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Abstract
Serialization of threads due to critical sections is a fun-

damental bottleneck to achieving high performance in mul-
tithreaded programs. Dynamically, such serialization may
be unnecessary because these critical sections could have
safely executed concurrently without locks. Current proces-
sors cannot fully exploit such parallelism because they do
not have mechanisms to dynamically detect such false
inter-thread dependences.

We proposeSpeculative Lock Elision (SLE), a novel
micro-architectural technique to remove dynamically
unnecessary lock-induced serialization and enable highly
concurrent multithreaded execution. The key insight is that
locks do not always have to be acquired for a correct exe-
cution. Synchronization instructions are predicted as being
unnecessary and elided. This allows multiple threads to
concurrently execute critical sections protected by the
same lock. Misspeculation due to inter-thread data con-
flicts is detected using existing cache mechanisms and roll-
back is used for recovery. Successful speculative elision is
validated and committed without acquiring the lock.

SLE can be implemented entirely in microarchitecture
without instruction set support and without system-level
modifications, is transparent to programmers, and requires
only trivial additional hardware support. SLE can provide
programmers a fast path to writing correct high-perfor-
mance multithreaded programs.

1  Introduction

Explicit hardware support for multithreaded software,
either in the form of shared memory multiprocessors or
hardware multithreaded architectures, is becoming increas-
ingly common [9, 21, 38, 2]. As such support becomes
available, application developers are expected to exploit
these developments by employing multithreaded program-
ming. While server workloads have traditionally displayed
abundant thread-level parallelism, increasing evidence
indicates desktop applications may also display such paral-
lelism if programmers focus efforts on exploiting these
emerging architectures.

In multithreaded programs, synchronization mech
nisms—usually locks—are often used to guarantee thre
have exclusive access to shared data for a critical section
code. A thread acquires the lock, executes its critical se
tion, and releases the lock. All other threads wait for th
lock until the first thread has completed its critical sectio
serializing access and thus making the entire critical se
tion appear to execute atomically.

For a variety of reasons, concurrent accesses to a sha
data structure by multiple threads within a critical sectio
may in fact not conflict, and such accesses do not requ
serialization. Two such examples are shown in Figure
Figure 1a shows an example from a multithreaded applic
tion ocean [ 40] . Since a store instruction (line 3) to a
shared object is present, the lock is required. Howev
most dynamic executions do not perform the store ope
tion and thus do not require the lock. Additionally, multipl
threads may update different fields of a shared obje
while holding the shared object lock, and often thes
updates do not conflict. Such an example, involvin
updates of a hash table, is shown in Figure 1b. This exa
ple is similar to a thread-safe hash-table implementati
from SHORE, a database object repository [5].

In these examples, conventional speculative execut
in out-of-order processors cannot take advantage of
parallelism present because the threads will first wait for
free lock and then acquire the lock in a serialized mann

LOCK(hash_tbl.lock)
var = hash_tbl.lookup(X)
if (!var)

hash_tbl.add(X);
UNLOCK(hash_tbl.lock)

LOCK(hash_tbl.lock)
var = hash_tbl.lookup(Y)
if (!var)

hash_tbl->add(Y);
UNLOCK(hash_tbl.lock)

Figure 1. Two examples of potential parallelism masked by
dynamically unnecessary synchronization.

Thread 1 Thread 2

1.LOCK(locks->error_lock)
2.if (local_error > multi->err_multi)
3. multi->err_multi = local_err;
4.UNLOCK(locks->error_lock)

a)

b)
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No mechanisms currently exist to detect this parallelism.
Frequent serialization hurts performance of even tuned
multithreaded applications [37, 20], and the degradation
can be much worse in the presence of conservative syn-
chronization.

In developing threaded programs, programmers must
make trade-offs between performance and code develop-
ment time. Although multithreaded programming can
improve throughput, a certain level of expertise is required
to ensure correct interplay among program threads. Such
required expertise is generally higher than for most single-
threaded programs because sharing of data structures
among threads is often subtle and complex. Programmers
may avoid much of the complexity while ensuring correct-
ness by using conservative techniques [17]. Doing so pro-
vides a faster and easier path to a correctly working
program, but limits thread-level parallelism in programs
because of unnecessary, synchronization-induced serializa-
tion constraints on thread execution: in the dynamic execu-
tion, no data hazards may have existed among the threads.

Ideally, programmers would be able to use frequent and
conservative synchronization to write obviously correct
multithreaded programs, and a tool would automatically
remove all such conservative use. Thus, even though pro-
grammers use simple schemes to write correct code, syn-
chronization would be performed only when necessary for
correctness; and performance would not be degraded by
the presence of dynamically unnecessary synchronization.

In this paper, we show how hardware techniques can be
used to remove dynamically unnecessary serialization from
an instruction stream and thereby increase concurrent exe-
cution. InSpeculative Lock Elision(SLE), the hardware
dynamically identifies synchronization operations, predicts
them as being unnecessary, and elides them. By removing
these operations, the program behaves as if synchroniza-
tion were not present in the program. Of course, doing so
can break the program in situations where synchronization
is required for correctness. Such situations are detected
using pre-existing cache coherence mechanisms andwith-
out executing synchronization operations. In this case,
recovery is performed and the lock is explicitly acquired.
Synchronization is performed only when the hardware
determines that serialization is required for correctness.

Safe dynamic lock removal is performed by exploiting
a property of locks and critical sections as they are com-
monly implemented. If memory operations between the
lock acquire and release appear to occur atomically, the
two writes corresponding to the lock acquire and release
can be elided because the second write (of the lock release)
undoes the changes of the first write (of the lock acquire).
Section 3.3 discusses this concept in detail. Atomicity vio-
lations, discussed further in Section 5.3, can be detected

using cache coherence protocols already implemented
most modern processors.

