
1170272-1732/03/$17.00  2003 IEEE Published by the IEEE computer Society

Explicit hardware support for mul-
tithreaded software, either in the form of
shared-memory chip multiprocessors or
hardware multithreaded architectures, is
becoming increasingly common. As such sup-
port becomes available, application develop-
ers are expected to exploit these developments
by employing multithreaded programming.
But although threads simplify the program’s
conceptual design, they also increase pro-
gramming complexity. In writing shared-
memory multithreaded applications,
programmers must ensure that threads inter-
act correctly, and this requires care and exper-
tise. Errors in accessing shared-data objects
can cause incorrect program execution and
can be extremely subtle.

As hardware support for shared-memory
applications, we have proposed the use of
Transactional Lock Removal (TLR),1 which
ensures high performance while simplifying
error-free programming and providing appli-

cation stability. TLR uses Speculative Lock
Elision (SLE)2 as an enabling mechanism. In
SLE, the hardware dynamically identifies syn-
chronization operations, predicts them as
being unnecessary, and elides them. By remov-
ing these operations, the program behaves as
if synchronization were not present. The hard-
ware can then exploit situations that do not
require synchronization for a correct execu-
tion, and the hardware makes this determi-
nation without even performing the
synchronization itself. TLR treats a lock-based
critical section as a lock-free, optimistic trans-
action, using SLE to elide the lock, which in
turn lets multiple threads enter a critical sec-
tion protected by the same lock and execute
the critical section speculatively. As in SLE,
the hardware reads and monitors the lock in
a shared state, but ordinarily does not write
it. TLR uses the critical shared data itself to
order any conflicting data accesses and thus
provides successful lock-free execution, even

Ravi Rajwar
Intel Microarchitecture

Research Lab

James Goodman
University of Auckland

ALTHOUGH LOCK-BASED CRITICAL SECTIONS ARE THE SYNCHRONIZATION METHOD

OF CHOICE, THEY HAVE SIGNIFICANT PERFORMANCE LIMITATIONS AND LACK CERTAIN

PROPERTIES, SUCH AS FAILURE ATOMICITY AND STABILITY. ADDRESSING BOTH THESE

LIMITATIONS REQUIRES CONSIDERABLE SOFTWARE OVERHEAD. TRANSACTIONAL

LOCK REMOVAL CAN DYNAMICALLY ELIMINATE SYNCHRONIZATION OPERATIONS

AND ACHIEVE TRANSPARENT TRANSACTIONAL EXECUTION BY TREATING LOCK-

BASED CRITICAL SECTIONS AS LOCK-FREE OPTIMISTIC TRANSACTIONS.

TRANSACTIONAL EXECUTION:
TOWARD RELIABLE, HIGH-

PERFORMANCE MULTITHREADING

in the presence of data conflicts. In addition,
TLR automatically provides transactional
semantics to a critical section.

In this article, we discuss the main limita-
tions of existing programming models, briefly
survey related work, and describe key aspects
of TLR and its enabling SLE mechanism.

Lock limitations
Nearly all architectures support instructions

for implementing lock operations. Locks have
become the programmer’s synchronization
mechanism of choice and are prevalent in
operating systems, database servers, and Web
servers, among other applications. As the
“Why Transactions?” sidebar describes, how-
ever, lock-based critical sections have their
drawbacks in the presence of unexpected con-

ditions. Two key limitation areas are the pro-
grammability-performance tradeoff and appli-
cation stability.

Programmability-performance tradeoff
The tradeoff between programmability and

performance is complex because programmers
must reason about data sharing during code
development using static, rather than dynamic
(runtime), information. Although conservative
synchronization can guarantee correctness and
lead to quick code development, it also inhibits
parallelism because threads serialize unneces-
sarily. Fine-grained locks (one lock per data-
structure field) may help performance, but they
can result in code that is both error prone and
difficult to write. Coarse-grained locks (one lock
per data structure) makes it easier to write cor-
rect code, but the attendant locking overhead
and serial execution hurt performance.

