2010]

<
3
2
H

|| PRESENTATION

The University of Auckland | New Zealand

2010

<
8
4
H

| PRESENTATION I

The University of Auckland | New Zealand

Computer Science 703
Advance Computer Architecture

2010 Semester |
Lecture Notes 9
[9Marl0
Memory Systems

James Goodman

/

Depar}ment

0O
Computer Science

How to Survive the Multicore Software Revolution (or at Least Survive the Hype)
http://software.intel.com/en-us/articles/e-book-on-multicore-programming/
http://software.intel.com/file/23369

OpenMP Tutorial:
https://computing.linl.gov/tutorials/openMP/

Pthreads Tutorials:
https://computing.linl.gov/tutorials/pthreads/
http://cs.gmu.edu/~white/CS57 1/pthreadTutorial.pdf

MPI Tutorial:
https://computing.linl.gov/tutorials/mpi/

Topics for revision: The C Programming Language -- Kernighan and Ritchie
(Amazon, Google, Library)

Processes and Threads
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Thread_(computer_science)

Additional Reading:

Ars Technica Snow Leopard Review (pages 11-12)
http://arstechnica.com/apple/reviews/2009/08/mac-o0s-x-10-6.ars/11
http://arstechnica.com/apple/reviews/2009/08/mac-0s-x-10-6.ars/12

2010|

<
&
2
H

|| PRESENTATION

The University of Auckland | New Zealand

2010

<
i
H

| PRESENTATION |

The University of Auckland | New Zealand

Coming Lectures

e Next week (week 4)

— Programming Parallel Systems

e Week 5

— Parallel computing with shared memory

Memory Systems (Caches)

* Basic Ideas & Organization

Placement: hashing
Replacement: LRU;
approximate LRU; random
Block size
Associativity
Capturing temporal/spatial
locality
Writing

* write-through/write-back

* write-allocation

* write buffers
Capacity, Compulsory &
Conflict misses
Hit/Miss ratio; Avg. Memory
Access Time (AMAT)

Cache hierarchy

Registers, cache, main memory, disk
Inclusion vs. exclusion
Optimizations

Specialized (I-cache, D-cache, TLB)

Victim cache

Requirements of main memory

Blocking/multiple requests
Interleaving; “false interleaving”

Miss Holding Status Registers MSHR

I/0 and other conflicts

Virtual memory (latency and aliasing)

Multilevel Caches

2-level Cache Performance Equations

L1-Inst L1-Data

v

)

+ Motivation:
— Optimize each cache for different constraints
— Exploit cost/capacity trade-offs at different levels
— » L1 caches
" — Optimized for fast access time (1-3 CPU cycles)
— 8KB-64KB, DM to 4-way SA

* L2 caches

e

L1 AMAT = HitTimeL1 + MissRateL1 * Miss PenaltyL1

— MissLatencyL1 is low, so optimize HitTimeL1

MissPenaltyL1 = HitTimeL2 + MissRateL2 * MissPenaltyL2

— MissLatencyL? is high, so optimize MissRatelL2

MissPenaltyL2 = DRAMaccessTime + (BlockSize/Bandwidth)

— |f DRAM time high or bandwidth high, use larger block size

L2 miss rate:

— Global: L2 misses / total CPU references
— Local: L2 misses / CPU references that miss in L1
— The equation above assumes local miss rate

L2-Cache — Optimized for low miss rate (off-chip latency high)
B — 256KB-4MB, 4- to 16-way SA
e + L3 caches
— Optimized for low miss rate (DRAM latency high)
— Multi-MB, highly associative, embedded DRAM?
EE282 - Fall 2008 Lecture 3-9 C. Kozyrakis

Multi-level Inclusion

EE282 - Fall 2008 Lecture 3-10 C. Kozyrakis

How to Maintain Inclusion

Inclusion: if data at L1 is always a subset of data at L2

Advantages of maintaining multi-level inclusion

— Easier cache analysis
+ Overall MissRate = MissRate, , x LocalMissRate, ,
— Easier coherence checks for I/O & multiprocessors
* Check the lowest level only to determine if data in cache

Disadvantages

— L2 replacements are complicated if L2 and L1 block sizes differ
— Wasted space if L2 not much larger than L1
+ The motivation for non-inclusion for some AMD chips

On L1 misses

— Bring block in L2 as well

On L2 evictions or invalidations

— First evict all block(s) from L1

— Can simplify by maintaining extra state in L2 indicates which
blocks are also in L1 and where (cache way)

L1 instruction cache inclusion?

— For most systems, instruction inclusion is not needed (why?)

— Bad for applications that stress the L2 capacity with small code
+ E.g. matrix multiply with huge matrices...

EE282 - Fall 2008 Lecture 3 - 11 C. Kozyrakis

EE282 - Fall 2008 Lecture 3-13 C. Kozyrakis

Non-blocking or Lockup Free Caches

* Idea:
— Allow for hits while serving a miss (hit-under-miss)
— Allow for more than one outstanding miss (miss-under-miss)
+ When does it make sense (for L1, L2, ...)
— When the processor can handle >1 pending load/store
+ This is the case with superscalar processors
— When the cache serves >1 processor or other cache
— When the lower level allows for multiple pending accesses
* Multi-banked, split transaction busses, pipelining, ...
+ What is difficult about non-blocking caches:
— Handling multiple misses at the time
— Handling loads to pending misses
— Handling stores to pending misses

Potential of Non-blocking Caches

EE282 - Fall 2008 Lecture 3 - 30 C. Kozyrakis

Miss Status Handling Register

+ Keeps track of
— Outstanding cache misses
— Pending load & stores that refer to that cache block
« Fields of an MSHR
Valid bit
Cache block address
* Must support associative search
Issued bit (1 if already request issued to memory)
For each pending load or store
+ Valid bit
+ Type (load/store) and format (byte/halfword/...)
+ Block offset
+ Destination register for load OR store buffer entry for stores

EE282 - Fall 2008 Lecture 3-32 C. Kozyrakis

- _ — T — Stall CPU on miss
Miss
Miss Hit
- —Tv— Hit under miss
L MissPenalty __]
Stall only when
result needed
Miss it Miss
[Miss Penaity] Multiple out-standing misses
[—issPenaiy 1
[issPenary 1
EE282 - Fall 2008 Lecture 3-31 C. Kozyrakis
MSHR
27 1 1 3 5 5

1
|Va||d]B|ockAddress Ilssuedl Valid | Type | Block Offset | Destination | Load/store 0
Valid | Type | Block Offset | Destination | Load/store 1
Valid | Type | Block Offset | Destination | Load/store 2

Valid| Type | Block Offset | Destination | | oad/store 3

EE282 - Fall 2008 Lecture 3-33 C. Kozyrakis

