Computer Science 703 Advance Computer Architecture 2010 Semester 1 Lecture Notes 23Apr10 Methods: Tools & Benchmarks

A Simple Example: Checkout

- Grocery store has one or more lanes, multiple customers
 - Too many lanes open requires more servers (costs money)
 - Too few lanes open drives away customers (costs money)
- Queuing model
 - How many lanes?
 - How many customers?
 - How does one checkout take?
 - How long does a customer have to wait?
 - What is probability customer has to wait?
 - How much of the time is a server idle?
 - When would a single queue work better?

Evaluation

- Why?
 - Quantitative information is important
- What level?
 - Appropriate for the question
- How?
 - 1. Mean-value analysis/Analytical modelling
 - 2. Simulation
- 3. Build it
- What?
 - Computer performance modelling
 - Benchmark applications

205

Simple Queueing Model

- Assume
 - Fixed number of servers
 - Constant (but random) arrival rate of customers
- May also want to assume
 - Single queue, single server
 - Constant service time
- Can derive analytically
 - Mean service time
 - Mean length of queue
 - Mean idle time of server
 - Relative costs for different models

204

Analytical Model vs. Simulation

- Analytical model
 - Must be simple to be solvable!
 - If solvable, can be done very quickly using a computer
- Simulation model
 - Can be arbitrarily detailed (i.e., complex)
 - Input data can be actual data, or output from another simulator
 - Can be arbitrarily slow
 - Simulator can be purpose-built to make it faster, but
 - Flexibility is important
 - · Often want to ask questions not anticipated

Event-driven Simulation

- A change of state is called an event.
 - Might be regular & predictable (fixed interval) or variable
 - Might be unpredictable (e.g., interrupt)
- An event triggers an activity a unit of work in the simulator
- An activity typically causes the creation of further events.
- A logically-related set of activities constitutes a process.
- As simulation proceeds, simulation time advances in steps (number of events), and reflecting simulated activities

208

Time-based Simulation

- Time steps are regular
 - Constant interval: a clock
 - Variable interval: instruction time
- Size of step is critical for accuracy & efficiency
 - too course: loss of accuracy
 - too fine: simulation may be very slow

Simulating a Computer

- Two parts to simulate
 - Sequence of instructions executed
 - Programme may be deterministic

 Can use a log (trace)
 - Time to execute programme
 - May need to execute many times for combination of parameters
- Timing model
 - Simple for simple processor
 - Hard for pipelined processor
 - Really hard for out-of-order processor
 - Cache simulation?
- Multiprocessor simulation?

209

Results

- Results are counts of occurrences
 - How many clock cycles
 - How many arrivals
 - How many failures
 - How many ???
- Results may be repeatable
 - If inputs are repeatable
 - Have to introduce randomness!
 - Multiprocessors often introduce randomness
 - Small changes in input can produce large changes in results
- Multiple simulations may be required
 - Multiple parameters, multiple combinations
- · Would like to simulate multiple cases simultaneously

212

How to Report Performance

- Clock rate?
- MIPS? MFLOPS?
- Peak performance?
- Time to execute a programme? - What programme?

Validation

- Can you believe the results?
 - Do you know how to interpret the results?
 - Do you understand what is being modelled?
 - Do you understand how it is being modelled?
- Results can mislead regarding accuracy
 - Exact, repeatable counts are precise
 - Accuracy depends on assumptions
- Studying results: sanity checks
 - Compare against real system (or similar real system)
 - Compare small variations in parameter(s)
 - Compare against other methods
 - Other simulators
 - Analytical models
 - Experience is important

213

Quotations from my Father

"Figures don't lie, but liars do figure!"

Programme Benchmarks

- What is an appropriate programme?
 - Choice of programme can dramatically affect results
 - Changes in some parameters can dramatically affect results
- What is a "good" benchmark?
- All benchmarks have problems
 - Should accurately reflect real-world programmes
 - Should be portable
 - Should be repeatable
 - Should capture all aspects of performance
- A suite of benchmarks is valuable
 - More widely distributed, the better
 - But computers change, benchmarks get old...

Combining Multiple Benchmarks

- J.E. Smith, "Characterizing computer performance with a single number," *CACM*, v. 31, #10 (October 1988), pp. 1202-1206.
 - Arithmetic mean (of MFLOPS)
 - Geometric mean
 - Harmonic mean
- "... the time required to perform a specified amount of computation is the ultimate measure of computer performance."

217

216

Property 1. A single-number performance measure for a set of benchmarks expressed in units of time should be directly proportional to the total (weighted) time consumed by the benchmarks.

Property 2. A single-number performance measure for benchmarks expressed as a rate should be inversely proportional to the total (weighted) time consumed by the benchmarks.