SLE has the following key features:

1. Enables highly concurrent multithreaded execution:

Multiple threads can concurrently execute critical se
tions guarded by the same lock. Additionally, correc
ness is determined without acquiring (or modifying) th
lock.

2. Simplifies correct multithreaded code development:

Programmers can use conservative synchronization
write correct multithreaded programs without significan
performance impact. If the synchronization is no
required for correctness, the execution will behave as
the synchronization were not present.

3. Can be implemented easily:

SLE can be implemented entirely in the microarchite
ture, without instruction set support and without system
level modifications (e.g., no coherence protocol chang
are required) and is transparent to programmers. Ex
ing synchronization instructions are identified dynam
cally. Programmers do not have to learn a ne
programming methodology and can continue to use w
understood synchronization routines. The technique c
be incorporated into modern processor designs, indep
dent of the system and the cache coherence protocol

To our knowledge, this is the first proposed techniqu
for removing dynamically unnecessary and conservati
synchronization operations from a dynamic executio
without performing the lock-acquire and release oper
tions, andwithout requiring exclusive ownership of the
lock variable.

In Section 3 and Section 4 we discuss the idea of SL
and provide implementation strategies in Section 5. Mu
of the additional functionality required is either present i
modern microarchitectures or involves well understoo
techniques developed for other microarchitectural optim
zations.

2  Background

In this section, we provide a background into lockin
and performance/complexity trade-offs in multithreade
programming that can benefit from SLE.

2.1  Performance/complexity trade-offs in multi-
threaded programming

Conservative locking.In any multithreaded program-
ming effort, programming complexity is the most signifi
cant problem to consider [7] and care is required to ensu
correct synchronization and interaction among thread
Lack of appropriate synchronization can result in an inco
rect program execution. To ensure correctness, progra
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mers rely on conservative locking, often at the expense of
performance.

Locking granularity.A careful program design must
choose appropriate levels of locking to optimize the trade-
off between performance and ease of reasoning about pro-
gram correctness. Early parallel programs were typically
designed with few locks and programmers did not have to
reason about correctness because all memory was pro-
tected by these locks. As parallelism increased and locking
became frequent, performance degraded and finer grained
locks were used. Finer granularity locking can improve
performance but introduces programming complexity and
makes program management difficult.

Thread-unsafe legacy libraries.An important source of
serialization in some environments is the presence of non-
reentrant legacy software binaries. If a thread calls a library
not equipped to deal with threads, a global locking mecha-
nism is used to prevent conflicts, thus serializing access
and resulting in a performance degradation.

2.2   Mutual exclusion in microprocessors

Mutual exclusion is commonly implemented using
atomic read-modify-write primitives such asSWAP, COM-

PARE&SWAP, LOAD-LOCKED/STORE-CONDITIONAL (LL/SC),
andEXCHANGE. These instructions allow processors to—
sometimes conditionally—atomically swap a register value
and a memory location.

The simplest mutual exclusion construct is aTEST&SET

lock. TEST& SET performs an atomic swap on a memory
location.TEST&TEST&SET [32], an extension toTEST&SET,
performs a read of the lock to test it, before attempting the
TEST& SET operation. An example implementation of the
TEST&TEST&SET sequence is shown in Figure 2.

While numerous lock constructs, both hardware and
software, have been proposed, the simplicity and portabil-
ity of TEST& TEST& SET locks make them quite popular.
Hardware architecture manuals recommend [8, 10, 33, 18],
and database vendors are advised [22] to use these simple
locks as a portable locking mechanism (of course, a few
other software primitives are also used when circumstances
dictate their use). ThePOSIX threads standard recommends
synchronization be implemented in library calls such as

pthread_mutex_lock() and these calls implement the
TEST&SETor TEST&TEST&SET locks.

3  Enabling concurrent critical sections

In this section, we discuss the concept of Speculati
Lock Elision. We use the code sequence in Figure 2 a
LL/SC for ease of explanation; the ideas are readily appli
using other synchronization primitives. We first discus
lock-enforced false dependences. In Section 3.2 a
Section 3.3 we show how these dependences can be o
come and we step through an example in Section 3.4.

3.1  How locks impose false dependences

A lock is a control variable determining whether
thread can execute a critical section—it enforces a cont
dependence among threads but does not produce any us
result. Additionally, the lock forms a data dependenc
within the single thread—the value of the lock determine
the control flow for the thread. The lock-enforced contro
dependence is manifested as a data dependence becaus
lock is a memory location checked and operated upon
the threads. This dependence is analogous to data dep
dences where an instruction waits for a logically precedi
instruction, on which it may depend, to complete.

3.2  How to remove false dependences due to lock

Atomicity means all changes performed within a criti
cal section appear to be performed instantaneously. T
appearanceof instantaneous change is key. By acquiring
lock, a thread can prevent other threads from observing a
memory updates being performed within the critical se
tion. While this conventional approach trivially guarantee
atomicity of all updates in the critical section, it is only on
way to guarantee atomicity.

Locks can be elided and critical sections concurrent
executed if atomicity can be guaranteed for all memo
operations within the critical sections by other means. F
guaranteeing atomicity, the following conditions must ho
within a critical section:

1. Data read within a speculatively executing critical se
tion is not modified by another thread before the spec
lative critical section completes.

2. Data written within a speculatively executing critica
section is not accessed (read or written) by anoth
thread before the speculative critical section complete

A processor can provide theappearance of atomicity
for memory operations within the critical section withou
acquiring the lock by ensuring that partial updates pe
formed by a thread within a critical section arenot
observed by other threads. The entire critical sectio
appears to have executed atomically, and program sem
tics are maintained.

