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INTRODUCTION

This paper is a frankly subjective reflection upon the suc-
cesses and failures in a large research project—the construc-
tion of a multiprocessor computer, C.mmp, and its operating
system, Hydra—by those most intimately involved in its
design, construction, and use.

C.mmp and Hydra have now reached a sufficient level of
maturity to establish themselves as useful and reliable com-
puting resources at Carnegie-Mellon University. The user
community has grown from primarily operating system im-
plementors to include researchers in other operating systems
and multiprocessors and casual or curious ‘users interested
in using the unique features of the system (e.g., the Algol 68
language, whose first implementation at CMU was on
C.mmp.).

Some of the scientific results we originally hoped for have
been published and are listed in the bibliography at the end
of the paper. Other results will be published in the future as
we observe the system under varied loads and over longer
pertods of time. In addition to these factual results, however,
we have learned a number of things of a more subjective
nature—things that we did right and, perhaps miore impor-
tantly, things that we did wrong. We believe that many of
these lessons are not unique to our project, and their pres-
entation here will be valuable to the larger computer science
community.

For those people unfamiliar with C.mmp and Hydra, we
shall provide a brief overview of multiprocessor research at
CMU, and some details about C.mmp, Hydra, and the goals
we originally set for the research project. This information
should serve as a general background against which our
evaluation of the project can be cast. The interested reader
will find more details in the bibliography.

Multiprocessor research at CMU

In late 1971 we at CMU decided to embark on a research
program to explore multicomputer structures—especially
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those structures in which the several computers share a
common address space. At the time it appeared to us that
the economics of LSI technology would make multi-mini or
multi-micro structures the architecture of choice far many
medium- to large-scale applications. In addition to the eco-
nomic arguments, there appeared to be many other advan-
tages to such structures, including high availability, expans-
ability, and so on.

Despite the fact that a number of multiprocessor com-
puters had been built prior to 1971, relatively little of a
scientific nature was known about them. Our goal was to
explore a number of alternative multiprocessor designs, ex-
amining both the hardware and software issues, and to re-
port on these explorations. To that end we undertook the
design and construction of two multiprocessor systems,
C.mmp and Cm*, and their associated software.

C.mmp, the subject of this paper, is a relatively straight-
forward multiprocessor. Begun in 1972, it connects 16 pro-
cessors to a large shared memory (up to 32 megabytes)
through a central crosspoint switch. The access time from
any processor to any word of memory is identical. Cm*,
started in 1975, replaces the crosspoint switch with a dis-
tributed, bus-oriented interconnection scheme between pro-
cessor-memory pairs. In contrast to C.mmp, the access time
from a Cm#* processor to a word of memory can vary by an
order of magnitude depending upon the particular processor
and memory module involved. These two machines have
quite different implications on the software which runs on
them; between them we are able to explore many of the
interesting issues of distributed processing.

C.mmp

C.mmp is a multiprocessor composed of 16 PDP-11's, 16
independent memory banks, a crosspoint switch which per-
mits any processor to access any memory, and a typical
complement of 1/0 equipment. A path through the switch is
independently established for each memory request and up
to 16 paths may exist simuitaneously. An independent bus,
the IP-bus, carries control signals from one processor to
another; no data is carried by this bus. Collectively the 16
processors execute about 6 million instructions per second;
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the total memory bandwidth is about 500 miilion bits per
second. In short, despite the fact that it is built from mini-
computers, C.mmp is a large-scale machine.

The current configuration of C.mmp includes 5 PDP-11/
20 processors (5 usec/instruction), 11 PDP-11/40 processors
(2.5 usec/instruction), and 3 megabytes of shared memory
(650 nsec core and 300 nsec semiconductor). All of the 11/
40 processors have been modified to include writable mi-
crostores; thus we are able to tailor their instruction sets to
specific applications. The cost of this configuration is
roughly $600,000, of which $300,000 is the cost of proces-
sors, $200,000 is memory, and $100,000 is the switch, IP-
bus and other special equipment. Of course, there is an
additional cost associated with 1/O devices.

Hydra

Hydra is the “‘kernel” of the operating system for C.mmp;
it is not intended to provide most of the familiar features of
an operating system (e.g., it does not provide files, a com-
mand language, or even a scheduler). Rather, Hydra pro-
vides an environment in which it is (intended to be) easy to
write user-level programs that supply these familiar facili-
ties. Hydra was designed in this kernal fashion in order to
permit (and encourage) experimentation with features and
policies appropriate to multiprocessors.

Hydra, which was a research project in its own right, uses
a capability-based protection structure, a scheme in which
only the possession of the appropriate kind of reference to
an object (c.g., a file) grants access to that object. In order
to allow user-tevel definition of operating system facilities,
Hydra extends the basic capability scheme with the ability
to define new types of objects and (protected) operations on
these object types. Thus it is possible for a user to define
new types of files, processes, message buffers, or whatever.
These newly defined types share an equal status with those
that already exist—which is another way of saying that
Hydra attempts to preempt as few decisions as possible,
thus allowing the users to tailor the system to their needs.

Software already built on top of Hydra in this manner
includes file systems, directory systems, schedulers, and
language processors (for Algol 68, L#, and a flexible com-
mand language).

Project goals

Two general goals influenced both the hardware and the
software design from the outset. The C.mmp/Hydra system
was envisioned as both symmetric and general purpose. By
symmetric we mean that replicated components, such as
processors, are treated as an anonymous pool; no one of
them is special in any sense. By general purpose we simply
mean that we did not intend to cater to only those programs
which need a multiprocessor; the multiprocessor character
of the machine is used to improve throughput across a set
of independent jobs as well as to multiprocess single jobs.
Both the hardware and software were designed with these
goals in mind.

