
Computer Science 703
Advance Computer Architecture

2010 Semester 1

Lecture Notes
1Apr10

Atomic Actions

James Goodman

160

Challenge of Sharing Memory

 The ability to read and/or write multiple memory
locations in an atomic transaction.

“Stop the world!”

161

Atomic Swap

•  Operation: atomically exchange a register value and a
memory value

•  Might be as little as a single bit
•  Test for failure: register indicates bit was already set

•  Useful for: Acquiring a lock

•  Reference: ???

162

Test & Set

•  Operation: Set memory value (single bit) to 1; report
previous value of memory location

•  Test for failure: memory bit was already 1
•  Variant of Atomic Swap
•  Also: Test & Clear

•  Useful for: Acquiring a lock

•  Reference: IBM System/360 (1959)

163

164

The Critical Section

CriticalSection() {

 acquire(lock);

 read(data1);

 read(data2);
 write(data1);

 release(lock);

}

acquire(lock) {

 while (swap(lock,HELD) != FREE)

 ;

 MemBar();
}

release(lock) {

 MemBar();

 lock = FREE;

}

165

Why is this slow?

•  Lock is truly shared
–  contended lock is actively shared during spinning

•  Ordering constraints dictate that data cannot (should
not) be pre-fetched
–  unless sharing is unlikely

166

Acquire()

acquire(lock) {

 while (swap(lock,HELD) != FREE)

 ;

 MemBar();
}

167

T&S

P1:

 Swap(lock)

 Read(data1)
 Read(data2)

 Write(data1)

 Write(lock)

P3:

 Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

 ...

P2:

 Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

 ...

P4:

 Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

 ...

Test & Test & Set

•  Operation: Two-stage test: don’t attempt to set bit
until it is clear

•  Software implementation: Test + Test&Set
•  Test for failure: after second test, same as Test & Set
•  No guaratee after first test, but avoids spinning on

bus

•  Useful for: Acquiring a lock, reduced contention

•  Reference: L. Rudolph and Z. Segall, “Dynamic
decentralized cache schemes for MIMD parallel
processors.” In ISCA-11, pages 340-347, June 1984.

168 169

Acquire() using T&T&S

acquire(lock) {

 do {

 while (lock == HELD) {

 ;
 }

 } while (swap(lock, HELD) != FREE);

 MemBar();

}

170

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Valid

Read(Lock)

Shared

Data(Lock)

Available!

171

Shared

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Valid

Read(Lock)

Shared

Available! Available!

Data(Lock)

172

Test&Test&Set

Valid

Read(Lock)

Shared Shared

Data(Lock)

Shared

Available! Available! Available!

P1

C1

P2

C2

P3

C3

P4

C4

Memory

173

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Valid

Read(Lock)

Shared

Data(Lock)

Shared Shared Shared

Available! Available! Available! Available!

174

Available!

Valid

Shared

Acquired!

Shared

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

Invalidate(Lock)

Shared Dirty

Ack
Ack

Ack

Shared Shared Shared Shared

Available! Available! Available!

175

Available!

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

RFO(Lock)

Dirty

 Oops!

Dirty Shared

Data(Lock)

Acquired! Available! Available!

176

Dirty

Test&Test&Set

RFO(Lock)

Dirty Dirty

Acquired! Unavailable! Available! Available! Oops!

Data(Lock)

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

177

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

RFO(Lock)

Acquired! ???

Data(Lock)

Dirty Dirty Dirty

Unavailable! Available! Oops!

178

??? Unavailable!

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

Read(Lock)

Shared

Acquired! ??? Unavailable!

Dirty Shared

Data(Lock)

Valid

179

Test&Test&Set

Read(Lock)

Acquired! Unavailable! Unavailable! ??? Unavailable!

Shared Shared Shared

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Data(Lock)

Valid

180

Test&Test&Set

Acquired! Unavailable! Unavailable!

Shared Shared Shared

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Read(Data)

Unavailable!

Bus available
for Critical

Section!

181

Unavailable! Unavailable! Unavailable! ??? ??? ??? Acquired!

Valid

Shared

Released!

Shared

Test&Test&Set

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

RFO(Lock)

Dirty

Ack
Ack

Ack

Shared Shared Shared Shared

Data(Lock)

Essence of TM

 The ability to access multiple memory locations in an
atomic transaction, without specifying how

atomicity is achieved.

-- Mark Moir

191