L1:1.ldl t0, 0(t1) #t0 = lock
2.bne t0, L1: #if not free, goto L1
3.ldl_l t0, 0(t1) #load locked, t0 = lock
4.bne t0, L1: #if not free, goto L1
5.lda t0, 1(0) #t0 = 1
6.stl_c t0, 0(t1) #conditional store, lock = 1
7.beq t0, L1: #if stl_c failed, goto L1,

8-15. <critical section>
16.stl 0 ,0(t1) #lock = 0, release lock
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Figure 2. Typical code for lock-acquire and releases using the
Alpha ISA [9]. This is aTEST&TEST&SETlock construct. Inst. 1
through 7 form the lock-acquire, inst. 16 is the lock release.
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The key observation is that a lock does not always have
to be acquired for a correct execution if hardware can pro-
vide the appearance of atomicity for all memory operations
within the critical section. If a data conflict occurs, i.e., two
threads compete for the same data other than for reading,
atomicity cannot be guaranteed and the lock needs to be
acquired. Data conflicts among threads are detected using
existing cache protocol implementations as demonstrated
in Section 5. Any execution not meeting the above two
conditions is not retired architecturally, thus guaranteeing
correctness.

Algorithmically, the sequence is this:

1. When a lock-acquire operation is seen, the processor
predicts that memory operations in the critical section
will occur atomically and elides the lock acquire.

2. Execute critical section speculatively and buffer results.

3. If hardware cannot provide atomicity, trigger misspecu-
lation, recover and explicitly acquire lock.

4. If the lock-release is encountered, then atomicity was not
violated (else a misspeculation would have been trig-
gered earlier). Elide lock-release operation, commit
speculative state, and exit speculative critical section.

Eliding the lock acquire leaves the lock in aFREEstate,
allowing other threads to apply the same algorithm and
also speculatively enter the critical section. Even though
the lock was not modified, either at the time of the acquire
or the release, critical section semantics are maintained.

In step 3, the processor can alternatively try to execute
the algorithm again a finite number of times before explic-
itly acquiring the lock. We call this number therestart
threshold. Forward progress is always guaranteed because
after the restart threshold is reached, the lock is explicitly
acquired.

The above algorithm requires processors to recognize
lock-acquire and release operations. As discussed in
Section 2.2, lock-acquires are implemented using low-level
synchronization instructions. These instructions may not
always be used only for implementing lock-acquires. Addi-
tionally, lock-releases are implemented using a normal
store operation. Thus, the processor lackspreciseinforma-
tion about an operation being a lock-acquire or release but
only observes a series of loads, stores, and low-level syn-
chronization primitives and can onlypredict them to be
lock operations. In the next section we show why predicted
lock-acquires and releases canstill be removed without
precise semantic information.

3.3  Removing lock-acquires and releases by elid-
ing silent store-pairs

The lock-acquire and release contain store operations.
If the lock is FREE, the lock-acquirewrites to the lock
marking itHELD. A lock-releasewrites to the lock marking

it FREE. Figure 3 shows memory references under SLE
three columns. Instructions are numbered in progra
order. The first column shows the programmers view, th
second column shows the operations performed by the p
cessor, and the third column shows the value of locati
_lock_  as seen by different threads.

If i3 returnsFREE, i6 writesHELD to location_lock_ .
i16 releases the lock by marking itFREE. After the lock-
release (i16), the value of_lock_ is the same as it was at
the start of the lock-acquire (i.e., before i6)—i16 restore
the value of_lock_ to its value prior to i6. We exploit
this property of synchronization operations to elide loc
acquires and releases. If critical section memory operatio
occur atomically, then stores i6 and i16 form asilent pair.
The architectural changes performed by i6 are undone
i16. When executed as a pair, the stores are silent; individ
ally, they are not. Location_lock_ must not be modified
by another thread, or i6 and i16 cannot form a silent pa
Note other threads can read memory location_lock_ .

The above observation means the SLE algorithm ne
not depend on program semantic information, specifica
whether an operation is a lock-acquire or lock-release. T
lock elision can be done by simply observing load an
store sequences and the values read and to be written
any instruction sequence matches the pattern of column
and 3 in Figure 3, the location_lock_ is not modified by
another thread, and the memory operations in the critic
section appear to execute atomically, the two stores cor
sponding to i6 and i16 are elided. The location_lock_ is
never modified, and other threads can proceed witho
being serialized on the value of_lock_ .

Thus, an additional prediction is added to the algorith
of Section 3.2. On a store predicted to be a lock-acqui
the processor predicts that the changes performed by
store will be undone shortly by another store, and no oth
thread will modify the location in question. If this is so
and since the entire sequence is globally observed to oc

Program Semantic Instruction Stream Value of _lock_

as seen by
self

as seen by
other threads

TEST_lock_ L1:i1 ldl t0, 0(t1) FREE FREE

i2 bne t0, L1:
TEST_lock_ i3 ldl_l t0, 0(t1) FREE FREE

& i4 bne t0, L1:
SET _lock_ i5 lda t0, 1(0)

i6 stl_c t0, 0(t1) HELD FREE

i7 beq t0, l1:
critical section i8-i15

RELEASE_lock_ i16 stl 0, 0(t1) FREE FREE

Figure 3. Silent store-pair elision.Inst. i6 and i16 can be elided
if i16 restores the value of _lock_ to its value prior to i6 (i.e.
value returned by i3), and i8 through i15 appear to execut
atomically w.r.t. other threads. Although the speculating threa
elides i6, it still observes theHELD value itself (because of pro-
gram order requirements within a single thread) but other
observe aFREE value.
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atomically, the two stores can be elided. We use a filter to
determine candidate load/store pairs. For example, in our
implementation, only instructionsldl_l andstl_c
(they normally occur as a pair) are considered. Thestl_c
store is elided speculatively, and a future store matching
the pattern of Figure 3 is identified.

The complete algorithm for SLE is this:

1. If candidate load (ldl_l ) to an address is followed by
store (stl_c of the lock acquire) to same address, pre-
dict another store (lock release) will shortly follow,
restoring the memory location value to the one prior to
this store (stl_c  of the lock acquire).