The symmetry goal is manifest in a number of ways. At
the hardware level, for example, an interprocessor interrupt
mechanism was designed so that every processor could in-
terrupt every other processor (including itself) with equal
ease. At the software level there is no ‘‘master-slave™ re-
lation among the processors-—any processor may execute
any part of the operating system at any time (subject, of
course, to mutual exclusion in accessing shared data struc-
tures). At the user level, a job may execute on any proces-
sor, and indeed may switch from one processor to another
many times during its execution.

The impact of the general purpose assumption is more
subtle; it implies that we have to provide a broader range of
software than would be expected if our focus had been more
narrow. It also implies that optimizations to a specialized
problem domain should not be made in the operating system.
Some of the specific effects of this goal will be found later
in the evaluations. :

Performance evaluation tools

Many of our evaluations of C.mmp are based on data
obtained from a number of tools designed to measure system
performance. Although not one of our greatest successes,
we think these tools are important enough to present here.
We have three measurement tools: a script driver, a hard-
ware monitor, and a kernel tracer.

The Script Driver is a program which can placé a meas-
ured load on the system by simulating a number of users at
terminals performing various tasks. This known load can
make the interpretation of performance measurements much
easier.

The Hardware Monitor is a device built at CMU which
can monitor in real time the signals on a PDP-11’s bus. The
Monitor is very useful in measuring the activity of a single
C.mmp processor, and for recording the activity of small
portions of the operating system. It is less effective in meas-
uring total system performance.

The Kernel Tracer, the most commonly used tool, is built
into the Hydra kernel. It allows selected operating system
events (e.g., blocking on semaphores, context swaps) to be
recorded while applications are running. The accumulated
data can be processed off-line to give a detailed record of
what was happening on each processor. Naturally, the use
of the tracer slows down the entire system, but this obvious
point doesn’t really secem to matter in practice.

. The importance of these tools should not be underesti-
mated. In any system as compiex as an operating system,
design decisions are often based on intuitive assumptions of
performance tradeoffs. Without accurate measurements,
these design assumptions cannot be verified. Certainly we
found that some of our assumptions were wrong, causing us
to redesign several parts of Hydra.

Format of the paper

The body of this paper is a highly edited report of a
meeting called specifically to evaluate the C.mmp/Hydra
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project. The attendees were representatives of the various
groups involved in the design, implementation, and use of
C.mmp and Hydra; hardware designers, operating system
implementors, those doing performance evaluation, and four
major users. In all, sixteen persons attended, the maximum
number we felt could interact productively.

The purpose of the meeting was to solicit the opinions of
the participants concerning the nature of our successes and
failures. We had also solicited written opinions from a wider
group—in fact, just about everyone who has had anything
to do with C.mmp and Hydra. The participants knew, of
course, that the results would be reported in this paper.

The meeting and written responses produced over a
hundred distinct comments. To organize these in a coherent
fashion we asked the participants to decide upon our five
greatest successes and five greatest failures. With some ex-
ceptions the commenis have been organized under these
headings; the participants’ comments have been indented to
separate them from background information and summary
comments.

Any paper that sets out to reflect upon the successes and
failures of a research project is potentially self-serving. We
were extremely conscious of that danger and have at-
tempted, through the format of the meeting and the editing
of its transcript, to construct the paper in a manner which
minimizes this effect. Either our initial fear of being self-
serving was groundless, or the format chosen worked ex-
tremely well. We shall let the readers judge for themselves,
but we feel that the result has been a reasonably objective,
well-balanced view of the C.mmp/Hydra project.

OUR GREATEST SUCCESSES AND FAILURES

We shall begin this report with what, in fact, happened
. last at the meeting—a listing of our most notable accomplish-
ments and mistakes. This list was created after all opinions
had been expressed, thus the participants had the opportu-
nity to hear the opinions of the others before deciding upon
the content of the list. To keep the discussion crisp we
arbitrarily chose to limit each list to five items. Surprisingly
(to the editors at least), despite the differing interests of the
participants there was essentially complete agreement on
the items to be included on each list.

Our notable accomplishments:

We constructed a cost-effective, symmetric multiproces-
sor.

We provided, in Hydra, a capability-based protection sys-
tem which allows the construction of operating system
facilities as normal user programs.

We were able to distribute the Hydra kernel symmetrically
over all processors.

We provided successful mechanisms for the detection of,
and recovery from, software and hardware errors.

We used an effective methodology for constructing the

Hydra kernel.

Our notable disappointments:

The hardware is less reliable than we would like.

The small address of the PDP-11 has a large negative
impact on program structure and performance.

We are unable to partition C.mmp into disjoint systems.

We did not put enough human-engineering into the soft-
ware interface to the user.

We did not give enough attention to project management.

Neither our successes nor failures are, of course, unqual-
ified, and the story behind each is littered with smaller
successes and mistakes. Moreover, there are dependencies
between the things that went well and those that didn’t; the
fact that we have a running 16-processor system must be
tempered, for example, by a poorer-than-expected reliabitity
record. The reliability record, on the other hand, led us to
greater concern for software structures that detect and sur-
vive hardware malfunction—and we count those structures
among our most important accomplishments. For all these
reasons, while we have used the success/failure list to or-
ganize the paper, one should not expect all the points listed
under a ‘‘success’’ to be positive in nature. On the contrary,
we believe it important to expose the contributing events,
both positive and negative, as well as the major points listed
here.