Synchronization operations, such as locks,
date to the 1960s, when the IBM System/360
architecture implemented the first synchro-
nization primitive, test&set (T&S).3 T&S
atomically writes a known value to a memory
location, making it possible to test the value of
one of the bits immediately before the write
occurred. Since then, most research in syn-
chronization has focused on either optimizing
the synchronization operation itself or in tol-
erating the serialization that synchronization
causes.

T&S performs well when there is no lock
contention, but is inefficient when many
threads compete for the lock. The
test&test&set (T&T&S) primitive4 attempts
to improve on T&S by having waiting proces-
sors spin on a local copy of the lock. Traffic is
still substantial with lock contention, howev-
er, because again multiple threads compete for
the lock whenever the lock release occurs.

Queue-based locking mechanisms attempt
to reduce the traffic from lock contention. In
this approach, the system maintains a queue
of waiting requesters, in which each node typ-
ically records pointers to adjacent processors
in the queue. The approach minimizes net-
work traffic by having a lock contender per-
form arbitration for the lock at the time of
request, by allowing the processor to spin on a
local variable, and by limiting the number of
processors involved in the lock transfer. QOLB
(queue on lock bit) was the first queue-based

118

MICRO TOP PICKS

IEEE MICRO

Why Transactions?
Transactions provide an intuitive model for reasoning about coordinated access to shared

data.1 A transaction comprises a series of read and write operations that provide the proper-
ties of failure atomicity, consistency, and durability.2 Failure atomicity assures that a transaction
either must execute to completion or, in the presence of failures, must appear not to have
executed at all. Consistency requires the transaction to follow a protocol that provides threads
with a consistent view of the data object. Serializability is an intuitive and popular consis-
tency criterion for transactions. Serializability requires the result of executing concurrent trans-
actions to be as if there had been some global order in which these transactions had executed
serially. Durability states that a committed transaction cannot be undone.

A lack of general transaction support in processors has led to programmers’ often relying
on critical sections to achieve some of the transactions’ functionality. Critical sections are
software constructs that enforce mutually exclusive access among threads to shared objects
and thus trivially satisfy serializability. Programmers and compilers most commonly imple-
ment critical sections with a software construct known as a lock. A lock is associated with
a shared object and determines if the shared object is currently available. A thread acquires
the lock, executes its critical section, and releases the lock. All other threads wait for the lock
until the first thread has completed its critical section, serializing access and thus making the
entire critical section appear to execute atomically. This waiting prevents a data conflict—
in which at least one thread is writing a memory location while at least one other thread is
simultaneously reading or writing the same location.

Failure atomicity is difficult to achieve with critical sections, however, because it requires
support for logging all modifications performed within a critical section and then making
these modifications visible instantaneously using an atomic operation. A transaction, on the
other hand, has this property and is thus semantically stronger than a critical section.

References
1. J. Gray, “The Transaction Concept: Virtues and Limitations,” Proc. Int’l Conf.

Very Large Databases, Morgan Kaufmann, 1981, pp. 144-154.
2. K.P. Eswaran et al., “The Notions of Consistency and Predicate Locks in a Data-

base System,” Comm. ACM, vol. 19, no. 11, Nov. 1976, pp. 624-633.

locking primitive proposed and required both
hardware and software support.5 Tom Ander-
son subsequently proposed an all-software
queued lock,6 which John Mellor-Crummey
and Michael Scott’s MCS lock improved on.7

Although MCS performs well under con-
tention, it introduces significant software over-
head for queue maintenance, which degrades
performance in the absence of contention.

QOLB’s collocation of lock and data over-
laps data transfer with lock transfer, thus
reducing latencies observed within critical sec-
tions.5 Speculative execution of critical sec-
tions also aims to overlap certain
lock-acquisition latencies with computation
in the critical section to tolerate lock serial-
ization.8 Speculative execution works well
without contention but degrades performance
significantly when there is lock contention
because of network traffic on the lock as well
as competition for the data among multiple
threads. Another technique, Speculative Syn-
chronization,9 applies thread-level speculation
(TLS) to synchronization. In this technique,
multiple threads compete for a lock in paral-
lel with the critical section’s speculative exe-
cution. Without contention, the behavior is
similar to that of conventional locking, in that
each thread acquires the free lock. With con-
tention, the threads actively compete for the
lock while executing their critical sections.
Without data conflicts, the TLS-based Spec-
ulative Synchronization mechanisms achieve
some overlap in critical-section execution
among various threads. With data conflicts,
threads actively compete for the lock, and at
least one thread acquires it. An adaptive ver-
sion of Speculative Synchronization incorpo-
rates an SLE-like mechanism2 to handle the
cases in which data conflicts do not occur.
Unlike TLR, neither the resulting adaptive
scheme nor the underlying SLE method it
employs is lock-free.