2. Predict memory operations in critical sections will occur
atomically, and elide lock acquire.

3. Execute critical section speculatively and buffer results.

4. If hardware cannot provide atomicity, trigger misspecu-
lation, recover and explicitly acquire lock.

5. If second store (lock release) of step 1 seen, atomicity
was not violated (else a misspeculation would have been
triggered earlier). Elide lock-release store, commit state,
and exit speculative critical section.

Note, in the above revised algorithm, the hardware
needs no semantic information about whether the memory
access is to a lock variable. The hardware only tracks
changes in values and observes requests from other
threads. If the store of step 5 does not match the value
requirement outlined in step 1, the store is simply per-
formed. If, on the completion of the store, atomicity was
still maintained, the critical section can be safely exited.

3.4  Speculative Lock Elision algorithm example

Figure 4 shows the application of SLE to our earlier
example of Figure 1a. The modified control flow is shown

on the right with instructions 6 and 16 elided. All thread
proceed without serialization. Instructions 1 and 3 brin
the _lock_ into the cache in a shared state. Instruction 6
elided and the modified control flow is speculatively exe
cuted. The location_lock_ is monitored for writes by
other threads. All loads executed by the processor a
recorded. All stores executed are temporarily buffered.
instruction 16 is reached without any atomicity violations
SLE is successful.

If the thread cannot record accesses between the t
stores, or the hardware cannot provide atomicity, a m
speculation is triggered, and execution restarts fro
instruction 6. On a restart, if the restart threshold has be
reached, the execution occurs non-speculatively and
lock is acquired.

4  Why does SLE work correctly?

We now discuss why SLE guarantees a correct exe
tion even in the absence of precise information from th
software and independent of nesting levels and memo
ordering. As mentioned earlier, SLE involves two predic
tions:

1. On a store, predict that another store will shortly follo
and undo the changes by this store. The prediction
resolved without stores being performed but it requir
the memory location (of the stores) to be monitored.
the prediction is validated, the two stores are elided.

2. Predict that all memory operations within the window
bounded by the two elided stores occur atomically. Th
prediction is resolved by checking for conditions ou
lined in Section 3.2 using cache coherence mechanis
described in Section 5.3.

The above predictions do not rely on semantics of th
program (a lock-predictor is used to identify loads/stores

L1:1. ldl t0, 0(t1) #t0 = lock
2. bne t0, L1: #if not free, goto L1
3. ldl_l t0, 0(t1) #load locked, t0 = lock
4. bne t0, L1: #if not free, goto L1
5. lda t0, 1(0) #t0 = 1
6. stl_c t0, 0(t1) #conditional store, lock = 1
7. beq t0, L1: #if stl_c failed, goto L1,
8.ldq t0, 0(s4)
9.ldt $f10, 0(t0)

10.cmplt $f10,$f11,$f10
11.fbeq $f10, L2:
12.stt $f11, 0(t0)
13.ldq t1,-31744(gp)
14.ldq t0, 0(t1)
15.ldq t1, 32(t0)
16. stl 0 ,0(t1) #lock = 0, release lock

1

2

3

4

7

11

12

13

16

LOCK(locks->error_lock)
if (local_err > multi->err_multi)
multi->err_multi = local_err;
UNLOCK(locks->error_lock)

1

2

3

4

Figure 4. Speculative Lock Elision algorithm example.Often, branch 11 is taken thus skipping the store inst. 12. The greyed portion
the right graph is not executed. Inst. 6 and 16 are elided and the code sequence executes with no taken branches between i1 a i8.
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candidates for prediction 1 but is not integral to the idea
and software could alternatively provide these hints). In
addition, no partial updates are made visible to other
threads. Doing so guarantees critical section semantics.
Store elision works because the architectural state remains
the same. The architectural state at the end of the second
elided store is the same, with or without SLE.

If another thread explicitly acquires the lock by writing
to it, a misspeculation is triggered because the write will be
automatically observed by all speculating threads. This
trivially guarantees correctness even when one thread is
speculating and another thread acquires the lock.

Nested locks.While it is possible to apply the elision algo-
rithm to multiple nested locks, we apply it to only one level
(can be any level and not necessarily the outermost) and
any lock operations within this level are treated as specula-
tive memory operations.

Memory consistency.No memory ordering problems exist
because speculative memory operations under SLE have
the appearance of atomicity. Regardless of the memory
consistency model, it is always correct for a thread to insert
anatomicset of memory operations into the global order of
memory operations.

5  Implementing SLE

We have shown how SLE can be used to remove unnec-
essary synchronization operations dynamically. Now, we
will show how SLE can be implemented using well under-
stood and commonly used techniques.

SLE is similar to branch prediction, and other tech-
niques for speculative execution. The elided lock acquire
can be viewed as a predicted branch, and the elided lock
release is similar to the resolution of the branch. However,
SLE does not require the processor to support out-of-order
execution but simply the ability tospeculatively retire
instructions. In other words, inter-instruction dependence
information need not be maintained.

The four aspects of implementing SLE are 1) initiating
speculation, 2) buffering speculative state, 3) misspecula-
tion conditions and their detection, and 4) committing
speculative memory state.

5.1  Initiating speculation

A filter is used to detect candidates for speculation
(e.g.,ldl_l/stl_c pairs) and is indexed by the program
counter. Additionally, a confidence metric is assigned to
each of these pairs. If the processor predicts a lock to be
held, it assumes another processor had to acquire the lock
because of its inability to elide the lock. In this case, the
processor does not initiate speculation. This is a conserva-
tive approach but helps prevent performance degradation
under pathological cases. Better confidence estimation is
an important area of future research.

5.2  Buffering speculative state

To recover from an SLE misspeculation, register an
memory state must be buffered until SLE is validated.