With that introduction then, here is the report of the
meeting.

THE SUCCESSES

A cost-effective multiprocessor

C.mmp’s design goals included speed, simplicity, and the
use of as many commercially-available components as pos-
sible. Because C.mmp is a unique computer some critical
parts had to be designed and built especially for the project.
While this was a burden, it did give us maximum freedom
in the design of these critical components, including the
crosspoint switch, the IP-bus, and the processor modifica-
tions for memory relocation. These were all built by the
CMU Computer Science Department Engineering Labora-

tory.

The basic design goals have been justified by experience,
with speed having been the least important emphasis.

CMU-built hardware is not a large proportion of the total
system cost.

The crosspoint switch is very reliable, and fast enough.

The use of immediately available components was a major
factor in getting C.mmp built as fast as we did, but it
limited us in taking advantage of technology which de-
veloped in succeeding years.

We were especially happy about the evaluation of the
crosspoint switch, which many people thought would be
C.mmp’s Achilles’ heel. In retrospect we think we were too
concernied about raw speed in the design of the switch and
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memory; as it turns out, most applications are sped up by
decomposing their algorithms to use the multiprocessor
structure, not by executing on a processor with short mem-
ory access times.

The comments at the meeting did reflect some specific
complaints about the hardware, several of which we later
decided were significant enough to be listed as some of our
major disappointments. Many of these stemmed from our
choice of a processor for C.mmp. In 1971, only the PDP-11/20
minicomputer met our requirements. In 1974 we decided to
take advantage of technology advances and use the new,
faster PDP-11/40 processors to complete C.mmp. One fea-
ture of the PDP-11 architecture which might be expected to
impact the goal of symmetry for C.mmp is the close asso-
ciation of an I/0 device with exactly one processor.

The PDP-11 processors required more modifications than
we expected to ensure the security of the operating sys-
tem.

The PDP-11’s 16-bit address is too small for many inter-
esting applications.

Having to supperting two PDP-11 models complicated the
development of the processor modifications and the op-
erating system. It would have been better to have had a
single processor model, regardless of iits speed.

Having I/O devices bound to particular processors made
it difficult to move a device from a malfunctioning pro-
cessor to a good one, but device utilization was not oth-
erwise sacrificed.

Perhaps more than anything else, our experience with the
PDP-11 has given us a much clearer idea about what features
are really important in choosing a processor, and which are
not. Our consensus is that speed is not very important, for
reasons already cited in conjunction with the crosspoint
switch. Reliability is very important, but we found that much
can be done in software to increase the overall system re-
liability, as long as the hardware has some basic error-de-
tection mechanisms. (Our own approach to this is described
later.) The address size is important because if it is too small
for the expected applications, the ensuing problems cannot
be completely overcome by software. The PDP-11 I/O ar-
chitecture is an example of a feature that turned out to be
unimportant because it could be completely hidden from
users by software.

At a higher level, users of C.mmp seemed satisfied with
the overall system performance.

Our ability to support multiprocess algorithms is well es-
tablished by the performance of the many applications on
C.mmp.

We have successfully supported user processes that re-
quire real-time response, although this was not one of our
major goals. )

At the end of the paper we will give some performance
figures for an application which runs on several CMU com-
puters, including C.mmp.

Most often cited criticisms of the system were:

Interaction with operating system facilities, in or out of
the kernel, is accompanied by a high overhead.

The most serious obstacle to rapid execution of large
systems is the limitation imposed on programming by the
small PDP-11 address.

Memory contention significantly degrades performance
when many processes are accessing the same memory
-page. This is usually caused by the processes sharing the
same code pages. . -

Memory contention is very serious when using high-per-
formance 1/0 devices which depend on rapid access to
memory during transfers.

The performance bottlenecks are due to a combination of
avoidable and unavoidable factors. We were initially dis-
tressed at the high operating system overhead (it takes about
500 microseconds to enter and exit the kernel), but we at-
tribute most of it to a lack of experience with the fairly
complex features we wished to implement. We are confident
that the overhead is not an inevitable result of our protection
mechanisms, nor is it due to the hardware design.

Memory contention, caused by several processors trying
to access the same memory simultaneously, was a perform-
ance concern from the outset of the project. Our simulation
studies indicated that its effect would be minimal, but in
practice several circumstances conspired to make the prob-
lem significant. First, typical large multiprocess applications
tend to share the same code among all processes, and this
greatly increases the probability of accesses to the same
memory. Second, the installation of per-processor caches,
which were to handle this code-reference problem, has been
delayed due to various resource shortages. Finally, we found
that devices such as our disks and drums could not tolerate
the long memory access times characteristic of periods of
high contention. A software solution to this problem had to
be implemented.

The small address problem is sertous for large applications
which cannot fit within the 64K address space on the PDP-
i1. Although we could not have avoided this problem, we
were guilty of underestimating its significance for the appli-
cations which were to run on C.mmp. The problem is con-
sidered in more detail later in this paper.

Protected subsystems

In Hydra, the construction of operating system facilities
outside the kernel is centered around an abstraction called
a protected subsystem. A subsystem is, in its basic form, a
new object type combined with a set of procedures which
operate on objects of that type.

Our experience derives from over twenty working sub-
systems implementing schedulers (Policy Modules in Hydra
terminology), files, directories, an 1/O device allocator, and
a host of other traditional operating system facilities. As



‘Reflections in a Pool of Processors 943

software development continued by diverse users, we were
curious to see whether all the required software could be
built within the subsystem abstraction, whether such devel-
opment could be done easily and quickly, and whether the
resulting facilities could be easily merged into the user en-
vironment.

