Fundamentals of
Computer Design

And now for something completely different.
Monty Python'’s Flying Circus

2 = Chapter One Fundamentals of Computer Design

Introduction

Computer technology has made incredible progress in the roughly 55 years since
the first general-purpose electronic computer was created. Today, less than a
thousand dollars will purchase a personal computer that has more performance,
more main memory, and more disk storage than a computer bought in 1980 for 1
million dollars. This rapid rate of improvement has come both from advances in
the technology used to build computers and from innovation in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution; but
beginning in about 1970, computer designers became largely dependent upon
integrated circuit technology. During the 1970s, performance continued to
improve at about 25% to 30% per year for the mainframes and minicomputers
that dominated the industry.

The late 1970s saw the emergence of the microprocessor. The ability of the
microprocessor to ride the improvements in integrated circuit technology more
closely than the less integrated mainframes and minicomputers led to a higher
rate of improvement—roughly 35% growth per year in performance.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX and its clone,
Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to successfully develop a new set of architec-
tures, called RISC (Reduced Instruction Set Computer) architectures, in the early
1980s. The RISC-based machines focused the attention of designers on two criti-
cal performance techniques, the exploitation of instruction-level parallelism (ini-
tially through pipelining and later through multiple instruction issue) and the use
of caches (initially in simple forms and later using more sophisticated organiza-
tions and optimizations). The combination of architectural and organizational
enhancements has led to 20 years of sustained growth in performance at an
annual rate of over 50%. Figure 1.1 shows the effect of this difference in perfor-
mance growth rates.

The effect of this dramatic growth rate has been twofold. First, it has signifi-
cantly enhanced the capability available to computer users. For many applica-
tions, the highest-performance microprocessors of today outperform the super-
computer of less than 10 years ago.

Second, this dramatic rate of improvement has led to the dominance of
microprocessor-based computers across the entire range of the computer design.
Workstations and PCs have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from

1.1 Introduction = 3

Intel

Pentium 1l
1600

1400
1.58x per year
1300
1200
1100 |
1000 f
900 +
Relative
performance 800
700

600

400

300
1.35x per year

200
100

Year

Figure 1.1 Growth in microprocessor performance since the mid-1980s has been substantially higher than in
earlier years as shown by plotting SPECint performance. This chart plots relative performance as measured by the
SPECint benchmarks with base of one being a VAX 11/780. Since SPEC has changed over the years, performance of
newer machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC92 and SPEC95). Prior to the mid-1980s, microprocessor performance growth was largely technology driven
and averaged about 35% per year. The increase in growth since then is attributable to more advanced architectural
and organizational ideas. By 2001 this growth led to a difference in performance of about a factor of 15. Performance
for floating-point-oriented calculations has increased even faster.

gate arrays, have been replaced by servers made using microprocessors. Main-
frames have been almost completely replaced with multiprocessors consisting of
small numbers of off-the-shelf microprocessors. Even high-end supercomputers
are being built with collections of microprocessors.

Freedom from compatibility with old designs and the use of microprocessor
technology led to a renaissance in computer design, which emphasized both
architectural innovation and efficient use of technology improvements. This
renaissance is responsible for the higher performance growth shown in Figure
1.1—a rate that is unprecedented in the computer industry. This rate of growth
has compounded so that by 2001, the difference between the highest-
performance microprocessors and what would have been obtained by relying
solely on technology, including improved circuit design, was about a factor of 15,

4

Chapter One Fundamentals of Computer Design

In the last few years, the tremendous improvement in integrated circuit capa-
bility has allowed older, less-streamlined architectures, such as the x86 (or IA-32)
architecture, to adopt many of the innovations first pioneered in the RISC
designs. As we will see, modern x86 processors basically consist of a front end
that fetches and decodes x86 instructions and maps them into simple ALU, mem-
ory access, or branch operations that can be executed on a RISC-style pipelined
processor. Beginning in the late 1990s, as transistor counts soared, the overhead
(in transistors) of interpreting the more complex x86 architecture became negligi-
ble as a percentage of the total transistor count of a modern microprocessor.

This text is about the architectural ideas and accompanying compiler im-
provements that have made this incredible growth rate possible. At the center of
this dramatic revolution has been the development of a quantitative approach to
computer design and analysis that uses empirical observations of programs, ex-
perimentation, and simulation as its tools. It is this style and approach to com-
puter design that is reflected in this text.

Sustaining the recent improvements in cost and performance will require con-
tinuing innovations in computer design, and we believe such innovations will be
founded on this quantitative approach to computer design. Hence, this book has
been written not only to document this design style, but also to stimulate you to
contribute to this progress.