Speculative register state.Two simple techniques for han-
dling register state are:

1. Reorder buffer (ROB):Using the reorder buffer [35] has
the advantage of using recovery mechanisms alrea
used for branch mispredictions. However, the size of t
ROB places a limit on the size of the critical section (i
terms of dynamic instructions).

2. Register checkpoint:This may be of dependence map
(there may be certain restrictions on how physical reg
ters are freed) or of the architected register state itse
On a misspeculation, the checkpoint is restored. Using
checkpoint removes the limitation on the size of critica
sections: instructions can safely update the register fi
speculatively retire, and be removed from the RO
because a correct architected register checkpoint ex
for recovery in case of misspeculation. Importantly, on
onesuch checkpoint is required and is taken at the st
of the SLE sequence.

Speculative memory state.Although most modern pro-
cessors support speculative load execution, they do
retire stores speculatively (i.e., write to the memory syste
speculatively). For supporting SLE, we augment existin
processor write-buffers (between the processor and
cache) to buffer speculative memory updates. Speculat
data is not committed from the write-buffer into the lowe
memory hierarchy until the lock elision is validated. On
misspeculation, speculative entries in the write-buffer a
invalidated.

As an additional benefit, under SLE, speculative write
can now be merged in the write-buffer,independentof the
memory consistency model. This is possible because,
successful speculation, all memory accesses are guaran
to appear to completeatomically. Only the write-buffer
size limits the number of unique cache lines modified
the critical section and does not restrict the dynamic nu
ber of executed store instructions in the critical section.

5.3  Misspeculation conditions and their detection

Two reasons for misspeculation to occur are 1) atom
ity violations and 2) violations due to limited resources.

Atomicity violations. Atomicity violations (Section 3.2)
can be detected using existing cache coherence schem
Cache coherence is a mechanism to propagate mem
updates to other caches and make memory operations v
ble to others. Invalidation-based coherence protocols gu
antee an exclusive copy of the memory block in the loc
cache when a store is performed. Most modern process
already implement some form of invalidation-based cohe
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ency as part of their local cache hierarchy. Thus, the basic
mechanism for detecting conflicts among memory opera-
tions from different processors already exists. One now
needs a mechanism to record memory addresses read and
written within a critical section.

In some processors—such as the MIPS R10K, and the
Intel Pentium 4—the load/store queue (LSQ) is snooped on
any external invalidation received by the cache to allow for
aggressive memory consistency implementations [12]. If
the ROB approach is used for SLE, no additional mecha-
nisms are required for tracking external writes to memory
locations speculatively read—the LSQ is already snooped.

If the register checkpoint approach is used, the LSQ
alone cannot be used to detect load violations for SLE
because loads may speculatively retire and leave the ROB.
In this case, the cache can be augmented with anaccess bit
for each cache block. Every memory access executed dur-
ing SLE marks the access bit of the corresponding block.
On an external request, this bit is checked in parallel with
the cache tags. Any external invalidation to a block with its
access bit set, or an external request to a block in exclusive
state with its access bit set, triggers a misspeculation. The
bit can be stored with the tags and there is no overhead for
the bit comparison because, for maintaining coherency, a
tag lookup is already performed to snoop the cache.

The scheme is independent of the number of cache lev-
els because all caches maintain coherency and any update
is propagated to all coherent caches automatically by the
existing protocols.

On misspeculations and commits, the access bit is unset
for all blocks in the cache; this can be done using tech-
niques such as flash invalidation [26]. For aggressive out-
of-order processors, when a candidate store (for the lock-
acquire elision) is decoded, any subsequent load issued by
the processor marks the appropriate access bit. The load
may not actually be part of the critical section but marking
it conservatively will always be correct. Multiple candidate
stores (predicted lock-acquires) can be allowed in the pipe
and as long as there is a candidate store in the core, loads
conservatively mark the access bit.

Violations due to resource constraints.Limited resources
may force a misspeculation if either there is not enough
buffer space to store speculative updates, or it is not possi-
ble to monitor accessed data to provide atomicity guaran-
tees. Four such conditions for misspeculation are:

1. Finite cache size. If register checkpoint is used, the
cache may not be able to track all memory accesses.

2. Finite write-buffer size. The number of unique cache
lines modified exceeds the write-buffer size.

3. Finite ROB size. If the checkpoint approach is used, the
ROB size is not a problem.

4. Uncached accesses or events (e.g., some system calls)

where the processor cannot track requests.

It may not always be necessary to restart for conditio
1, 2, and 3. The processor could simply write to the loc
marking it acquired. When the write completes, if atomic
ity has been maintained, speculation can be committed a
the processor can continue without restarting.

5.4  Committing speculative memory state

We have discussed recovering and committing arch
tected register state, buffering speculative store state in
write-buffer, and detecting misspeculation conditions usin
existing cache coherence protocols. Committing memo
state requires ensuring that speculatively buffered writes
committed and made visibleinstantaneouslyto the mem-
ory system (to provide atomicity).

Caches have two aspects: 1) state, and 2) data. T
cache coherence protocol determines state transitions
cache block state. Importantly, these state transitions c
occur speculatively as long as the data is not changed sp
ulatively. This is how speculative loads and exclusiv
prefetches (operations that bring data in exclusive state i
caches) are issued in modern processors. We use these
aspects in performing atomic memory commitwithout
making any change to the cache coherence protocol.

When a speculative store is added to the write-buffe
an exclusive request is sent to the memory system. T
request initiates pre-existing state transitions in the coh
ence protocol and brings the cache block into the loc
cache in the exclusive state. Note thecache block data is
not speculative—speculative data is buffered in the write
buffer. When the critical section ends, all speculativ
entries in the write-buffer will have a corresponding bloc
in exclusive state in the cache, otherwise a misspeculat
would have been triggered earlier. At this point, the write
buffer is marked as having the latest architectural state.

