156

Chapter 3/ Instruction Sets

IL

Segment
Descriptor

[P] S

o

~32Bit,
Register
File

J. Crawford 157

Architecture of the Intel 80386

John Craw ford

Intel Corporation, SC4-59
2525 Walsﬁn' Ave.
Santa Clara, Ca. 95051

ABSTRACT

Intel’'s 80386 32-bit microprocessor!?? is the

.newest member of the 56 Family of microproces-
sors. [t features a full 32-bit architecture imple-
mented in a 1.5u CMOS technology®, supports an
average Instruction rate of 3 to 4 milllon instruc-
tions per second, and is fully software compatible
with the 8086, 8088, 80186, BO188, and 80286
microprocessors. Memory management is fully
supported with on-chip paging underncath seg-
mentation.

Introduction

The 386 offers a full 32-bit architecture to the pro-
grammer, featuring 32-bit registers, 32-bit address for-
maticn, and a full set of 32-bit insiructions. AL the
same time, the 386 iz cbject code compatible with the
16 bit members of Intels 86 family of procesors A
complete segmented/paged Mamory Management and
Protection mechanism supports segments up to 4 Giga-
byies in size, and uszes a standard two-level paging
mechanism undemeath séegmentation to suppart physi-
cal memory management of these large segments
Segmentation and Paging are fully supported on-chip
with a high-speed address translation pipeline which
caches sepmentation and paging mapping information
on-chip. Address translation is fully pipelined with
cther CPU operations so that a memory Load instruc-
titn, including segment and pege address translation,
requires just 4 clack cycles (250 ns at 16 Mhz) and a
Store instruction requires just 2 clock cycles {125 ns at
16 Mhzl

Bagic Architecture

General Registers

Eight 32-bit general reglsters shown in figure 1 are
namad EAX, EBX, ECX, EDX, ESP, EBP, ESl, and EDM,
and provide high-speed storage for integer data and
addresses, The low order 16 bits of these registers con-
tain the 16-bit B0BG/BO2BE registers AX, BX, CX, DX,
SF, BP, 3, and DI. Eight &-bit registers AH, AL, BH,
BL, CH, CL, DH, and DL provide direct ackpss to the
upper and lower 8 bits of the AX, BX, CX, and DX

OERERAL RECISTER 3BT SERECT RBGTSTERL

a Tk 13 LI L] ” L]
iy S - P .
1 1 AK 1 1 1
1 1 I EAX 1 1 1]
1 AH 1 AL 1 1 I
. e we -
! I -8 I E I
I [I BX [I [|
1 ooroa \ '
#eo o . e pa -
I] m I I L]
I i I X i i Fi
| i (e] [. 8 [I !
b ST Y fusasasannanenns -
[1 B 1 1 1
I [] I Tk, I I [L.
1 [T 1 1 1
e SR E R TS § . -
1 1 1 1 i
I I 1 I 5P I I Fi
1 1 1 1 I
#e - b e -
1 1 1 1 1
1 1 BF i ERF L i 1]
1 1 i [¥
. . - wes -
1 1 1
I i 3 i ESE
1 1 [
R —— T —— -
1 1 1
I I =] e}
1 1 '
. — - -
STATUS /CIONTICL. RG] STERE
n 1] L
Fi— an
I I]
! 1 FLADS 1 EFLADE
! 1 [
#es g S —-
1 i 1
I i IF ' EIF
1 1 1
LT T rra— - *

Figure 1 - General Registers

registers. When accessed as 8§ or 16-bit rogisters, the
other bits of the 32-bit registers are undisturbed.

