arrivals
 - How many failures
 - How many ???
- Results may be repeatable
 - If inputs are repeatable
 - Have to introduce randomness!
 - Multiprocessors often introduce randomness
 - Small changes in input can produce large changes in results
- Multiple simulations may be required
 - Multiple parameters, multiple combinations
- Would like to simulate multiple cases simultaneously

215

Simulators are Everywhere

Many simulators are

- Hard to use
- Poorly documented
- · Poorly specified
- Unsupported
- Good simulators may be free (to academics) but offered "as-is"
- All but simplest simulators require substantial experience/understanding to interpret results

How to Report Performance

- Clock rate?
- MIPS? MFLOPS?
- Peak performance?
- Time to execute a programme?
 - What programme?

Quotations from my Father

"Figures don't lie, but liars do figure!"

Programme Benchmarks

- What is an appropriate programme?
 - Choice of programme can dramatically affect results
 - Computation limited (integer or floating point?)
 - Memory limited
 - Control limited
 - Changes in some parameters can dramatically affect results

What is a "good" benchmark?

- What are we trying to measure
 - Computation limited (integer or floating point?)
 - Memory limited
 - Control limited
- What is an appropriate programme?
 - Choice of programme can dramatically affect results
 - Parameters matter
 - Singly or collectively parameters can dramatically affect results

218

Combining Multiple Benchmarks

- J.E. Smith, "Characterizing computer performance with a single number," *CACM*, v. 31, #10 (October 1988), pp. 1202-1206.
 - Arithmetic mean (of MFLOPS)
 - Geometric mean
 - Harmonic mean

"... the time required to perform a specified amount of computation is the ultimate measure of computer performance."

222

- **Property 1.** A single-number performance measure for a set of benchmarks expressed in units of time should be directly proportional to the total (weighted) time consumed by the benchmarks.
- **Property 2.** A single-number performance measure for benchmarks expressed as a rate should be inversely proportional to the total (weighted) time consumed by the benchmarks.

223