Computer Science 703

Advance Computer Architecture

2010 Semester 1
Lecture Notes
1Apr10
Atomic Actions

James Goodman

‘;‘ /i
N
Department

of
Computer Science

160

Atomic Swap

Operation: atomically exchange a register value and a
memory value

Might be as little as a single bit
Test for failure: register indicates bit was already set

Useful for: Acquiring a lock

Reference: ???

162

Challenge of Sharing Memory

The ability to read and/or write multiple memory
locations in an atomic transaction.

“Stop the world!”

Test & Set

Operation: Set memory value (single bit) to 1; report
previous value of memory location

Test for failure: memory bit was already 1
Variant of Atomic Swap
Also: Test & Clear

Useful for: Acquiring a lock

Reference: IBM System/360 (1959)

161

163

The Critical Section

CriticalSection() { acquire(lock) {

acquire(lock); while (swap(lock,HELD) = FREE)
read(data1);

read(data2);
write(data1); }
release(lock);

release(lock) {

lock = FREE;

164

Acquire()

acquire(lock) {
while (swap(lock,HELD) != FREE)

MemBar();

166

Why is this slow?

» Lock is truly shared

— contended lock is actively shared during spinning

« Ordering constraints dictate that data cannot (should
not) be pre-fetched

— unless sharing is unlikely

P1:
Swap(lock)
Read(data1)
Read(data2)
Write(data1)
Write(lock)

P2:

Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

T&S

P3:

Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

P4:

Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)
Swap(lock)

165

167

Test & Test & Set Acquire() using T&T&S

Operation: Two-stage test: don’t attempt to set bit
until it is clear

Software implementation: Test + Test&Set acquire(lock) {
Test for failure: after second test, same as Test & Set do { ,
. . . while (lock == HELD) {
No guaratee after first test, but avoids spinning on _
bus }
} while (swap(lock, HELD) = FREE);
Useful for: Acquiring a lock, reduced contention MemBar();

}

Reference: L. Rudolph and Z. Segall, “Dynamic
decentralized cache schemes for MIMD parallel
processors.” In ISCA-11, pages 340-347, June 1984.

168 169

Test&Test&Set Test&Test&Set

P1 P2 P3 P4 P1 P2 P3 P4
C1 c2 (o] c4 Cc1 c2 (o] Cc4
Available! Available! Available!

| G W)
) =

Memory Memory

170 171

Test&Test&Set

P1 P2 P3 P4
C1 Cc2 c3 Cc4
Available! Available! Available!
(Bemi(Lock) L i
lata(Lock)
Memory
| Valid |
172
P1 P2 P3 P4
C1 c2 c3 Cc4
Acquired! Available! Available! Available!
t Ack) I
t 1 Ack J Ack
Invalidate(Loc!
— -+
Memory

| Stale |

174

Test&Test&Set

P1 P2
Cc1 c2
Available! Available!

Lﬂe‘ad(Lock)

L

P3 P4
Cc3 Cc4
Available! Available!

-

Memory

| Valid |

r Data(Lock)

Test&Test&Set

P1 P2 P3 P4
Cc1 c2 (o] Cc4
Acquired! Oops! Available! Available!

QFO(Lock)

)

N—o

Data(Lock)

Memory

| Stale |

173

175

Test&Test&Set

P1 P2 P3 P4
C1 Cc2 c3 Cc4
Acquired! Unavailable! Oops! Available!
; [RFO(Lock) l
7z
——/'
Data(Lock)
Memory
| Stale |
176
P1 P2 P3 P4
C1 c2 c3 Cc4
Acquired! Unavailable|! m” Unavailablg!
; Read(Lock) L)‘ —
S—
_/
)lta(Lock)
Memory

| Valid |

178

Test&Test&Set

P1 P2 P3 P4
Cc1 c2 (o] Cc4
Acquired! m Unavailablef! Oops!
L L LRFO(Lock) J
Data(Lock)
Memory
| Stale |
P1 P2 P3 P4
Cc1 c2 c3 Cc4
Acquired! Unavailable! Unavailable Unavailablg!

-

_J

[Read(Lock) Jk
-

Memory

| Valid |

ata(Lock)

179

P1

C1

Acquired!

L Read(DatalJ

Test&Test&Set

P2 P3 P4
Cc2 c3 Cc4
Unavailable! Unavailablg! Unavailablg!

D

Bus available

for Critical
Section!

!

Memory

180

Essence of TM

The ability to access multiple memory locations in an
atomic transaction, without specifying how
atomicity is achieved.

-- Mark Moir

191

Test&Test&Set

P1 P2
Cc1 c2
Released! m

Ack
RFO(Lock

=)

-

P3

c3

m

P4

Cc4

J Ack

(S

—

Data(Lock) \

Memory

| Stale |