The protected subsystems abstraction is very powerful in
designing operating system software in a capability envi-
ronment.

It is easy to design subsystems which are easy to use and
which are protected from any interference from software
outside the subsystem.

The subsystem structure makes it easy to provide several
coexisting and competing facilities.

The subsystem structure is useful for isolating facilities
under development or being debugged.

New subsystems are easily incorporated into the standard
system.

We think the subsystem concept in Hydra is as useful as
the closely-related notion of extended data types has been
in the field of programming languages. Part of the original
motivation for the subsystem concept was our desire to
allow alternate solutions to problems which we could not
foresee in a multiprocessor environment. However, we
found that subsystems are also very useful in debugging
versions of “‘standard” systems without interfering with
users.

Many people at the meeting were critical of the failure to
follow up the subsystem design with the software tools
which would encourage building subsystems in this new
environment.

Subsystem construction still suffers from being ad hoc,
there being inadequate software support for managing the
programs, data structures, and documentation which com-
prise the subsystem.

The development of system software (subsystems) by
many different people makes it more difficult to impose
any standardization. .

Subsystems are less likely to be successful when they
attempt to implement traditional (non-capability) systems
in traditional ways.

These problems are the result of our not giving the user
environment outside the kernel as much attention as we
gave the Hydra kernel itself. We consider it one of our worst
mistakes and will discuss it more later in the paper.

Scheduling is an example of a traditional operating system
function which, in Hydra, is partially implemented outside
the kernel by a subsystem called the Policy Module (PM).
We thought that providing scheduling policy outside the
kernel would allow us to experiment with different special-
ized strategies for scheduling cooperating processes.

The first Policy Module is a distinguished subsystem for
several reasons. First, it was one of the first subsystems
built outside the kernel and exhibits many of the mistakes
of any first attempt. Second, it is a particularly nice example
of our ability to build operating system facilities outside the
kernel. Finally, it interacts very closely with the kernel, so
the efficiency of the kernel interface is emphasized.

The first Policy Medule was operational from 1974
through May, 1977. Our basic evaluation at the meeting was
that

The first Policy Module adequately demonstrated that tra-
ditional policy decisions couid be made outside the kernel.

In spite of this, many people noted flaws in the imple-
mentation which were glossed over in our rush to see if the
PM would work.

Insufficient attention was paid to reliability and through-
put in the Policy Module.

The PM-kernel interface turned out to be more complex
than we had anticipated.

We included things in the kernel facilities which logically
belonged outside; this acted to complicate the kernel in-
terface. [For efficiency reasons, we implemented in the
kernel some facilities which should have been outside
according to our philosophy.

Hence,

The construction of Policy Modules was not as easy as
we had imagined before we actually tried it.

Because we expected a PM to incorporate specific knowl-
edge about the processes it was scheduling, we anticipated
having many PM’s simultaneously scheduling different sets
of processes. Indeed, having several PM’s run at the same
time was no problem, but again the performance left some-
thing to be desired.

To support multiple Policy Modules, more facilities are
needed in the kernel to ensure a fair allocation of proces-
sor and memory resources to each Policy Module.

We began to build a second version of the Policy Module
almost as soon as the deficiencies in the first were recog-
nized. This design proceeded in parallel with performance
improvements to the first PM, and in fact we were running
both PM’s simultaneously for a short time.

The distributed operating system

Hydra was designed with no master-slave relationship
among processors. With the exception of the lowest level of
/O device support, all system tasks may run on any and all
processors. An immediate result of this is that we expected
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a high degree of parallelism in Hydra and the corresponding
need for effective synchronization methods.

There are two notable aspects to our approach to syn-
chronization. First, we decided to synchromize on data
rather than code. Every data structure which can be ac-
cessed by more than one processor is provided with a lock
or semaphore which is used to ensure mutual exclusion.

Second, we provided a range of synchronization primi-
tives, from very fast “locks” to much slower “sema-
phores.”’ The tradeoff here is the overhead needed to P or
V the lock or semaphore against the resources which will
be tied up by a process waiting to pass the lock or sema-
phore. Small data structures which are locked for short
periods of time (order 300 microseconds) use locks, which
involve a very small overhead (approximately four instruc-
tions) when the process does not block. Large data struc-
tures, or data structures whose processing may be inter-
rupted for long periods of time (as when waiting for 1/0) use
semaphores, which tie up fewer resources when blocking is
necessary.

The simple, symmetric hardware has permitted a much
simpler operating system design.

Hydra hides the processor-device correspondence so well
that most of Hydra, and all the software at the user level,
is unaware of the actual location of 1/O devices.

The symmetric distribution of the operating system has
been an unqualified success. We are able to achieve a
high degree of parallelism within Hydra, and the system
is insensitive about the number of processors available.

The use of asynchronous processes (**demons’”) to imple-
ment system functions resulted in simpler designs and
improved performance.

In providing synchronization within the kernel, we believe
we profited by locking data structures rather than code.

Our decision to provide several types of synchronization
mechanisms gave us much design flexibility.

The natural synchronization primitives and our conscious
and constant commitment to a high degree of parallelism
has resulted in our encountering few software bugs caused
by inadequate synchronization.

We have found that the use of demons to absorb much of
the system work load outside the normal computational
stream has simplified much of Hydra's design. We might
not have used this technique if we did not have so much
confidence in our synchronization techniques and our ability
to achieve a high degree of parallelism.