The write-buffer requires an additional functionality o
being able to source data for requests from other threa
This is not in the critical path and the write-buffer can b
lazily drained into the cache as needed. The instantane
commit is possible because the process of marking t
write-buffer as having the latest state involves setting o
bit—exclusive permissions have already been obtained
all speculatively updated and buffered blocks.

Figure 5 shows two design points: (a) uses the ROB
store speculative state, and (b) uses an extra register ch
point and access bits with the cache tags.

6  Evaluation methodology

A multithreaded benchmark can have different contr
flow depending upon the underlying coherence mechani
and performance benefits are highly dependent on t
underlying protocol implementation. To address this issu
we evaluate multiple configurations. Table 1 shows th
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parameters for three multiprocessor systems: a) a chip mul-
tiprocessor (CMP), b) a more conventional bus system
(SMP), and c) a directory system (DSM). The bus protocol
is based on the Sun Gigaplane [6] and the directory proto-
col is based on the SGI Origin 2000 [25]. The processor
implements Total Store Ordering (TSO) as a memory con-
sistency model. Retired stores are written to the write-
buffer from which they are made architecturally visible in
program order. On a coherency event, all in-flight loads are
snooped and replayed if necessary. We use a single register
checkpoint for SLE register recovery and a 32 entry lock
predictor indexed by the program counter.

6.1  Simulation environment

We use SimpleMP, an execution-driven simulator for
running multithreaded binaries. The simulator is derived
from the Simplescalar toolset [4]. Our simulator is rewrit-
ten to model accurately an out-of-order processor and a
detailed memory hierarchy in a multiprocessor configura-
tion. To model coherency and memory consistency events
accurately, the processors operate (read and write) on data
in caches and write-buffers. Contention is modeled in the
memory system. To ensure correct simulation, a functional
checker simulator executes behind the detailed timing sim-

ulatoronly for checking correctness. The functional simu
lator works in its own memory and register space and c
validate TSO implementations.

6.2  Benchmarks

We evaluate our proposal using a simple microbenc
mark and six applications (Table 2). The microbenchma
consists of N threads, each incrementing a unique coun
(216)/N times, and all N counters are protected by a sing
lock. This is a worst case behavior for conventional lockin
but clearly demonstrates the potential of our scheme. F
the six applications, we usemp3d, barnes, and
cholesky from theSPLASH[34] suite andradiosity,
water-nsq,  andocean  from theSPLASH2 [40] suite.

These applications have been selected for their vary
lock behavior, memory access patterns, and critical sect
behavior. These benchmarks have been appropriately p
ded to reduce false sharing. A locking version ofMp3d
was used in order to study the impact of SLE on a loc
intensive benchmark [20]. This version ofMp3d does fre-
quent synchronization to largely uncontended locks a
lock access latencies cannot be hidden by a large reor
buffer. Cholesky andradiosity have work queues
that are accessed frequently.Ocean-cont has condi-
tional update code sequences.Barnes has high lock and
data contention, whilewater-nsq  has little contention.

These benchmarks have been optimized for sharing a
thus have little communication in most cases. We are int
ested in determining the robustness and potential of o
proposal even for these well-tuned benchmarks.

Figure 5. Two design points for speculative lock elision.The
shaded box is the processor. Modifications and additional data
paths are shown italicized and in grey lines.

front end

 lock filter

  load/store  queue
  data cache

silent-pairs/misspeculation

External

front end

lock filter

     load/store  queue

     data cache

augmented write-buffer

silent-pairs/misspeculation

External

One register map checkpoint

detector

detector

speculative access bits

memory
Interface

memory
interface

augmented write-buffer

a) using the reorder buffer

b) using a register checkpoint

Processor

L1 caches

1 GHz (1 ns clock), 128 entry reorder buffer, 64 entry load/store queue, 16 entry instruction fetch queue, 3-cycle branch mispredict redirectionlty,
out-of-order issue/commit of 8 inst. per cycle, issue loads as early as possible, 8-K entry combining predictor, 8-K entry 4-way BTB, 64 entry
address stack. Pipelined functional units, 8 alus, 2 multipliers, 4 floating point units, 3 memory ports. Write buffer: 64-entry (each entry 64-bytewide)
instruction cache: 64-KByte, 2-way, 1 cycle access, 16 pending misses. data cache: 128-KByte. 4-way associative, write-back, 1-cycle ac
pending misses. Line size of 64 bytes. minimum 1 cycle occupancy for request/response queues between l1 and l2.

CMP Sun Gigaplane-type MOESI protocol between L1s, split transaction. Address bus: broadcast network, snoop latency of 20 cycles, 120 out
transactions. L2 cache: perfect, 12 cycle access. Data network: point-to-point, pipelined, transfer latency: 20 cycles

SMP Sun Gigaplane-type MOESI protocol between L2s, split transaction. Address bus: broadcast network, snoop latency of 30 cycles, 120 out
transactions. L2 cache: unified, 4-MB, 4-way, 12 cycle access, 16 pending misses. Data network: point-to-point, pipelined, 70 cycles transfercy.
Memory access: 70 cycles for 64 bytes.

DSM SGI Origin-2000-type MESI protocol between L2s. L2 cache: unified, 4-MB, 4-way, 12 cycle access, 16 pending misses. Directory: full mapp
cycle access (overlapped with memory access). Network latencies: processor to local directory (70 ns), directory and remote route (50 ns
uncontended latencies: read miss to local memory: ~130 ns, read miss to remote memory: ~230 ns, read miss to remote dirty cache: ~360 ns.

Table 1.Simulated machine parameters.