Two additional 32-bit registers, also shown in figure 1,
suppart processor conirol, The 32-bit EIP register i the
Instruction Pointer register, and points 10 the next
instruction the processor is to execute The 32-bit
EFLAGS register provides 2 number of status and con-
trol bite Status bits are set after most arithmetic
operations to indlcate carry, overfiow, sign, and zerc
result. Control bits are provided to mask interrupts,
provide single-step exscution, and control a number of
exocution modes. The lower 16 bits of EIP and
EFLAGS contain the 8086/80286 [P and FLAGS regis-
ters

Three additional ses of registers provide specialized
functions for procesor control. One set of registers

158 Chapter 3/ Instruction Sets

controls the operation of the memory management
hardware and provides base addresses for the memory
mapping tables A second set of registers provides
access to the hardw are to simplify production testing®
A third set of registers support effective software
debugging. Four address registers and two
status/control regsters provide the ability to set up to
four code or data breakpoints at arbitrary addresses, and
to break program execution when a breakpaint is
encountered.

Memory Addressing

Segmentation. In order to manage its large virtual
memory space, the 386 uses a segmented, ar two-
dimensional, addressing mechanism. Segments divide
main memory into multiple linear address spaces,
which correspond to the logical units viewed by the
programmer. Within a segment, data is addressed by
giving a simple byte offset. Because they divide
memory into multiple linear address spaces, segments
greatly simplify the relocation, sharing, and protection
of multiple logical units. Up to 16K (2'*) segments can
be defined in each task, and each segment can be up to 4
Gigabytes (23} in size, 50 the virtual address space is 64
Tera-bytes (2*€) per task.

Segment Regsisters. Due to the use of segmentation,
main memory addresses consist of 1w o parts: a segment
part and and offset within that segment. & Segment
registers, shown in figure 1, are provided to hold the
segment parts of addresses. In order to address data
within a segment, a 16-bit selector which identifies
that segment must be loaded into one of these & seg-
ment registers. 14 bits of the selectar provide an index
into a protected segment descriptor table where the
processor reads the base address, limit, and acoess attri-
butes of the segment, as described in a later section.
Two of the segment registers are dedicated to holding
selectors for the current code segpment (CS) and stack
segment (S8). The remaining four segment registers are
available to allow up to 4 data segments to be refer-
enced at any point in time.

Addressing Modes. 32-bit offsets within segments are
generated by adding topether up to 3 components: a
F2-bit base register, a 32-bit index register scaled by
12,4, or 8, and an B or 32-bit displacement. Any of the
8 general registers can supply the base or index parts of
a memory address. Table 2 summarizes the 32-bit
address mode choices available on the 80386. For com-
patibility with previous processors, the full set of 16
bit address meodes are also supported on the BO38S, but
are not illustrated here.

Immediate Operands. The simplest way to supply an
instruction operand is to include it directly within the
instruction. These immediare operands can be 8, 14, or
32-bits in =zize. Full size constants of B, 16, ar 32 bits

Base + (Index * Scale) + _Displacement
nong foné

EAX EAX

ECX BCX 1

EDX EDy 2 one

EEX % + <EBX * 24 4 -bits

ESP —_ 32-bitg

EBP EBFP

ESI ESI

EDI [EDI

Table 2 - 80386 Addressing Modes

can be supplied for instructions w hich operate on byte,
word, or double-word data. A 16 or 32-bit immediate
operand can be given as a sign-extended 8-bit immedi-
ate in order to conserve code space in the frequent case
of a small number of significant digits in the immediate
operand.

Data Types

On the 386, as well as all other members of the B6
family of processors, main memory is byte addressable,
20 each 8-bit byte in memory has an address I more
than 8 bits are required to represent the values in a
data type, multiple saquential bytes are used, with the
low order bytes stored at lower addresses, and with the
address of the datum given by the address of the low
order byte As with the other B6 family members, a
word is 16-bits wide, and a double-word, or dword, is
32 bits wide. Floating point numbers are stored in 32,
64, and 80 bit formats, which occupy 4, 8, and 10 con-
sacutive bytes, respectively.

| Deta Type and Instruction Summary oo
8, 16, 32-bir Integer Add, Subtract, Multiply, Divide
Add w/Carry, Sub w/Borrow
Increment, Decrement, Negate
And, Or, Xor, Not,

