
YEAR

20
10

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
!

PR
ES

EN
TA

T
IO

N

Computer Science 703
Advance Computer Architecture

2010 Semester 1

Lecture Notes 13
30Mar10

Cache Coherence &
Transactional Memory

James Goodman!

YEAR

20
10

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
!

PR
ES

EN
TA

T
IO

N

References

Sweazey & Smith, “A class of compatible cache consistency
protocols and their support by the IEEE FUTUREBUS”,
ISCA-13, 1986.

M. Herlihy and J.E.B. Moss, “Transactional memory:
architectural support for lock-free data structures,” ISCA-20,
pp. 289–300, May 1993.

145

Snooping Cache

Observation: Don’t have to notify others on every write
Only notify when changing from clean to dirty
•  Main memory is passive; others must remember if

stale
•  Basic idea:

–  cache data permitted, but must take responsibility for
inconsistencies

–  Writers must notify all possible caches to eliminate/update
copies

–  Readers must update/invalidate on notification (must
snoop)

146

MESI States

•  Invalid

–  Data is not present in cache
–  Space may or may not be allocated

•  Shared
–  Copy is in cache; can read but not write
–  Not guaranteed to be exclusive copy

•  Exclusive
–  Copy is in cache; can read or write
–  No other copies except main memory
–  On remote read, must change to Shared
–  On local write, must change to Modified
–  Can silently discard

•  Modified
–  Copy is in cache; can read or write
–  Must write back on purge
–  On remote read or write, must respond by writing, change to Shared

147

Permitted States for MESI

•  Multiple S, others I
•  1 E, others I
•  1 M, others I

148

Many variations

•  Eliminate Exclusive mode (optimization)
•  Assume write privilege if not shared
•  Read with Intention to modify (RFO)

–  Can we guess intention?

•  Ownership: Multiple copies in caches, main memory
stale

•  Write update (Shared-Modified)
•  Reflection: updating memory on transfer of Modified

data
•  Snarfing: intercepting data recently invalidated

149

Many Published Protocols
•  Synapse

–  Frank, “Tightly coupled multiprocessor system speeds memory-access times,”
Electronics, 1984

•  Write-once
–  Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA-10, 1983.

•  Dragon (Xerox PARC)
–  McCreight, “The Dragon computer system: An early overview,” Technical Report,

Xerox Corp., 1984.
•  Firefly (DEC)

–  Thacker, Stewart & Satterthwaite, “Firefly: A multiprocessor workstation,” IEEE Trans.
on Computers, 37(8), Aug. 1988.

•  (Unnamed)
–  Rudolph &Segall, “Dynamic decentralized cache schemes for MIMD parallel

processors,” ISCA-11, 1984.
•  Illinois

–  Papamarcos & Patel, “A low overhead coherence solution for multiprocessors with
private cache memories,” ISCA-11, 1984.

•  Berkeley
–  Katz, Eggers, Wood, Perkins & Sheldon, “Implementing a cache consistency protocol,”

ISCA-12, 1985.

150

The Generalized MOESI Model

Sweazey & Smith, “A class of compatible cache
consistency protocols and their support by the IEEE
futurebus”, ISCA-13, 1986.

•  Three attributes:
–  Ownership
–  Exclusiveness
–  Validity

•  Five states:
–  Invalid ()
–  Shared (Valid)
–  Exclusive (Valid, Exclusive)
–  Shared-Modified[originally Owned] (Valid, Ownership)
–  Modified (Valid, Ownership, Exclusive)

151

The MOESI States

152

MOESI Rules

•  Ownership -> memory is not valid
•  Modified, Shared-Modified must respond to request,

update memory
•  All other changes, must notify
•  Can change E->M silently
•  Can change E->I silently
•  Can change S->I silently

153

Permitted States for MOESI

•  Multiple S, others I
•  1 E, others I
•  1 M, others I
•  1 SM, multiple M, others I

154

Cache Coherence

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Shared

Read(X)

Data(X)

Valid

Read to Unshared

155

Cache Coherence

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Valid

Shared

Data(X)

Shared

Read(X)

Read to Shared

156

Read to Dirty

Cache Coherence

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Stale

Shared Dirty Shared

Valid

Read(X)

Ack(X)

157

Cache Coherence

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Valid

Shared

Invalidate(X)

Shared

Stale

Ack(X)

Dirty Shared

Write to Shared

158

Dirty

Cache Coherence

P1

C1

P2

C2

P3

C3

P4

C4

Memory

Invalid

Dirty Dirty

Stale

ReadForOwn(X)

Data(X)

Write to Dirty