Application Type of Simulation Inputs Type of Critical Sections

Barnes
Cholesky
Mp3D
Radiosity
Water-nsq
Ocean-cont

N-Body
Matrix factoring
Rarefied field flow
3-D rendering
Water molecules
Hydrodynamics

4K bodies
tk14.O
24000 mols, 25 iter.
-room, batch mode
512 mols, 3 iter.
x130

cell locks, nested
task queues, col. locks
cell locks
task queues, nested
global structure
conditional updates

Table 2: Benchmarks
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7  Results

Significant performance benefits can accrue from SLE
in applications that perform frequent synchronization. We
first discuss the performance of SLE in a microbenchmark
and then analyze the performance for a set of applications.

7.1  Microbenchmark results

Figure 6 plots the execution time (for the CMP configu-
ration) of the microbenchmark on the y-axis and varying
processor count on the x-axis. As expected, the behavior
under conventional locking quickly degrades because of
severe contention. Even though the counter updates do not
conflict, out-of-order processors cannot exploit this aspect
because the lock-acquire sequence masks this parallelism
and the performance is limited by lock-acquires. However,
with SLE, the hardware automatically detects that the lock
is not required and elides it. Perfect scalability is achieved
because SLE does not require the lock to be acquired (by
writing to it) for validating the speculation.

7.2  Benchmark results
A parameter that can be varied under SLE is the restart

threshold. This determines how many misspeculations a
processor can experience before explicitly acquiring the
lock in order to perform the critical section. We ran experi-
ments for varying thresholds and present results for a
threshold of 1—a processor restarts once after an atomicity
violation while in SLE mode, and tries to elide the lock
again. Note that if a lock is held by a processor, other pro-
cessors will not attempt SLE but rather will spin (or wait)
on the lock (waiting for a free lock before attempting SLE)
as determined by the original control flow sequence of the
program. Doing so guarantees that the processor holding
the lock will not observe critical section data access inter-
ference by other processors.

Elided locks. Figure 7 shows the percentage of dynamic
lock acquire/release pairs elided for a restart threshold of 1.
A large fraction of dynamic lock acquires are elided. This
reduction does not always translate to better performance
because these operations may not have been on the critical
path of the program, but it demonstrates the effectiveness

of our technique. A threshold of 0 (restart on the first mi
speculation) resulted in 10-30% fewer lock acquires bei
elided. Inbarnes , there is high contention for the pro-
tected data, and repeated restarts tend to end in confli
Thus, forbarnes , the number of locks elided is low.

Performance. Figure 8 show the normalized execution
times for 8 and 16 processors. The y-axis is normaliz
execution time (parallel execution cycles with SLE/parall
execution cycles without SLE).A number below 1 corre-
sponds to a speedup. For each bar, the upper portion corre
sponds to the contribution due to lock variable access
(LOCK-PORTION), and the lower portion corresponds to th
rest (NON-LOCK-PORTION). The fractions on top of the bar-
pairs are normalized execution times for the SLE case.

For some configurations, theNON-LOCK-PORTION for
the optimized case is larger than the correspondingNON-
LOCK-PORTION for the base case. This is because som
times removing locks puts other memory operations on t
critical path. Speculative loads issued for data within crit
cal sections that were earlier overlapped with the loc
acquire operation now get exposed and stall the process

Three primary reasons for the observed performan
gains are: 1) concurrent critical section execution,
reduced observed memory latencies, and 3) reduced m
ory traffic.

Concurrent critical section execution.In ocean-
cont , radiosity , andcholesky , even though locks
are contended, critical sections can sometimes be corre
executed without acquiring the lock and thread execution
not serialized on the lock. The gains increase with larg
memory latencies because the serialization delays indu
due to lock acquire latencies are also greater.
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Figure 6.Microbenchmark result for CMP.

Figure 7.Percentage of dynamic lock acquires/releases elided

a) Percentage for 8 processors

b) Percentage for 16 processors
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Reduced observed memory latencies.Often, a lock
acquire causes a cache miss and a write request to the
memory system, the latencies of which cannot be com-
pletely overlapped with misses within the critical section.
SLE permits locks to remain shared in the local cache, and
thus the processor does not observe the lock acquire
misses. Nearly all benchmarks benefit from this.Water-
nsq does not benefit much because after lock elision, the
overlapped critical section misses get exposed.

Reduced memory traffic.If a lock is acquired and kept
in exclusive state in a processor’s cache, a request for the
lock from another processor will require bus/network mes-
sages (one for reading the lock and another for setting it).
Thus, for benchmarks with frequent synchronization,
removing requests to locks can help due to reduced mem-
ory traffic. By not acquiring the lock, the lock is kept in
shared state locally on the various processors and miss traf-

fic is eliminated. The benchmark gaining the most from
this effect ismp3d because of elision of frequent synchro
nization. Some lock access latency remains because so
locks do undergo cache miss latencies that could not
overlapped. The SMP and DSM versions gain more th
CMP because their large caches can hold the working
and thus have fewer read misses (and memory traffic)
the lock. For the CMP, the absence of a large cache hu
and thus there are more evictions of locks in clean sta
because the L1 suffers conflict and capacity misses.

Misspeculation effects.In our experiments, misspecula
tion due to capacity and cache conflicts (due to limite
associativity) occurred in less than 0.5% of all cases. F
atomicity conflicts we do an early restart and acquire t
lock and reduce the misspeculation penalties. TheNON-
LOCK-PORTION also contains some of the misspeculation
induced memory latencies.

Dependence on restart threshold.A restart threshold of 0
gave up to 25% lesser speedups than those for a thresh
of 1. Increasing the threshold resulted in greater perfo
mance improvements for some benchmarks. However,
barnes with 16 processors, performance degraded
much as 10% for a threshold of 5. This is because missp
ulating processors introduce coherence protocol interf
ence, thereby increasing the observed latency for d
within critical sections. Selecting a low threshold (0 or 1
has the advantage of minimizing the degradation that c
occur due to repeated misspeculations. For these ben
marks and a threshold of 1, we rarely degrade performan
(loss of 1%). Increasing the threshold may sometimes le
to slightly worse performance, even though more locks a
elided, because of data access interference within a criti
section. Predictors for picking restart thresholds dynam
cally is an area of future work.