Coverage of hardware and software errors

There are times when clouds do have silver linings. From
the earliest days of the project we had to contend with
unreliable hardware and our own software mistakes; more-
over, we could not afford a 24 hour/day operator to reload

the system after each crash. Thus we were forced to con-
sider the general problems of software detection and recov-
ery from errors—whether they be hardware or software
induced.

When an error is detected by Hydra, we try to answer a
number of questions. What was the exact error? Can we tell
if it is due to a hardware or software malfunction? If hard-
ware, is the problem repeatable or transient? Have any
critical data structures been damaged? If so, can the damage
be repaired? Can we eliminate a piece of malfunctioning (or
just suspicious) hardware and still run? In all cases, our aim
is to keep the system running with as much functionality as
possible.

Our probability of detecting an error soon after it has
occurred is increased by building error-detection mecha-
nisms into the hardware and software. The CMU-built mem-
ory relocation units implement parity checking-on every
memory byte and on the address bus through the crosspoint
switch. Software modules employ redundant representation
and other techniques to try to limit the propagation of errors
not detected by the hardware.

Recovery mechanisms invoked by the detection of any
error employ a ‘‘suspect-monitor’’ paradigm to ensure that
a failure in the recovery processor may be detected cleanly.
Two processors are always involved; one, the suspect, at-
tempts to record the system state at the time of the error;
the other, the monitor, watches the suspect and assumes
control if the suspect is unable to finish. The suspect is
always thé processor on which the error occurred. The mon-
itor is selected at random from all other processors. There
are a number of steps which can be taken during a recovery
action depending on the type of error, including removing
processors or memories from the system and producing ex-
tensive crash dumps for later off-line analysis.

The fault tolerance built into some kernel modules re-
sulted in making them among the most reliable in the
system—more reliable than other modules coded by the
same programmer without using such techniques.

The software facilities for detecting software and hard-
ware errors and restarting the system automatically have
been a big success.

Similar facilities in user software are beginning to be de-
veloped and show much promise in improving overall
system reliability.

Even though we are proud of our current error-handling
mechanisms, we know that system needs more work in this
area, particularly in the area of supplying policies to deter-
mine which mechanisms should be invoked for different
types of errors. While it is true that we can recover from
virtually any error by initiating an automatic reloading of
the operating system, this is a drastic action we would like
to use only in the case of truly catastrophic errors. Unfor-
tunately, the difficulty in pinpointing the exact location of
some hardware errors and the difficulty in verifying the
consistency of the complex capability data structure has
resulted in our classifying almost all errors as ‘‘cata-
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strophic” in this sense. We are in the midst of redesigning
both hardware and software to correct these deficiencies.

Software development methodoloéy

Our initial goals for the Hydra implementation did not
explicitly include the notion of exploring a software engi-
neering methodology. Nevertheless, we used a method
based on Parnas’ ‘‘modular decomposition’’* and it worked
quite well; indeed many of us believe that without it the
praject would not have succeeded.

The methodology used caused us to divide the units of

work (programming tasks) along the lines of the major data
structures in the system. A module (and hence a program-
mer) was responsible for the representation of, and all op-
erations on, a data structure. No one other than the respon-
sible programmer had access to knowledge concerning the
implementation details.

Because methodology per se was not our major goal we
were not fanatical about enforcing the methodology, and
were often less precise about the specifications than we
might have been. Both the positive and negative aspects of
this informal approach are reflected in the following re-
marks:

We believe that it is a measure of the success of the
modular implementation of the kernel that one full-time
programmer can maintain this program which comprises
2000 (listing) pages of source code.

The independent implementation of the modules in Hydra
resulted in a lack of any uniform coding style and in some
duplicated effort in interfacing to the underlying hardware.
The effect was not very serious since all the implementors
were highly talented, exhibiting differences in style rather
than quality.

Because modules were implemented independently, no
one initially had a detailed knowledge of the entire system.
This made debugging more difficult and resulted in a dif-
ficult transition when Hydra began to be maintained by a
single programmer who was not part of the original im-
plementation team.

Coding of the kernel began quickly after the initial design.
Some think too quickly.

Loose management coupled with the modularization tech-
nique worked well except in promoting a standardization
of coding styles.

Information hiding as a modularization technique resulted
in coding situations in which information necessary to
make a decision was not available.

As Hydra developed and was modified, the original, clean
modularization began to break down as new features were
added and performance bottlenecks removed.

* Parnas, *‘On the Criteria to be Used in Decomposing Systems into Mod-
ules,” CACM, 15, 12, pp. 1053-1058, 1972.

We still think the modular decomposition methodology is
extremely good for structuring large systems. In our expe-
rience, breakdown of the modular structure occurs mainly
when programmers in the midst of debugging adapt ‘‘quick
and dirty”’ solutions which do not preserve modularity.

All but a very small part of Hydra is written in a high-
level implementation language, Bliss-11. There seems to be
no question that it was possible, indeed advantageous, to
write the kernel in Bliss, but there were problems. The Bliss-
11 compiler was developed only shortly before the kernel
was begun and was an independent research project (inves-
tigating compiler optimization techniques). There was some
initial friction between the two groups, but both appear to
have benefited in the long run.

The Bliss-11 compiler was designed to compile a slightly
modified version of the Bliss§10 language into very com-
pact PDP-11 code. This it does.

The implementors of the Hydra kernel were, and continue
to be, a major influence on the addition of new features
to Bliss-11.

The facilities of the Bliss-11 language and compiler had a
significant influence on the coding of Hydra.