Move, Push, Pop, Exchange
Move with Sign/Zero Extend
Shift, Rotate, Double Shift
Compare, Test |
Add, Subtract, Multiply, Divide

8, 16, 32-5ir Ordinal

packed BCD

| unpacked BCD

16, 32, 64-bit Integer
12, 64, B0-bit Real

Add, Subtract, Multiply, Divide
Com pare, Remainder, Round

80-bit BCD Move, Exchange, Convert, Scale
log, exponential, square root
- . tangen, sine, cosine, arctan
BYTE string Mowve, Compare
| WORD string Fill, 3can, Translate
DWORD string

1(1.4G bytes length)

Lbis array (1.4G bits) _Tes, Ser, Clear, Complement

Table 3 - Data Types and Instruction Summary

Table 3 summarizes the data types directly supported
by the BO386 and its companion fcating point coproces-
sor, and lists the most important instructions supplied
for each type. Mew data types and instructions are
printed in italics

Instruction Forms

The 80386 provides a rich set of instructions w hich can
be broken into data manipulation instructions {eg. add,
move), and control transfer instructions f(eg. jump,
call). Instructions can have no operands, one operand,
or two operands, w here the operands can be in a proces-
sor register, main memary, or directly in the instruc-
tion as an immediste operand. Representative data
manipulation instructions are listed in table 3, with
new instructions in italics.

Data Manipulation Iastructicms. One operand
instructions can take their operands either from
memory of [rom a register. These instructions gen-
erally use ihis single cperand both as a source and a
destination. Two operand instructions are available in
the forms listed in table 4. MNowe the presence of
instruction forms with memory destinations. These
operate directly on data located in memory without the
need to first load the data into a register.

Destination | Source
Reyister Register
Register Immediate
Register Memaory
Memory | Reg'm.e]'
Memory | lmmediate

‘Table 4 - Two Operand Instruction Forms

A powerful set of efficient string instructions is pro-
vided for operating on strings with BYTE, WORD, or
DWORD elements. A string move instruction operates
at the maximum bus bandwidth for rapidly moving
blocks of data in memory. Two strings can be com-
pared. A string can be filled with a fixed value, can be
scanned for the first cocurance of a given value, or can
be translated using a character translation table. A set
of string moves & provided to transfer data rapidly
betw een memory and /0 space to support fast device
acoess such as 1o hard dizks or netw ork controllers

Control Transfer Instructions. A set of conditional
jumpe conditions changes in program flow on the set-
tings of the status bits in the EFLAGS register (eg
carry, sign, greater/less than, equall. Two sets of
unconditional Call, Jump, end Betumm instructions are
provided to transfer either within a segment, or
between two ssgments. Intra-segment transfess change
only the contents of the EIP register. Inter-segment
transfers change both the EIFP register and the C5 seg-
ment register to begin execution in a different segment.

J. Crawlord 13

The CALL and RETURN instructions use the program
stack contained in the segment addressed by the 53
register, and whose top is marked by the ESP register.
Parameter passing and local variable atlocation on this
program siack are supporied directly in Lhe instruction
sel. Parameters can be placed on the swack before exe-
cuting a CALL instruction with PUSH instructions,
and can be ammesmed within the called procedure at a
small dispiacement from the ESP or EBP registers. ESP
can be used for simple languages which do not require
the maintenence of a subprogram display. EBP is use-
ful as a pointer to the activation record for the current
subroutine in languages which reguire the ability to
address local variables of outer procedures, and to main-
tain the necessary static and dynamic links Two
instructions, ENTER and LEAVE, support procedure
entry and exit. ENTER will build the display for a
new procedure and allocate space for local variables on
the stack. LEAVE wiil desliocate the display and local
warigbles just before returning, The RETURN instruc-
tion can adjust the ESP register 1o remove parameters
pushed before the matching CALL by subiracting from
ESF aler the retum pointer is popped off the stack.