The Changing Face of Computing and the Task
of the Computer Designer

In the 1960s, the dominant form of computing was on large mainframes—
machines costing millions of dollars and stored in computer rooms with multiple
operators overseeing their support. Typical applications included business data
processing and large-scale scientific computing. The 1970s saw the birth of the
minicomputer, a smaller-sized machine initially focused on applications in scien-
tific laboratories, but rapidly branching out as the technology of time-sharing—
multiple users sharing a computer interactively through independent terminals—
became widespread. The 1980s saw the rise of the desktop computer based on
microprocessors, in the form of both personal computers and workstations. The
individually owned desktop computer replaced time-sharing and led to the rise of
servers—computers that provided larger-scale services such as reliable, long-
term file storage and access, larger memory, and more computing power. The
1990s saw the emergence of the Internet and the World Wide Web, the first suc-
cessful handheld computing devices (personal digital assistants or PDAs), and the
emergence of high-performance digital consumer electronics, from video games
to set-top boxes.

These changes have set the stage for a dramatic change in how we view com-
puting, computing applications, and the computer markets at the beginning of the
millennium. Not since the creation of the personal computer more than 20 years
ago have we seen such dramatic changes in the way computers appear and in how

1.2 The Changing Face of Computing and the Task of the Computer Designer = 5

they are used. These changes in computer use have led to three different comput-
ing markets, each characterized by different applications, requirements, and com-
puting technologies.

Desktop Computing

The first, and still the largest market in dollar terms, is desktop computing. Desk-
top computing spans from low-end systems that sell for under $1000 to high-end,
heavily configured workstations that may sell for over $10,000. Throughout this
range in price and capability, the desktop market tends to be driven to optimize
price-performance. This combination of performance (measured primarily in
terms of compute performance and graphics performance) and price of a system
is what matters most to customers in this market, and hence to computer design-
ers. As a result, desktop systems often are where the newest, highest-performance
microprocessors appear, as well as where recently cost-reduced microprocessors
and systems appear first (see Section 1.4 for a discussion of the issues affecting
the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation. As we dis-
cuss in Section 1.9, the PC portion of the desktop space seems recently to have
become focused on clock rate as the direct measure of performance, and this
focus can lead to poor decisions by consumers as well as by designers who
respond to this predilection.

Servers

As the shift to desktop computing occurred, the role of servers to provide larger-
scale and more reliable file and computing services grew. The emergence of the
World Wide Web accelerated this trend because of the tremendous growth in
demand for Web servers and the growth in sophistication of Web-based services.
Such servers have become the backbone of large-scale enterprise computing,
replacing the traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. We use the term “availability,” which means that the system can reliably and
effectively provide a service. This term is to be distinguished from “reliability,”
which says that the system never fails. Parts of large-scale systems unavoidably
fail; the challenge in a server is to maintain system availability in the face of com-
ponent failures, usually through the use of redundancy. This topic is discussed in
detail in Chapter 7.

Why is availability crucial? Consider the servers running Yahoo!, taking
orders for Cisco, or running auctions on eBay. Obviously such systems must be
operating seven days a week, 24 hours a day. Failure of such a server system is far
more catastrophic than failure of a single desktop. Although it is hard to estimate
the cost of downtime, Figure 1.2 shows one analysis, assuming that downtime is

6 = Chapter One Fundamentals of Computer Design

Annual losses (millions of §) with downtime of

Cost of downtime per 1% 0.5% 0.1%
Application hour (thousands of $) (87.6 hrs/yr) (43.8 hrs/yr) (8.8 hrs/yr)
Brokerage operations $6450 $565 $283 $56.5
Credit card authorization $2600 $228 $114 $22.8
Package shipping services $150 $13 $6.6 $1.3
Home shopping channel $113 $9.9 $4.9 $1.0
Catalog sales center $90 $7.9 $3.9 $0.8
Airline reservation center $89 $7.9 $3.9 $0.8
Cellular service activation $41 $3.6 $1.8 $0.4
Online network fees $25 $2.2 $1.1 $0.2
ATM service fees $14 $1.2 $0.6 $0.1

Figure 1.2 The cost of an unavailable system is shown by analyzing the cost of downtime (in terms of immedi-
ately lost revenue), assuming three different levels of availability and that downtime is distributed uniformly.
These data are from Kembel [2000] and were collected and analyzed by Contingency Planning Research.

distributed uniformly and does not occur solely during idle times. As we can see,
the estimated costs of an unavailable system are high, and the estimated costs in
Figure 1.2 are purely lost revenue and do not account for the cost of unhappy cus-
tomers!