Thus, the key performance limitation of
synchronization stems from the coordination
mechanism among threads and the excessive
traffic generated from inefficiently coordinat-
ing actively competing threads.10

Application stability
In addition to the programmability-per-

formance tradeoff, the software waiting that is
characteristic of a lock construct has implica-

tions for thread behavior under unexpected
conditions, such as thread-scheduling events
and failures. If some thread owns a lock by
marking it held, other threads requiring that
lock must wait for the lock to become free.
This waiting can negatively affect system
behavior. If the operating system deschedules
the lock owner, other threads waiting for the
lock cannot proceed because the lock is not
free. In highly concurrent environments, all
threads may wait until the descheduled thread
runs again. However, a nonblocking proper-
ty requires some thread to make progress even
if thread delays or failures occur. Further, if
the lock owner aborts, other threads waiting
for the lock never complete, since the lock is
never free again. The shared structures the
aborted thread updated remain in an incon-
sistent state because critical sections lack fail-
ure atomicity. A wait-free property requires
all nonfailing threads to complete all opera-
tions even with such failures.11 Conventional
locks are neither nonblocking nor wait-free.

Transactional Memory12 and Oklahoma
Update13 are hybrid mechanisms that attempt
to address lock limitations by providing spe-
cial instructions for constructing concurrent
data structures without requiring locks.
Although these approaches have good stabil-
ity properties, they require new instructions,
and programmers must learn to use these
instructions and reason about the correctness
of the resulting data structure. This learning
curve limits the appeal of these approaches.

Rethinking the locking problem
Even with their limitations, locks continue

to be popular because few alternatives are
competitive, and critical sections have intu-
itive appeal. Lock-based critical sections are
nearly universal as mechanisms for synchro-
nizing thread accesses. Even so, lock limita-
tions are becoming notable bottlenecks. We
believe that research should pursue solutions
for exploiting hardware thread parallelism eas-
ily and efficiently. Efficient synchronization
must eliminate overhead rather than try to tol-
erate it. Ideally, locks should be passive, not
an object of competition. Serialization should
occur only if a data conflict requires it, and
then it should occur on the data itself, not on
the lock. Given the widespread use of critical
sections, any solution to the locking problem

119NOVEMBER–DECEMBER 2003

would do well to maintain the programmer’s
model of critical sections. Further, it should
address the issues of reliability, performance,
and programmability in a unified manner, not
through piecemeal mechanisms.

With these points in mind, the ideal goal is
to present the programmer with the model of
a lock as a zero-overhead synchronization tool.
This is exactly the model that TLR provides.1

It uses modest hardware to convert lock-based
critical sections transparently and dynamical-
ly into lock-free optimistic transactions and
uses fair conflict resolution to provide trans-
actional semantics and starvation freedom.
Providing the lowly critical section with trans-
actional execution behavior elevates the sim-
ple notion of a critical section to the much
more powerful concept of a transaction, yet
still uses the familiar acquire/release mecha-
nism. TLR uses SLE2 as an enabling mecha-
nism to provide a comprehensive solution to
the locking problem. TLR’s lock-free aspect
eliminates all serialization on locks, whether or
not there are data conflicts, and provides
transparent transactional execution behavior
for critical sections.

Speculative lock elision
The aim of SLE is to elide lock acquires

from a dynamic execution stream, thus break-
ing a critical performance barrier by allowing
nonconflicting critical sections to execute and
commit concurrently. SLE demonstrated for
the first time that without data conflicts the
hardware can concurrently execute critical sec-
tions protected by the same lock and that all
these executions can concurrently commit.
This is possible because the thread does not
have to acquire a lock: The lock need be only
readable in the processor’s cache. Thus, mul-
tiple threads can concurrently execute critical
sections protected by the same lock and with-
out any dependence on the lock.

