2010]

<
3
2
H

| PRESENTATION

The University of Auckland | New Zealand

[| £ 2010]

The University of Auckland | New Zealand

Computer Science 703

Advance Computer Architecture

2010 Semester |
Lecture Notes 7
I6Marl10
ILP: (Dynamic Scheduling),
Multiple Issue Processors

James Goodman

/

Depar}ment

0O
Computer Science

Suggested (Online) Readings

Wikipedia: “Cache memory”
http://en.wikipedia.org/wiki/CPU_cache

Hill & Smith, “Evaluating Associativity in Caches
ftp://ftp.cs.wisc.edu/markhill/Papers/
toc89_cpu_cache_associativity.pdf

Jon Stokes, “Understanding CPU caching and performance”
http://arstechnica.com/old/content/2002/07/caching.ars

Hennessy & Patterson, “Eleven Advanced Optimizations of
Cache Performance,” Section 5.2 from H&P, pp. 293-309.

http://books.google.co.nz/books?id=pqYI3SWkA64C&pg=PA293&Ipg=PA2938&dq=11+advanced+optimizations+cache
+performance&source=bl&ots=009IXEIFGRG&sig=pGojOwj3FomuP2wMjlzqAjuqmnM&chl=en&eei=4qacs_Tw]Y_MsQ
Ol5u2_Aw&sa=X&oi=book_result&ct=result&resnum=18&ved=0CAgQOAEWAA#v=0nepage&q=11%20advanced
%200ptimizations%20cache%20performance&f=false

Note: Book is available online ar Google, bur “total pages displayed will be limited.” In this case,
that is pp. 238-298, thus including half this reference.

2010|

<
&
2
H

| PRESENTATION

The University of Auckland | New Zealand

| PRESENTATION | g 201 0 ||

The University of Auckland | New Zealand

Lectures This Week

* Today: ILP: H&P Sections 2.4-2.5
— Finish Dynamic Scheduling

— Hardware-based Speculation
— VLIW Processors

e Thursday: Memory Systems

Reservation Station

* Op:Operation to perform on source operands

* Qj, Qk: Reservation stations supplying
operands (zero indicates already received)

* Vj, Vk: Value of the source operands

* (A: information for memory address
calculation)

* Busy: indicates the reservation station/
functional unit are occupied

— How the dispatch unit knows when a functional
unit becomes available

2010]

<
3
2
H

| PRESENTATION

The University of Auckland | New Zealand

2010

<
8
4
H

| PRESENTATION |

The University of Auckland | New Zealand

From instruction unit

= = Code Example
Load-store ?
_— | S
vear
= : 1. LD F6, 32(R2)
o
E
e ; 2. LD F2, 44(R3)
stations &
3. MULD FO,F2,F4
Common data bus (CDB)
Figure 2.9 The basic structure of a MIPS floating-point unit using lo’s algo- 4 . S U B . D F8 y F2 y F6
rith_m. lnstructif)ns are. sent from the instruction‘ unit iqto the instruction quel.Je from
e e e it uses o detecing an resoning hosrds 5. DIV.D F10, FO, F6
Load buffers have three functions: hold the components of the effective address until it
is computed, track outstanding loads that are waiting on the memory, and hold the 6 . AD D . D F6, F8 ’ F2

results of completed loads that are waiting for the CDB. Similarly, store buffers have
three functions: hold the components of the effective address until it is computed, hold
the destination memory addresses of outstanding stores that are waiting for the data
value to store, and hold the address and value to store until the memory unit is avail-
able. All results from either the FP units or the load unit are put on the CDB, which goes
to the FP register file as well as to the reservation stations and store buffers. The FP
adders implement addition and subtraction, and the FP multipliers do multiplication
and division.

The University of Auckland | New Zealand

Exceeding the Flynn Limit Multiple Issue Processors

o]
S Issue Hazard Distinguishing
N Common name structure detection Scheduling characteristic Examples
M — Superscalar dynamic hardware static in-order execution mostly in the
* Michael Flynn observed that every s crmbedded spae:
. . 3 MIPS and ARM
unlprocessor bullt or p[oposed had a § Superscalar dynamic hardware dynamic some out-of-order none at the present
@ (dynamic) execution, but no
. . . . o 3]/ t'
maximum rate of execution of one instruction e ot s :
perscalar ynamic ardware dynamic with out-of-order execution Pentium 4,
(speculative) speculation with speculation MIPS R12K, IBM
per clock cycle Powers
VLIW/LIW static primarily static all hazards determined most examples are in
: . software and indicated by compiler the embedded space,
* Major challenge: how to detect hazards and (ofen impheiy) Such as the T1 Cox
. . . . EPIC primarily static primarily mostly static all hazards determined Itanium
guarantee correctness while issuing multiple softvare and indiatedexlcity
y the compiler

Figure 2.18 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix G focuses on compiler-based approaches. The EPIC approach, as embodied in the IA-64 archi-
tecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic
approaches.

instructions simultaneously?

The University of Auckland | New Zealand