A second key feature of server systems is an emphasis on scalability. Server
systems often grow over their lifetime in response to a growing demand for the
services they support or an increase in functional requirements. Thus, the ability
to scale up the computing capacity, the memory, the storage, and the I/O band-
width of a server is crucial.

Lastly, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
(We return to the issue of performance and assessing performance for different
types of computing environments in Section 1.5).

Embedded Computers

Embedded computers—computers lodged in other devices where the presence of
the computers is not immediately obvious—are the fastest growing portion of the
computer market. These devices range from everyday machines (most micro-
waves, most washing machines, most printers, most networking switches, and all
cars contain simple embedded microprocessors) to handheld digital devices (such
as palmtops, cell phones, and smart cards) to video games and digital set-top

1.2 The Changing Face of Computing and the Task of the Computer Designer = 7

boxes. Although in some applications (such as palmtops) the computers are pro-
grammable, in many embedded applications the only programming occurs in
connection with the initial loading of the application code or a later software
upgrade of that application. Thus, the application can usually be carefully tuned
for the processor and system. This process sometimes includes limited use of
assembly language in key loops, although time-to-market pressures and good
software engineering practice usually restrict such assembly language coding to a
small fraction of the application. This use of assembly language, together with
the presence of standardized operating systems, and a large code base has meant
that instruction set compatibility has become an important concern in the embed-
ded market. Simply put, like other computing applications, software costs are
often a large part of the total cost of an embedded system.

Embedded computers have the widest range of processing power and cost—
from low-end 8-bit and 16-bit processors that may cost less than a dollar, to full
32-bit microprocessors capable of executing 50 million instructions per second
that cost under 10 dollars, to high-end embedded processors that cost hundreds of
dollars and can execute a billion instructions per second for the newest video
game or for a high-end network switch. Although the range of computing power
in the embedded computing market is very large, price is a key factor in the
design of computers for this space. Performance requirements do exist, of course,
but the primary goal is often meeting the performance need at a minimum price,
rather than achieving higher performance at a higher price.

Often, the performance requirement in an embedded application is a real-time
requirement. A real-time performance requirement is one where a segment of the
application has an absolute maximum execution time that is allowed. For exam-
ple, in a digital set-top box the time to process each video frame is limited, since
the processor must accept and process the next frame shortly. In some applica-
tions, a more sophisticated requirement exists: the average time for a particular
task is constrained as well as the number of instances when some maximum time
is exceeded. Such approaches (sometimes called soft real-time) arise when it is
possible to occasionally miss the time constraint on an event, as long as not too
many are missed. Real-time performance tends to be highly application depen-
dent. It is usually measured using kernels either from the application or from a
standardized benchmark (see the EEMBC benchmarks described in Section 1.5).
With the growth in the use of embedded microprocessors, a wide range of bench-
mark requirements exist, from the ability to run small, limited code segments to
the ability to perform well on applications involving tens to hundreds of thou-
sands of lines of code.

Two other key characteristics exist in many embedded applications: the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be a substantial portion of the system cost, and it is
important to optimize memory size in such cases. Sometimes the application is
expected to fit totally in the memory on the processor chip; other times the appli-
cation needs to fit totally in a small off-chip memory. In any event, the impor-
tance of memory size translates to an emphasis on code size, since data size is

Chapter One Fundamentals of Computer Design

dictated by the application. As we will see in the next chapter, some architectures
have special instruction set capabilities to reduce code size. Larger memories also
mean more power, and optimizing power is often critical in embedded applica-
tions. Although the emphasis on low power is frequently driven by the use of bat-
teries, the need to use less expensive packaging (plastic versus ceramic) and the
absence of a fan for cooling also limit total power consumption.We examine the
issue of power in more detail later in the chapter.

Another important trend in embedded systems is the use of processor cores
together with application-specific circuitry. Often an application’s functional and
performance requirements are met by combining a custom hardware solution
together with software running on a standardized embedded processor core,
which is designed to interface to such special-purpose hardware. In practice,
embedded problems are usually solved by one of three approaches:

1. The designer uses a combined hardware/software solution that includes some
custom hardware and an embedded processor core that is integrated with the
custom hardware, often on the same chip.

2. The designer uses custom software running on an off-the-shelf embedded
Processor.

3. The designer uses a digital signal processor and custom software for the pro-
cessor. Digital signal processors (DSPs) are processors specially tailored for
signal-processing applications. We discuss some of the important differences
between digital signal processors and general-purpose embedded processors
in the next chapter.

Most of what we discuss in this book applies to the design, use, and perfor-
mance of embedded processors, whether they are off-the-shelf microprocessors
or microprocessor cores, which will be assembled with other special-purpose
hardware. The design of special-purpose, application-specific hardware and
architecture and the use of DSPs, however, are outside of the scope of this book.
Figure 1.3 summarizes these three classes of computing environments and their
important characteristics.