The key insight is that locks need not be
acquired, only observed. Semantically, the
lock is a control variable employed to provide
the illusion of atomicity (by actually enforcing
mutual exclusion). Thus, removing the lock
variable is acceptable if we can use other
means to provide the illusion of atomicity.

SLE elides locks without requiring precise
semantic information from the software. It
enables safe, dynamic lock elision by exploit-

ing a property of locks and critical sections as
programmers and compilers commonly
implement them. If memory operations
between the lock acquire and release appear
to occur atomically, elision of the two corre-
sponding writes is possible because the sec-
ond write (of the lock release) undoes the
changes of the first write (of the lock acquire).
In other words, the hardware need not per-
form writes to the lock. To detect atomicity
violations, we can use cache-coherence pro-
tocols that most modern processors already
implement, and employ a rollback mecha-
nism for recovery. On a recovery, the hard-
ware can explicitly write to the lock. Successful
elision is validated and committed without
acquiring the lock.

SLE works with the speculative-execution
hardware available in modern processors.
During lock elision, SLE provides the ability
to buffer speculative state and recover to an
earlier execution point in the event of a mis-
speculation. Similar to other techniques that
use speculative execution, SLE relies on the
hardware’s ability to buffer speculative state.
Thus, when local buffering space is exhaust-
ed, speculative execution is not possible—a
limitation fundamental to all speculative-exe-
cution schemes. However, such a buffering
requirement is largely an engineering trade-
off, and processor designers can provide suf-
ficient buffer space to cover nearly all
common-case critical sections. Another limi-
tation of speculative-execution techniques,
which SLE inherits, is the inability to undo
I/O operations. Thus, speculative execution
cannot be applied to I/O operations.

SLE requires neither instruction set changes
nor programmer or compiler support. Hard-
ware designers can incorporate SLE into mod-
ern processors with modest support and
without system-level modifications. Further,
if any situation arises that precludes SLE
application—such as resource constraints or
repeated data conflicts—the thread can always
acquire the lock normally. Thus, SLE guar-
antees a correct execution, with the same for-
ward-progress properties as the underlying
synchronization mechanism.

Transactional lock removal
TLR aims to achieve a serializable schedule

of critical sections, in which all memory oper-

120

MICRO TOP PICKS

IEEE MICRO

ations within a critical section are atomically
inserted into some global order, independent of
data conflicts. Figure 1 illustrates. Serializabili-
ty requires the result of executing concurrent
transactions to be as if these transactions exe-
cuted in some serial order. In the absence of data
conflicts, we can ensure serializability using a
technique such as SLE but the presence of data
conflicts among concurrently executing threads
requires additional mechanisms, which TLR
provides. TLR performs active concurrency con-
trol to ensure correct coordinated access to the
data that is experiencing conflicting access by
using the data itself rather than locks.

TLR is based on four main ideas:

• Locks define a transaction’s scope.
• The hardware executes a transaction

speculatively without the need for a lock
request or acquire.

• A conflict resolution scheme orders con-
flicting transactions.

• An enabling technique such as SLE gives
the appearance that the transaction has
atomically committed.

In SLE, a data conflict among concurrent
critical sections can result in the threads
restarting and using the underlying lock-based
scheme. In contrast, TLR uses an explicit
data-conflict-resolution scheme to determine
which thread need not restart. The conflict
resolution allows the winning thread to retain
ownership of a conflicting data block. By uni-
formly applying such a scheme, we ensure that
one thread eventually wins all conflicts and
retains ownership of all conflicting data
blocks. Guaranteeing a winner among all con-
current conflicting threads in turn means that
threads can avoid acquiring a lock even in the
presence of conflicts. The thread, which wins
all conflicts and completes its critical section,
makes all its updates visible to other threads
instantaneously at the end of the critical sec-
tion. Designers can implement the conflict
resolution scheme in hardware using existing
cache-coherence protocols.1

As in any speculative-execution scheme,
TLR works as long as the speculative state is
buffered. In such cases, all nonconflicting
transactions proceed and complete concur-
rently without serialization or lock depen-
dence. The processor also executes critical

sections experiencing data conflicts without
the need to acquire locks and without affect-
ing critical sections that do not have data con-
flicts. The decision of when to serialize
execution is based on the accessed data expe-
riencing a conflict, rather than on a competi-
tion for the lock. Further, TLR provides failure
atomicity, even with repeated data conflicts.