Some of us believe that Hydra could not have been written
in this environment without a language of Bliss’s caliber.

Bliss-11 preceded Hydra by too short a time. The unreli-
ability of the compiler during its first year of use hindered
kernel development.

Compatibility between Bliss-11 and Hydra was a problem.
Changes in Bliss-11 sometimes had unfortunate conse-
quences on Hydra code.

We think these comments reflect the close interdepend-
ence between a large programming project (Hydra) and the
software engineering tools it uses (Bliss-11). Bliss was in a
real sense critical to Hydra’s development. The need to
debug both Bliss and Hydra simultaneously was a necessary
burden.

A common measure, afbeit a crude one, of a methodology
is the productivity of the programmers which used the meth-
odology. By that measure our development strategy worked
very well; the average productivity has been about 20 in-
structions per man-day for kernel code (the typical industrial
average for similar code is 5-7 instructions per man-day).

THE FAILURES
Hardware reliability

Hardware (un)reliability was our largest day-to-day dis-
appointment at the time the evaluation meeting took place.
The aggregate mean-time-between-failure (MTBF) of
C.mmp/Hydra fluctuated between two to six hours, where
a failure is defined to be any situation which triggers the
recovery actions described earlier. About two-thirds of the
failures were directly attributable to hardware problems.
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Thére is msufficient fault detection built into the hard-
ware. )

We found the PDP-11 UNIBUS to be especially noisy and
erTor-prone.

Our paging drums were chosen for their predicted per-

formance, but their reliability was so poor that perform-
ance was often a moot point.

The crosspoint switch design is too trusting of other com-
ponents; it can be hung by malfunctioning memories or
processors. [This almost never happens, but when it does
automatic recaovery is impossible.]

We made a serious error in not writing good diagnostics
for the hardware. The software developers should have
written such programs for the hardware.

In our experience, diagnostics written by the hardware
group often did not test components under the type of
load generated by Hydra, resulting in much finger-pointing
between groups. Faulty hardware is often kept in the user
system because only Hydra can provoke and pinpoint
errors.

Several components of the system have gone through
several development cycles, mostly to improve the handling
of exceptional conditions, but we are basically limited by
the capabilities of the PDP-11 and its UNIBUS. There ap-
pear to be two flaws in many of the off-the-shelf compo-
nents. One of these was mentioned during the meeting: the
lack of mutual suspicion. There are a number of ways in
which the entire system can be made to fail if one inessential
component does not operate according to specifications.
The other flaw was not mentioned: the failure to contain
errors. Once an error has been detected the goal should be
to make absolutely sure that the damage won’t spread. Many
of the standard components, unfortunately, will ‘‘complete’’
an operation even when an error is known to exist; in com-
pleting the operation they destroy data, thus makmg the
error unrecoverable.

There is some good news to report, however. Following
the meeting, increased emphasis was given to hardware
maintenance. As this paper is written (January 1978) our
MTBF has increased to about ten hours and many of the
hardware problems seem to be settling out.

The small address space problem
The PDP-11 is a 16-bit minicomputer; of particular interest

is the fact that this restricts all addresses generated by a
user program to be 16 bits long. These 16 bits can be used

to address no more than 64K bytes of memory. We refer to -

this limitation as the ‘*small address problem”, or SAP.
Although we were initially aware that the operating sys-
tem would have to provide some sort of facility for allowing
a user to address more than this amount of memory, we did
not appreciate how restrictive the 16-bit limitation would be
or to what extent circumventing it would affect performance.

Our initial impression was that the 16-bit limitation would
be offset by the ability to create multiprocess programs—
that the typical program organization would be a larger num-
ber of processes, each addressing a smaller amount of mem-
ory. That impression turned out to be false, as is reflected
in some of the comments made at the meeting:

Our initial prediction that programs would be implemented
as small subsystems using less than 64K was wrong.

Multiprocess algorithms do not always produce small pro-
grams.

Even though programmers are writing programs which
execute on PDP-11’s, their tasks are CDC 6600-size.

There is nothing good to say about this problem other
than that we were pretty much forced into it.

To circumvent this problem, Hydra provides a facility,
supported by the hardware, to divide the address space into
8 pieces, each of which is called a ‘page.”” The user is
permitted to have an indefinitely large number of pages, but
to address only 8 of them at any instant. Operating system
facilities are provided to allow the user to dynamically des-
ignate which of his pages are to be addressable; he does this
by associating a page with one of the 8 “‘relocation registers”’
maintained by the hardware. Thus, except that the cost of
loading is larger, the addressing scheme is very similar to
the use of ‘‘base registers” on 360-370 style machines. We
have found this facility, however, to be less than ideal.

Page boundaries are absolute, and the programmer must
always be aware of them.

The problem is in addressing data. There are easy solu-
tions to addressing code segments.

- More relocation registers and a smaller page size would
reduce but not eliminate the problem.

We believe the problem would exist even if making pages
addressable required no overhead.

Because of the performance penalties associated with
managing the address space, the inconvenience cannot be
hidden from the user through a high-level language:

L#+’s ability to allow access to large amounts of memory
has been hindered by the short PDP-11 address. [L* is a
list processing language used for the implementation of
large systems.]

It must be emphasized that not all programs are affected
by the small address space problem:

In practice, most subsystems have no problem fitting into
64K.

Our failure on the small address problem was really one
of misappreciating the way in which the machine would
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actually be used. The remark above to the effect that many
tasks are 6600-size is a telling one. The machine is compa-
rable in size to a 6600 and people want to use it that way.
Big problems often imply big data and we failed to appreciate
that during the initial design.

