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Challenge of Sharing Memory 

 The ability to read and/or write multiple memory 
locations in an atomic transaction. 

“Stop the world!” 
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Atomic Swap 

•  Operation: atomically exchange a register value and a 
memory value 

•  Might be as little as a single bit 
•  Test for failure: register indicates bit was already set 

•  Useful for: Acquiring a lock 

•  Reference: ??? 
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Test & Set 

•  Operation: Set memory value (single bit) to 1; report 
previous value of memory location 

•  Test for failure: memory bit was already 1 
•  Variant of Atomic Swap 
•  Also: Test & Clear 

•  Useful for: Acquiring a lock 

•  Reference: IBM System/360 (1959) 
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The Critical Section 

CriticalSection() { 

    acquire(lock); 

    read(data1); 

    read(data2); 
    write(data1); 

    release(lock); 

} 

acquire(lock) { 

    while (swap(lock,HELD) != FREE) 

  ; 

 MemBar(); 
} 

release(lock) { 

 MemBar(); 

 lock = FREE; 

} 

165 

Why is this slow? 

•  Lock is truly shared 
–  contended lock is actively shared during spinning 

•  Ordering constraints dictate that data cannot (should 
not) be pre-fetched 
–  unless sharing is unlikely 
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Acquire() 

acquire(lock) { 

    while (swap(lock,HELD) != FREE) 

  ; 

 MemBar(); 
} 
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T&S 

P1: 

 Swap(lock) 

 Read(data1) 
 Read(data2) 

 Write(data1) 

 Write(lock) 

P3: 

 Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 

 ... 

P2: 

 Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 

 ... 

P4: 

 Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 
Swap(lock) 

 ... 



Test & Test & Set 

•  Operation: Two-stage test: don’t attempt to set bit 
until it is clear 

•  Software implementation: Test + Test&Set 
•  Test for failure: after second test, same as Test & Set 
•  No guaratee after first test, but avoids spinning on 

bus 

•  Useful for: Acquiring a lock, reduced contention 

•  Reference:  L. Rudolph and Z. Segall, “Dynamic 
decentralized cache schemes for MIMD parallel 
processors.” In ISCA-11, pages 340-347, June 1984.  
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Acquire() using T&T&S 

acquire(lock) { 

 do { 

  while (lock == HELD) { 

   ; 
  } 

 } while (swap(lock, HELD) != FREE); 

 MemBar(); 

} 
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Test&Test&Set 
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Test&Test&Set 
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Available! 

Test&Test&Set 
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Dirty 

Test&Test&Set 

RFO(Lock) 

Dirty Dirty 

Acquired! Unavailable! Available! Available!   Oops!   

Data(Lock) 

P1 

C1 

P2 

C2 

P3 

C3 

P4 

C4 

Memory 

Stale 

177 

Test&Test&Set 
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??? Unavailable! 

Test&Test&Set 
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Test&Test&Set 
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Test&Test&Set 
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Essence of TM 

 The ability to access multiple memory locations in an 
atomic transaction, without specifying how 

atomicity is achieved. 

-- Mark Moir 
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