8  Related work

Lamport introduced lock-free synchronization [24] an
gave algorithms to allow multiple threads to work on a da
structure without a lock. Operations on lock-free da
structures support concurrent updates and do not requ
mutual exclusion. Lock-free data structures have be
extensively investigated [3, 15]. Experimental studies ha
shown software implementations of lock-free data stru
tures do not perform as well as their lock-based counte
parts primarily due to excessive data copying involved
enable rollback, if necessary [1, 16].

Transactional memory [16] and the Oklahoma upda
protocol [37] were the initial proposals for hardware sup
port for implementing lock-free data structures. Both pro
vided programmers with special memory instructions fo
accessing these data structures. Although conceptua
powerful, the proposals required instruction set suppo

Figure 8. Normalized execution time for 8 and 16 threads for
CMP, SMP, and DSM configurations. The y-axis is normal-
ized parallel execution time. Three pairs of bars, corre-
sponding toCMP, SMP, andDSMrespectively, are shown for
each benchmark. The first bar of each pair corresponds to
the base case. The second bar of each pair corresponds to
the SLE case. For each bar, the upper portion corresponds
to the contribution due to lock variable accesses (LOCK-
PORTION), and the lower portion corresponds to the rest
(NON-LOCK-PORTION). The fractions on top of the bar-pairs
are normalized execution times for the SLE case. The
LOCK-PORTIONalso contains time spent waiting for a lock.
All normalizations are w.r.t. the base case (left bar of each
pair).

a) normalized execution time (y axis) for 8 processors

b) normalized execution time (y axis) for 16 processors
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and programmer involvement. The programmer had to
learn the correct use of new instructions and the proposal
required coherence protocol extensions. Additionally,
existing program binaries could not benefit. The proposals
relied on software support for guaranteeing forward
progress. These proposals were both direct generalizations
of theLOAD-LINKED andSTORE-CONDITIONAL instructions
originally proposed by Jensen et al. [19]. TheLOAD-
LINKED /STORE-CONDITIONAL combination allows for
atomic read-modify-write sequences on a word.

In contrast to the above proposals, our proposal does
not require instruction set changes, coherence protocol
extensions, or programmer support. As a result, we can run
unmodified binaries in a lock-free manner in most cases
when competing critical section executions have no con-
flict. We do not have to provide special support for forward
progress because, for conflicts, we simply fall back to the
original code sequence, acquiring and releasing the lock in
the conventional way.

Extensive research has been conducted in databases on
concurrency control and Thomasian [39] provides a good
summary and further references. Optimistic Concurrency
Control (OCC) was proposed by Kung and Robinson [23]
as an alternative to locking in database management sys-
tems. OCC involves a read phase where objects are
accessed (with possible updates to a private copy of these
objects) followed by a serialized validation phase to check
for data conflicts (read/write conflicts with other transac-
tions). This is followed by the write phase if the validation
is successful. In spite of extensive research, OCC is not
common as a concurrency control mechanism for database
systems. An excellent discussion regarding the issues
involved with OCC approaches and their shortcomings
which makes it unattractive for high performance database
systems is provided by Mohan [28]. Special requirements
and guarantees required by database systems [29] make
OCC hard to use for high performance. To provide these
guarantees, substantial state information must be stored in
software resulting in large overheads. In addition, with
OCC, the validation phase is serialized.

Our proposal is quite different from database OCC pro-
posals. We are not providing an alternative to lock-based
synchronization: we detect dynamic instances when these
synchronization operations are unnecessary andremove
them. The requirements imposed on critical sections are far
less strict than those for database systems. Since we do not
require explicit acquisition of a lock to determine success,
we do not have a serialized validation phase.

Prior work exists in microarchitectural support for
speculative retirement [31, 13] and buffering speculative
data in caches [11, 14, 36]. Our work can leverage these
techniques and coexist with them. However, none of these
earlier techniques dynamically remove conservative syn-

chronization from the dynamic instruction stream. Predic
ing lock-acquires and releases has been proposed ea
and we use similar techniques [30].

Our scheme of silent pair elision is an extension to th
silent storeproposal of Lepak and Lipasti [27]. While they
squashed individual silent store operations, we elide pa
of stores that individually are not silent but when execute
as a pair are silent.

9  Concluding remarks

We have proposed a microarchitectural technique
remove unnecessary serialization from a dynamic instru
tion stream. The key insight is that locks do not have to
acquired but only need to be observed. With our techniqu
the control dependence implied by the lock operation
converted to a true data dependence among the vari
concurrent critical sections. As a result, the potential par
lelism masked by dynamically unnecessary and conser
tive locking imposed by a programmer-based stat
analysis is exposed by a hardware-based dynamic analy

The technique proposed does not require any cohere
protocol changes. Additionally, no programmer or com
piler support and no instruction set changes are necess
The key notion of atomicity of memory operations enable
the technique to be incorporated in any processor witho
regard to memory consistency as correctness is guarant
without any dependence on memory ordering.

We view our proposal as a step towards enabling hi
performance multithreaded programming. With multipro
cessing becoming more common, it is necessary to prov
programmers with support for exploiting these multipro
cessing features for functionality and performance. Spec
lative Lock Elision permits programmers to use freque
and conservative synchronization to writecorrect multi-
threaded code easily; our technique automatically a
dynamically removes unnecessary instances of synchro
zation. Synchronization is performed only when necessa
for correctness; and performance is not degraded by
presence of such synchronization. Since SLE is a pur
microarchitectural technique, it can be incorporated in
any system without dependence on coherence protocol
system design issues.
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