The partitionable system

When we first considered the possibility of building a
multiprocessor in 1971, the ability to patrtition it into several
disjoint subsystems was on our list of advantages for such
architectures. While we are able to partition processors and
memory, we are not able to run Hydra in more than one
partition.

C.mmp can be partitioned in such a way that some pro-
cessors and memories can undergo maintenance and run
stand-alone diagnostics without interfering with the larger
partition running the operating system.

The primary obstacle to running the operating system in
two partitions is the money required to provide each par-
tition with an adequate complement of I/0O devices and
memory.

We do not know how to provide meaningful communi-
cation between the capability structures of the two oper-
ating systems.

The principal effect of the failure to meet this goal has
been that we must allocate disjoint time for users, hardware
maintenance, and operating system testing. At present 28
hours each week are reserved for maintenance. This parti-
tioning has been very inconvenient for all concerned, and
has certainly impeded progress on several occasions. Yet it
seems clear that we have been unwilling to spend the money
necessary to solve the problem—thus it seems safe to con-
clude that the inconvenience has not been debilitating.

(The lack of) human engineering

As we have mentioned in several contexts previously, the
human interface to the C.mmp/Hydra system is not well
designed. To some extent this resulted from the novelty of
the underlying system structure (we couldn’t anticipate
some of the kinds of facilities that would be needed by users
of either a capability-based or a multiprocessor system). To
a large extent, however, the failure seems to have been one
of having concentrated on the new, innovative aspects of
the system and ignoring more mundane issues.

There is a lack of human engineering in the operating
system software which interacts directly with a user sitting
at a terminal.

1t is difficult to pick up the minimal knowledge needed to
know how to do useful things at a terminal.

New users tend to have bad first impressions of the sys-
tem.

We did not realize how much work was required to make
a smooth user interface and so did not allocate enough
resources for it.

We suspect the user environment would have received
more work had the kernel implementors had to use it
during their software development. (All kernel develop-
ment and maintenance has been done on the PDP-10 com-
puter, which has the Bliss-11 compiler and a linker for
C.mmp.)

One particular aspect of the human interface is especially
interesting—the command language. It seems to be an al-
most universal phenomenon that people don’t like whatever
command language they havéused in the past. We were no
exception. Thus, rather than modeling our command lan-
guage on any existing one, we chose to strike out in another
direction. In particular, we chose to make the command
language a (modest) interactive programming language—
with declarations of variables, assignments, conditional and
looping control constructs, macros, and so on. The power

. of this approach seems unquestionable, as is reflected by

the following remarks. The remarkable thing (to the editors)
is the lack of negative remarks during the meeting; the com-
mand language usually comes under heavy attack on other
occasions.

The Command Language is much more flexible and pow-
erful than the command scanners found on most systems.

The concept of the Command Language as a programming
language was good.

The Command Language user on C.mmp is unigue in
having complete access to the Hydra environment. Sub-
systems can almost be implemented directly in the Com-
mand Language.

Error reporting by the Command Language is poor.

Another aspect of the human interface is the (lack of a)
spectrum of programming languages:

C.mmp lacks the wide range of languages available on
conventional systems.

The L* system provides its users with a complete envi-
ronment compatible with that provided on the PDP-10 by
its version of Lx*. .

The L* environment does not seem conducive to the con-
struction of subsystems.

The Algol 68 implementation on C.mmp gives users access
to the multiprocess capabilities of C.mmp, but does not
yet provide access to capabilities or the Hydra protection
environment.

The fact that most subsystem development takes place
partially on C.mmp and partially on the PDP-10’s (which
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have Bliss-11 compilers) is not a severe hindrance now
that smooth communication facilities exist between the
machines.

It is interesting (to the editors) that the word ‘‘baroque”
was not used during the meeting; in other contexts it often
is. Several features of Hydra and its subsystems do exhibit
‘*‘second-system-itis’’. There are things which are more gen-
eral, and more complicated, than necessary.

Project management

The C.mmp/Hydra project was not a large project by most
standards; there were never more than about 15 people,
mostly students, working on the project at any one time.
Nevertheless we made a number of errors which can only
be classified as failures in the management of the project;
taken together, these errors constitute one of our largest
failures.

Among our errors is a classic! Because the hardware and
Hydra structures were new and exciting, we tended to focus
on them to the exclusion of the more mundane things which
also determine the ultimate utility of any system. This point
recurred in many of the points raised at the meeting:

The manpower allocated to the Policy Module was inad-
equate. In fact this was true of all software outside the
kernel.

The failure to stress reliability and performance in the first
PM was a mistake.

The user environment was ignored at first because of our
natural preoccupation with the Hydra kernel and the re-
search problems it embodied.

We underestimated how much work would be involved in
constructing the user environment.

We have a much better idea now about the proper struc-
ture (or at least an adequate one) of the user environment
than we did when we began building the first subsystems.
Implementing basic concepts such as ‘‘jobs” and ‘‘termi-
nals”’ in nonpriviledged software has subtle design and re-
Liability implications which we ate just now appreciating.

The management style used throughout the project was
informal. There were very few memos, formal design re-
views, or the other mechanisms of tight management con-
trol. In most ways this felt appropriate to the academic
environment and the high caliber of the individuals involved.
It led to a number of problems, however, and the consensus
of the meeting was that the management had been too loose.
This is especially evident in the comments relating to a lack
of formal specifications and the lack of uniform documen-
tation and coding standards.