Instruction Encoding. In order {0 support hinary
compatibility with the previous 16-bit members of the
86 family, the BO386 instruction encoding includes all
of the 8 and 16-bit instructions from the BO286. The
32-bit instructions were added by using the same
instruction set encoding, but simply interpreting the
16-bit instructicns as 32-bit instructions by use of an
operand size indication. The cperand size can be set o
16 ar 32 for all the instructions in a code segment with
an attribute bit in the code segment descriptor. O, the
operand size can be set for a single instruction by
prepending an instruction prefix byte to that instruc-
tion. The code segment attribuie provides an efficient
method to type entire code segments as one size of the
other. The prefix provides the flexibility 1o operate on
16-bit data in 2 32 bit code segment, and vice-versa,

A similar sizing mechanism is used 1o select between
32-bit addressing and 16-bit addressing. The code seg-
ment attribute indicates the default address zize for an
entire code sggment, and an instruction prefix indicawes
that a different address size should be used for a single
instruction.

A number of new instructions were added to the 386
and 3B7 in addition to the 32-bit extensions described
above. Representziive operations are listed in tabie 3 in
itaiics

Memory management and Protection

The memory management mechanism combines both
segmentation and paging for a flexible, complele map-
ping and protaction mechanism.® Segmentation is the
top, logical level of the memory management madel, It
supparts the definition of prowected regions of memory
that erespond directly to constructs used by the pro-

163 Chapter 3 f Instruction Sais

grammer {e.g. code procedures, data structures, stacks)
Four levels of prolection are provided with the seg-
ment model: at a given time the prooessor can be exe-
cuting at one of four privilege levels from O (most
privileged) to 3 {leamt privileged). U executing at
privilege level st the processor can only acoess segments
at level n or levels of lesser privilege {numerically
greater levels),

Paging undemneath segmentation provides an efficient
mechanism for the management of physical memoary,
both tn the procesor's main memory and the paging
disk on virtual memory systems.

Figure 5 illustrates the two stages of addres transla-
tion. First a two part virtual address is translated by
segmentation 10 a 32-bit linear address, that is then
pamed through the page translation mechanism to
obtain the physical address. The page translation step
can be disabled by setting a processor contral bit. In
this case, the address put cut by the segment address
translation process is the physical address. This pro-
vides support lor systems that do not need paging, and
aleo provides compatiblity with the B0286, which did
nek support paging.

The segmented protection model is a superset of that
provided for the B0286, in order 1o support binary oom-
patibdlity even at the OS5 level. The model was
extended to support 32-bit segment base addresses and 4
gigabyte segment sizes for the BO386, but the concepts
and mechanisms were carried forward from the B0286.

FERETM I , el IR .
' PG H
: LIEA H
: zen "SI
ESIFI : I H
“UmE : SEOMIIH :
LCGICAL PEPTRY PN : S HAL PERY MIWENT '

Figure 5 - Overall Address Translaticn

Segmentation

Memory is addressed with a two part address, a stg-
ment part and an offset within a sspment. Segments
are identified by user programs by use of a 16-bit sele-
tor which contains a 1l4-bit index into protected
descripfor tables maintained by 05 software. The
descriptor assocjated with a selector comtains the base
address, size, and access attributes for the segment. To
address data within a given segment, the base address is
added 10 the offset part of the two part address to
obtain a 32-bit finear address that is the output of the
segment address relocadon process, A fault is reported

r 1 SEGMENT

TARGET

REAL
ADCHESS

BEGWENT
BABE

Figure 6 - Segment Address Translation

if the offset is larger than the segment size, or if the
type of the aceess is not permitted by the access attri-
butes in 1he descriptor. Hather than access the descrip-
tor table for every memory access, descriptors are
"cached" into shadow registers every time a selector is
loaded into a segment register. Omce cached, all refer-
ences 1o the segment are relocated and validated by the
processar before accessing physicai memory. The seg-
ment address translation process is illustrated in fig. 6

Paging

A standard 2 level page table is used, with 4K pages, as
illustrated in figure 7. A processor regisler points to
the base of the first level table. Table entries at both
levels are 4 bytes wide, and each table contains 1K
entries, 30 the page tables themselves exactly fit into 4K
pages 1o simplify allocation and swapping of page
tables