Numerous conflict-resolution schemes are
possible, but to provide starvation freedom, we
favor a scheme based on timestamps, which we
discuss in our original paper on TLR.1 These
timestamps can be viewed as a priority, and all
operations within the critical section are
assigned the same timestamp. TLR uses time-
stamps solely to determine which of the two
conflicting threads has a higher priority, not to
explicitly order the execution of critical sections
among different processors. Thus with TLR,
transactions that conflict in their data sets but
do not actually observe any detected conflicts
during their execution can execute in any order
independent of the transactions’ timestamps.

TLR performance
To understand TLR performance, we stud-

ied many points in the spectrum of behavior
possible in the execution of critical sections
with data conflicts. Three of these points are
particularly illuminating—coarse-grained lock-
ing with no data conflicts, fine-grained lock-
ing with high data conflicts, and fine-grained

121NOVEMBER–DECEMBER 2003

Global memory order

P
hy

si
ca

l t
im

e

Normal memory
Atomic lock-free critical
section (set of memory
operations)

CS2

CS3

CS4

CS1

Figure 1. TLR conceptual effect. Although
critical-section executions without lock
acquires (CSi) overlap in physical time (with
or without data conflicts), each critical sec-
tion logically appears to be inserted atomi-
cally and instantly in a global ordering or
memory operations.

locking with dynamic data conflicts. The three
points correspond to three microbenchmarks.

The multiple-counter microbenchmark
(coarse-grained locking with no data conflicts)
consists of n counters protected by a single
lock. Each processor uniquely updates only
one of n counters 224/n times. Even though a
single lock protects the counters, there is no
dependence across the various critical sections
for the data itself and hence no conflicts.

The single-counter microbenchmark (fine-
grained locking with high data conflicts) cor-
responds to critical sections operating on a
single cache line. A lock protects one counter,
and n processors increment the counter 216/n
times. There is no inherent exploitable paral-
lelism, since all processors operate on the same
data (and cache line).

The doubly-linked-list microbenchmark
(fine-grained locking with dynamic data con-
flicts) consists of a doubly-linked list with
head and tail pointers protected by one lock.
Each processor dequeues an item pointed to
by the head pointer and enqueues it to the tail
up to 216/n times. Concurrent enqueue and
dequeue operations can occur on a nonemp-
ty queue. However, both head and tail must
be modified for an empty queue. Exploiting
such concurrency is nontrivial. The critical
sections involve pointer manipulations and
multiple cache line accesses.

The system we used in this simulation
employs T&T&S (Base), software MCS locks

(MCS), SLE (Base+SLE), and TLR
(Base+SLE+TLR). Figure 2 presents the
results. We describe our complete set of results
in detail in our original paper on TLR.1

As Figure 2a shows, Base performance
degrades with more threads because of the
severe competition for the lock. The traffic
that T&T&S generates overwhelms the net-
work. MCS, as expected, is scalable under
high contention but experiences fixed soft-
ware overhead. TLR and SLE behave identi-
cally because there are no data conflicts, and
both outperform Base and MCS.

In Figure 2b, Base performance degrades
with increasing threads because of severe con-
tention for both the lock and data. SLE behaves
similarly to Base because SLE detects frequent
data conflicts, turns off speculation, and falls
back to the Base scheme. MCS is scalable but
experiences fixed software overhead. TLR per-
forms well because no lock conflicts occur.