The fact that the Hydra implementors did not have to use
C.mmp for software development contributed to the ne-
glect of the user environment.

The lack of detailed hardware specifications hindered the
parallel development of hardware and software but not
the end result.

Software was occasionally developed which took advan-
tage of unspecified *“‘features’’ of the hardware, making
them difficult to change.

Loose management coupled with the modularization tech-
nique worked well except in forcing standardization of
coding styles.

We should not have depended on graduate students for
complete software development for so long. Graduate stu-
dents cannot keep deadlines reliably and are not tied to
the project. [Furthermore, we feel that Ph.D. students
should not spend an inordinate amount of time doing the
standard programming chores which characterize any at-
tempt to bring up a complete operating system.)

Another class of management errors relates to what might
be termed “‘public relations.”” Being academics, we instinc-
tively react somewhat negatively to the *‘attention-getting”’
aspect of PR, forgetting that its *‘information-providing’’
function is absolutely necessary. In a number of ways we
failed to make information available publicly.

Our problem is basically public relations—performance
measurements indicate we have a winner on our hands.

The lack of a smooth user environment was a deterrent
to new users which could form the foundation of a happy
and vocal user community.

Since Hydra was not easily accessible to people outside
the department, we could not adopt a ‘‘try it and see”
attitude. »

Documentation is needed to encourage use internally and
generate credibility externally.

'A DATA SAMPLER

The previous section concludes our report of the meeting.
Since the body of the report contains many subjective and
unsubstantiated comments, we decided to include a few
examples of the kinds of data on which these comments are
based. We have chosen two examples: (1) a study of the
effect of the small address problem on a specific user pro-
gram, and (2) a study of the contention for locks in the
Hydra kernel.

A study of the small address problem

The program used in this study of the SAP is HARPY.
HARPY is a speech-understanding system which has been
implemented on all of the departments major computers:
C.mmp, a stand-alone PDP-11 running under UNIX, and the
PDP-10 (both KA10, circa-1967, and KL10, circa 1976, pro-
cessors are available in the department). Since HARPY ex-
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ists on all these machines, it makes a convenient benchmark.
(We should point out that HARPY is not necessarily the
best application for C.mmp, nor are the HARPY implemen-
tations on C.mmp known to be optimal.)

Figure 1 summarizes the data obtained from a series of
experiments with HARPY working on a rather small task,
namely a voice-input desk calculator that has a 37 word
vocabulary.

The horizontal dashed lines represent the performance of
single-process implementations of HARPY on the depart-
ments uniprocessors. The solid curves represent the per-
formance of two implementations on C.mmp, both of which
can utilize any number of processes.

The two HARPY versions on C.nmp differ in their as-
sumptions about the addressability of data. The *‘static map-
ping”’ version knows that all of its data is always address-
able, while the “*dynamic mapping’’ version expects to have
to do some mapping of relocation registers in order to ad-
dress the data. In this second version, it must be realized
that, in fact, all the data is addressable, and thus no operat-

ing system overhead is involved. (The overhead is HARPY -

checking to see if relocation is necessary—it never is.)

This type of data dramatically illustrates the effect of the
SAP on performance—it costs nearly a factor of three in
this example. The effect on programming difficulty is at least
as great, but is not so easy to illustrate.

Note that the one-process, static mapping version of
HARPY runs very nearly as fast as the version running
under UNIX, even though the C.mmp version has all the
necessary mechanisms for multiprocessing. We think this
indicates that the synchronization primitives (spinlocks in
shared memory) do not contribute much overhead in this
application.

Also note that little improvement in performance is seen
beyond three or four processes. This is simply due to a lack
of work to do—the small vocabulary simply isn’t compli-
cated enough to keep the processors busy. On larger vocab-
ularies we typically see noticeable improvement out to
eight processes. The upturn in the curves towards the end
is due to the fact that all the faster PDP-11/40 processors
are in use. As soon as one PDP-11/20 is used, the whole
assemblage of processes slows down. This is because the
particular decomposition of the algorithm limits the speed
to that of the slowest process.

A study of kernel lock contention

One of the largest potential bottlenecks in a distributed
operating system is contention for locks on shared data
structures. The hardware monitor has been used to study
this: the types of results obtained are shown in Figure 2.

In this study, three programs with seemingly different
. demands on the system were run while the hardware monitor
measured the activity on one processor. The data is illustra-
tive only, since no claim is made that the programs in any
way represented a ‘‘typical’’ system load.

The principle result is that it seems we spend consistently
less than 1 percent of the time blocked on locks. We do not

Program

Static 1 2 3
Total time of measurement
(millis) 17393 32924 20255
Number of different locks
detected 53 79 181
Average time inside a critical
section (micros) 279 378 279
Total number of lock
operations 2955 504 4360
Percent of locks which
blocked 5.5 1.7 6.1
Percent of time spent in
kernel code 61.8 169 37.7
Percent of time spent in
blocked state 29 .83 .74

Figure 2—A study of kernel lock contention

yet have any measurement of the time lost due to blocking
on semaphores.

CONCLUSIONS

The C.mmp/Hydra project has reached the point at which
many of its most interesting and important results will
emerge. With a growing user community, increasing relia-
bility and a smoother user interface, we are in a position to
gether data on various aspects of system performance under
real loads. This data will avgment that already collected on
isolated algorithms to provide a comprehensive picture of
C.mmp/Hydra performance. Along the way to constructing
the current system we managed, in our opinion, to do some
things well and some things not so well. This paper has been
our attempt to report those opinions in the hope that others
may benefit from our experiences.
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