The 32-bit addrees fnom the sepment translation process
i divided into 3 parts for page mapping. The upper 10
bits select an entry in the first level table which points
ta a ssoond level table. The middle 10 it select an
entry in this second level table which contains the
upper 20 bits of the physical address of the desired

TOAT| TARELE -
_TAmE |GFESET tn
(15 12 mis EEMORY
- [r— ADFDRETR

*
ATET, e rasin
Le
DWECTORT

[ragc)

Figure 7 - Page Address Translation

page. The lower 12 bits of the input address, which do
not participate in the page translation process, are con-
catenated with these upper 20 bits to form the cutput
physical addres.

This page translation proces requires twWo memory
accesses to the page 1able map for every memory acess.
A page translation cache, sometimes called a translation

lock-aside buffer (TLB), is used to cache the 32 maost
recent virtual to physical address transiations to avord

reflerencing the memaory-resident page tables

Full support for virtual memory is provided, including
full restartability of all instructions, and provision of
page usage statistics with Dirty and Accessed bits per
page. Instruction restart is supported to esse the bur-
dén on operating system software in recovering from
page laults, After a missing page is rewrievad from the
disk, the faulting program is simply resiaried by
returning te the instruction which caused the page
fault.

Protection

The segmented memory model provides protection
between tasks, and between user programs and the
operating system. FEach task can hawve its own address
space, supported by its own set of segment and page
tables, to provide protection between tasks To
efficiently support an address space per task, \wo seg-
ment descriplor tables are used, One, the Giobal
Descriptor Table {(GDT), is shared by all tasks in the
system, and generally holds descriptors for O8 code and
data. The second table, the Lol Descripror Table
(LDT), is unique to sach task in the system.

Within a task, four privilege levels ara defined o parti-
ticnn the segments defined by a task betwesm system
access and user access. As illustrated in figure 8, the
processor executes at one of four privilege levels and
has soosss to segments at that level or higher (less
privileged} levels Attempls to acoess segments at

—A HIERARCHY OF TRUST—

Figure 8 - 4 Rings of Privilege

J. Crawlord 1M

lower (more privileged) levels cause protection traps.
This permits user and system segments to reside in a
common address space, and still protecls system seg-
mente from unmestricted user access,

Changes in privilege levels are oontrelled by Gates
Ciates are special segment descriptor types that indirect
ac(ess 10 & fixed entry point in another segment. This
provides a restricted transfer of control from higher
levels (less privileged) to specific entry points in lower
levels using the standard inter-segment CALL instruc-
ticm. To avoid protection holes inherent in the use of a
single stack, each privilege level has its own program
stack. During level transitions through gates, the pro-
gam stack of the new level is made the active stack by
relcading the 33 and ESP registers. Parameter pasing is
supported during the gate transition by the ability to
copy data from the caller’s stack 10 the callee's stack.
Through the use of gates, the user program, while coam-
pietely remricted from access 1o system level segments,
can be allowed to call 05 service routines directly with
the same inter-level CALL, and the same parameter
passing conventions used to transfer control to other
user-level routines.

Tasks

Another dimension of the Operating System suppart
incorporated into the 80386 is the direct support of the
task concept, to provide efficlent context switching in
multi-tasking environmente A speCial segment type, a
Task State Segment (T53), is provided to store the
machine state for a dormant prowess. This wgment con-
tains the general registers, EFLAGS, EIP, segment regis-
ters, and pointers to the Local Descriptor Table and
Page Table for the task.

The BO38& will perform & complete task switch il an
inter-segment CALL or JUMP instruction, or an intef-
rupt indicates a wransfer toa TS5 A task switch opera-
tion involves storing the current processor state in the
current T35, making the new TSS the current TS5, and
then loading the procesor state from this new T35 A
task switch initiated by a CALL instruction or inter-
tupt will also store the selector for the ad TSS into a
link field in the new TS5S to permit the old task to be
tesumed upon " return” from the new task. -

L/O Space

A 64K 10 address space, totally separate from the
main memory space, is provided for a clean interface to
device registers in peripheral contollers. A set of
instructons provide data movement between the L0
space and the AL, AX, or EAX registers String
instructions provide a high-bandwidth transfer
betw een 140 space and a block of main memory.