In Figure 2c, Base performance degrades as
it did in Figure 2a and 2b because of severe lock
contention. SLE does not perform well either
and performs similarly to Base. Determining
when to apply speculation is difficult because
of this benchmark’s dynamic concurrency. SLE
often falls back to the base case of lock acqui-
sitions because of detected data conflicts. MCS
again is scalable but experiences fixed software
overhead. TLR performs well and can exploit
enqueue/dequeue concurrency.

In summary, TLR outperforms both Base

122

MICRO TOP PICKS

IEEE MICRO

0

100

200

300

400

500

600

700

800

900

1,000

2 4 6 8

Processor count

10 12 14 16

(a)

E
xe

cu
tio

n
cy

cl
es

 (
m

ill
io

ns
)

Base
MCS
Base+SLE
Base+SLE+TLR

0

5

10

15

20

25

2 4 6 8

Processor count

10 12 14 16

(b)

E
xe

cu
tio

n
cy

cl
es

 (
m

ill
io

ns
)

0

5

10

15

20

25

30

35

2 4 6 8

Processor count

10 12 14 16

(c)

E
xe

cu
tio

n
cy

cl
es

 (
m

ill
io

ns
)

Figure 2. TLR performance for three critical-section behaviors. The multiple-counter microbenchmark corresponds to coarse-
grained locking and no conflicts (a). The single-counter benchmark corresponds to fine-grained locking and high conflicts (b).
The doubly-linked-list benchmark corresponds to fine-grained locks and dynamic conflicts (c). This figure also shows the per-
formance of test&test&set (Base), MCS locks (MCS), the Base scenario with SLE (Base+SLE), and the Base scenario with SLE
and TLR (Base+SLE+TLR).

and MCS. TLR exploits dynamic concurren-
cy, while synchronization performance limits
both Base and MCS. MCS performs a constant
factor worse than TLR, while Base perfor-
mance degrades quite substantially with
increasing contention. The behavior of Base
under lock contention is poor because multiple
processors are racing for the lock and data,
resulting in repeated access to the lock variable
and the introduction of considerable traffic into
the network. That the T&T&S profile remains
the same regardless of the workload demon-
strates the fundamental performance problems
of locking, independent of data characteristics.

Implications of transactional execution
TLR has implications for a wide range of

multithreaded applications and related
issues,14 notably programmability and per-
formance, stability, data races, and databases.

Programmability and performance
With transactional execution, there is little

need to reason about lock granularity because
the hardware makes ordering decisions dynam-
ically on the basis of actual data conflicts and
independently of lock granularity. Thus, trans-
actional execution solves a critical problem in
reasoning about writing multithreaded pro-
grams. TLR extracts and exploits the fine-
grained parallelism inherent in the program,
regardless of the locking granularity the pro-
grammer used. Because the hardware makes
serialization decisions only when data conflicts
occur and only for threads involved in the con-
flict, TLR automatically achieves the perfor-
mance of the finest granularity locking, and
the programmer can freely employ coarse-
grained locking instead of fine-grained lock-
ing without concern for performance or
deadlock. Hardware data transfers are efficient
and have low overhead. Programmers can thus
focus on writing correct code and let the hard-
ware automatically extract performance.

Stability
Eliminating the software wait on locks

(because locks are not written) provides lock-
and wait-free properties transparently. Conse-
quently, systemwide interactions improve,
behavior is nonblocking, and stability increas-
es. Additionally, TLR automatically provides
failure atomicity, subject only to resource con-

straints. Further, TLR provides lightweight
support for restartable critical sections—a
direct result of SLE’s failure atomicity guaran-
tee (in the absence of data conflicts) and TLR’s
similar guarantee (in the presence of data con-
flicts). This restartable property is a powerful
functionality that applications can exploit.

Data races
TLR’s enforced atomicity (and thus trans-

actional execution) ensures that data accesses
within critical sections occur atomically and
that no access, within or out of other critical
sections, from other threads can be interleaved
within a critical section. This in effect masks
such data races, forcing these racing accesses
to be ordered either before or after a critical
section. In this way, TLR prevents subtle,
undesirable data races for a given execution—
a potentially powerful mechanism for reliable,
race-free execution. This can also free the pro-
grammer from worrying about data races when
using transactions, since all operations in a
transaction will occur in a race-free manner.