This I'D space is protected from arbitrary aces
through two mechanisms The 2-bit I0PL field in the
EFLAGS register defines the highest privilege tevel for
which unrestricted 110 access is permitted. A variable
length /0 permision bitmap lomted in the current

182 Chapter 3/ Instruction Sets

TS5 contains a bit for every 1O address A program
executing at a higher (les privileged) level than IOPL
will consult this 140 permission bitmap if it attempis
10 execute an O instruction. If the bitmap indicates
that the task has permission to access the given L0
address, the [/0 instruction will execule normally.
Otherw ise, the 140 instruction is aborted, and a protec-
tion fault is generated.

Virtual 8086 Mode

A special processcr mode, named Virtus! 8086 Mode,
was added to suppart multitasking of 8086 (BOSE,
BO186, BO188) tasks within the segmented/paged pro-
tectod environment. This mode allows a 386 O5 to pro-
vide a complete virtual 80386 machine to execute even
*dirty" PC applications, each with its own copy of an
8086 operating system. Within this environment, seg-
ment registers are loaded as in the BOBG, and relocate
16-bit addresses within the 1 Megabyte space supparted
by the BOBG. This 1 megabyte address space is mapped
by paging to allow protection and swapping of virtual
8086 programs. L/O instructions use the /0 permission
bitmap described above to give "dimy" applications
direct access to a restricted set of 1/'O devices, to suppart
fast 1/0 interfacing. Interrupts and exceptions which
oacur when the proosssor is executing in Virtual BOBS
mode cause a mode switch back 10 protected mods
where the interrupt is handled by the protected mode
05. This 05 must emulate certain privileged instruc-
tHons that may be executed by the Virtual BOBG pro-
gram, and can choose to handle interrupts itself, or
reflact them back to the Virtual 8086 program.

Interrupts

The BO3BE supports a vectored interrupt mechanizm 1o
signal asynchronous external events and to report efmor
or exceplional conditions that eccur as part of instruc-
tion execution. Interrupts are vectored through a 256
entry Interrupt Descriptor Table Interrupts can be
handled by interrupt procedures within the current
task, or can cause a task switch to a new task. Entries
in the IDT are gates which identily the entry points of
interrupt handling procedures, or identify the TSS for
an interrupt bandling task.

Conclusion

The 80386 combines a full 32-bit architecture with
full chiect code compatibility with the previous 16-bit
members of the 86 family. A flexible and powerful
memory managément model combining both segmenta-
tion and paging is fully supported with on-chip
hardware to minimize cost and maximize performance
Virtual 8086 mode, combined with the 140 permission
bitmap, provides an environment for efficient execution
of even “dirty" PC programs within the prowecied,
paged, multi-tasked environment supported by the
80386. Thanks to these key architectural features, the
BO386 provides access to a vast amount of industry
standard software, while at the same time delivering
state of the art perfarmance in a 32-bit CPLU.

References

[1} "B0386 Programmer's Reference Manual®, Intel
Corp., Santa Clara, CA, 1986,

[2] "80386 Hardware Reference Manual®, Intel Corp.,
Santa Clara, CA, 1985

[3] “80386 System Software Writer's Guide" Intel
Corp., Santa Clara, CA, 1986.

i4] P. Gelsinger, "Built-in Self Test for the BO386",
Proceedings, ICCD Conference, Oct 1986.

[5] P. 1. Denning, "Virtual Memory®, Compuring Sur-
veys, Vol 2, No. 3, pp. 153-189.

[6] J. Prak, "High Performance Technology, Circuits,
and Packaging for the B0386", Proceedings, ICCD
Conference, Oct. 1986,