Databases
Four properties of database transactions are

atomicity, consistency, isolation, and durabil-
ity. Atomicity requires that a transaction either
execute to completion or have no effects at all.
TLR attains atomicity by buffering updates
performed within a lock-free critical section
and writing them to memory only if the lock-
free critical section completes. On a failure,
the TLR mechanism discards all updates per-
formed within the failed critical section. A
transaction must preserve the consistency of
shared data, which is a property of the trans-
action itself, not of the mechanism that imple-
ments it. Isolation requires that transactions
execute in a way that allows them to be seri-
alized. TLR meets this requirement by
employing an appropriate conflict-resolution
scheme. Durability requires that the results of
transactions be successfully committed to
storage, and this state must be restored in the
event of any failure. Because TLR does not
handle disk writes, it does not provide dura-
bility. Ravi Rajwar and Philip Bernstein dis-
cuss TLR in the context of databases,15 noting
that TLR’s failure atomicity, consistency, and
isolation properties are a promising fit for
high-performance database operations.

123NOVEMBER–DECEMBER 2003

Toward generalized transactions
TLR’s atomic transaction abstraction is a

powerful primitive for constructing richer
software operations because it lets program-
mers continue using critical sections without
the limitations inherent in locking. Using
TLR as a transaction mechanism removes the
locking overhead characteristic of the stan-
dard lock-based approach. TLR automatical-
ly handles lock-based programs that implicitly
treat the lock-acquire and lock-release opera-
tions as beginning and ending a transaction,
but it is also an excellent fit for generalized
transactional execution—the lock-acquire
operation corresponds to transaction_begin,
and the lock-release corresponds to transac-
tion_end. Exposing such a paradigm to the
programmer via new constructs such as trans-
action_begin and transaction_end, while
allowing the critical section paradigm to
coexist, might hold the key to improved reli-
ability in future multithreaded applications.
The programmer focuses on reliability and
correctness via transactions, and the hardware
achieves high performance for most transac-
tions. For the remaining small fraction that
does not lend itself to TLR because of resource
issues and I/O, a slower software scheme in
the form of a library could be the solution.
Such a hybrid approach—TLR for most cases
and the slower software scheme for the
uncommon case—will provide reliable high
performance most of the time and an execu-
tion with a continued strong reliability the rest
of the time. TLR lets both legacy code and
applications based on critical sections benefit
from transactional properties, while enabling
a future programming model based exclu-
sively on generalized transactions. In this way,
it becomes an excellent migration path for reli-
able programs.

In the transactional execution scheme we
propose, SLE provides the mechanism to

extract a lock-free execution from a lock-based
execution and guarantees such an execution
in the absence of data conflicts. TLR uses SLE
as an enabling mechanism but, in addition,
provides a successful lock-free execution, even
in the presence of data conflicts. We believe
future software systems should use transac-
tions for improving their reliability and pro-
grammability, and hardware mechanisms such

as TLR should provide the common-case per-
formance for such software systems. The
uncommon case might be handled using a
slower software interface, thus guaranteeing
transaction properties in all cases. This decou-
pling of performance and programmability
holds the key to future reliable high-perfor-
mance systems. MICRO

References
1. R. Rajwar and J.R. Goodman, “Transaction-

al Lock-Free Execution of Lock-Based Pro-
grams,” Proc. Symp. Architectural Support
for Programming Languages and Operating
Systems (ASPLOS 02), ACM Press, 2002,
pp. 5-17.

2. R. Rajwar and J.R. Goodman, “Speculative
Lock Elision: Enabling Highly Concurrent
Multithreaded Execution,” Proc. 34th Int’l
Symp. Microarchitecture (MICRO-34), IEEE
CS Press, 2001, pp. 294-305.

3. G.M. Amdahl, G.A. Blaauw, and F.P. Brooks
Jr., “Architecture of the IBM System/360,”
IBM J. Research and Development, Apr.
1964, pp. 87-101.

4. L. Rudolph and Z. Segall, “Dynamic Decen-
tralized Cache Schemes for MIMD Parallel
Processors,” Proc. Int’l Symp. Computer
Architecture (ISCA 84), ACM Press, 1984,
pp. 340-347.

5. J.R. Goodman, M.K. Vernon, and P.J.
Woest, “Efficient Synchronization Primitives
for Large-Scale Cache-Coherent Shared-
Memory Multiprocessors,” Proc. Symp.
Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS
89), ACM Press, 1989, pp. 64-75.

6. T.E. Anderson, “The Performance Implica-
tions of Spin-Waiting Alternatives for Shared-
Memory Multiprocessors,” Proc. Int’l Conf.
Parallel Processing, vol. II (software), IEEE
CS Press, 1989, pp. 170-174.

7. J.M. Mellor-Crummey and M.L. Scott,
“Synchronization without Contention,”
Proc. Symp. Architectural Support for Pro-
gramming Languages and Operating Sys-
tems (ASPLOS 91), ACM Press, 1991, pp.
269-278.

8. K. Gharachorloo, A. Gupta, and J.L. Hen-
nessy, “Two Techniques to Enhance the
Performance of Memory Consistency Mod-
els,” Proc. Int’l Conf. Parallel Processing,
IEEE CS Press, 1991, pp. 355-364.

124

MICRO TOP PICKS

IEEE MICRO

9. J.F. Martínez and J. Torrellas, “Speculative
Synchronization: Applying Thread-Level
Speculation to Explicitly Parallel Applica-
tions,” Proc. Symp. Architectural Support for
Programming Languages and Operating
Systems (ASPLOS 02), ACM Press, 2002,
pp. 18-29.

10. A. Kägi, D. Burger, and J.R. Goodman, “Effi-
cient Synchronization: Let Them Eat QOLB,”
Proc. Int’l Symp. Computer Architecture
(ISCA 97), IEEE CS Press, 1997, pp. 170-180.

11. M. Herlihy, “Wait-Free Synchronization,”
ACM Trans. Programming Languages and
Systems, vol. 13, no. 1, Jan. 1991, pp. 124-
129.

12. M. Herlihy and J.E.B. Moss, “Transactional
Memory: Architectural Support for Lock-
Free Data Structures,” Proc. Int’l Symp.
Computer Architecture (ISCA 93), ACM
Press, 1993, pp. 289-300.

13. J.M. Stone et al., “Multiple Reservations and
the Oklahoma Update,” IEEE Parallel & Dis-
tributed Technology, vol. 1, no. 6, Nov. 1993,
pp. 58-71.

14. R. Rajwar, “Speculation-Based Techniques
for Transactional Lock-Free Execution of

Lock-Based Programs,” PhD dissertation,
CS Dept., Univ. of Wisconsin-Madison,
2002.

15. R. Rajwar and P.A. Bernstein, “Atomic
Transactional Execution in Hardware: A New
High-Performance Abstraction for Databas-
es,” Int’l Workshop High-Performance
Transaction Systems, 2003 (position paper);
http://research.sun.com/hpts2003/.

The biography of Ravi Rajwar appears on
p. 19 of this issue.

James Goodman is a professor of computer
science at the University of Auckland, New
Zealand. He is on leave from the University
of Wisconsin-Madison, where he performed
the work reported in this article. His research
interests include memory systems and paral-
lel computing. Goodman has a PhD in elec-
trical engineering and computer science from
the University of California, Berkeley.

Direct questions and comments about this
article to Ravi Rajwar, Intel Microprocessor
Research Lab; ravi.rajwar@intel.com.

125NOVEMBER–DECEMBER 2003

Coming Next Issue
JANUARY–FEBRUARY 2004

Guest Editors Bryan Lyles and John Lockwood

Hot Interconnects 11
• Nexus: An Asynchronous Crossbar Interconnect for Synchronous Systems-on-Chip Design
• Deep Packet Inspection using Parallel Bloom Filters
• Initial End-to-end Performance Evaluation of 10-Gigabit Ethernet
• Micro-Benchmark Level Performance Comparisons of

High-Speed Cluster Interconnects
• ETA: Experience with an Intel Xeon Processor as a

Packet Processing Engine

IEEE Micro serves
your interests

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