The Task of the Computer Designer

The task the computer designer faces is a complex one: Determine what attributes
are important for a new machine, then design a machine to maximize perfor-
mance while staying within cost and power constraints. This task has many
aspects, including instruction set design, functional organization, logic design,
and implementation. The implementation may encompass integrated circuit
design, packaging, power, and cooling. Optimizing the design requires familiarity
with a very wide range of technologies, from compilers and operating systems to
logic design and packaging.

In the past, the term computer architecture often referred only to instruction
set design. Other aspects of computer design were called implementation, often

1.2 The Changing Face of Computing and the Task of the Computer Designer = 9

Feature Desktop Server Embedded

Price of system $1000-$10,000 $10,000-$10,000,000 $10-$100,000 (including network
routers at the high end)

Price of microprocessor $100-$1000 $200-$2000 $0.20-$200 (per processor)

module (per processor)

Microprocessors sold per year 150,000,000 4,000,000 300,000,000

(estimates for 2000)

(32-bit and 64-bit processors only)

Critical system design issues

Price-performance, Throughput, availability, Price, power consumption,
graphics performance scalability application-specific performance

Figure 1.3 A summary of the three computing classes and their system characteristics. Note the wide range in
system price for servers and embedded systems. For servers, this range arises from the need for very large-scale mul-
tiprocessor systems for high-end transaction processing and Web server applications. For embedded systems, one

significant high-end applicat

ion is a network router, which could include multiple processors as well as lots of mem-

ory and other electronics. The total number of embedded processors sold in 2000 is estimated to exceed 1 billion, if

you include 8-bit and 16-bit
controller sold by Intel! It is d

microprocessors. In fact, the largest selling microprocessor of all time is an 8-bit micro-
ifficult to separate the low end of the server market from the desktop market, since low-

end servers—especially those costing less than $5000—are essentially no different from desktop PCs.Hence, up to a
few million of the PC units may be effectively servers.

insinuating that implementation is uninteresting or less challenging. We believe
this view is not only incorrect, but is even responsible for mistakes in the design
of new instruction sets. The architect’s or designer’s job is much more than
instruction set design, and the technical hurdles in the other aspects of the project
are certainly as challenging as those encountered in instruction set design. This
challenge is particularly acute at the present, when the differences among instruc-
tion sets are small and when there are three rather distinct application areas.

In this book the term instruction set architecture refers to the actual
programmer-visible instruction set. The instruction set architecture serves as the
boundary between the software and hardware, and that topic is the focus of
Chapter 2. The implementation of a machine has two components: organization
and hardware.

The term organization includes the high-level aspects of a computer’s design,
such as the memory system, the bus structure, and the design of the internal CPU
(central processing unit—where arithmetic, logic, branching, and data transfer
are implemented). For example, two embedded processors with identical instruc-
tion set architectures but very different organizations are the NEC VR 5432 and
the NEC VR 4122. Both processors implement the MIPS64 instruction set, but
they have very different pipeline and cache organizations. In addition, the 4122
implements the floating-point instructions in software rather than hardware!

Hardware is used to refer to the specifics of a machine, including the detailed
logic design and the packaging technology of the machine. Often a line of
machines contains machines with identical instruction set architectures and
nearly identical organizations, but they differ in the detailed hardware implemen-
tation. For example, the Pentium II and Celeron are nearly identical, but offer

10 = Chapter One Fundamentals of Computer Design

different clock rates and different memory systems, making the Celeron more
effective for low-end computers. In this book the word architecture is intended to
cover all three aspects of computer design—instruction set architecture, organiza-
tion, and hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, and performance goals. Often, they also have to deter-
mine what the functional requirements are, which can be a major task. The
requirements may be specific features inspired by the market. Application soft-
ware often drives the choice of certain functional requirements by determining
how the machine will be used. If a large body of software exists for a certain
instruction set architecture, the architect may decide that a new machine should
implement an existing instruction set. The presence of a large market for a partic-
ular class of applications might encourage the designers to incorporate require-
ments that would make the machine competitive in that market. Figure 1.4

Functional requirements

Typical features required or supported

Application area
General-purpose desktop

Target of computer

Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5)

Scientific desktops and servers High-performance floating point and graphics (App. G, H)

Commercial servers

Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 6, 8)

Embedded computing Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required (Ch. 2, 3, 4, 5)
Level of software compatibility Determines amount of existing software for machine

At programming language

Most flexible for designer; need new compiler (Ch. 2, 6)

Object code or binary Instruction set architecture is completely defined—little flexibility—but no
compatible investment needed in software or porting programs
Operating system requirements Necessary features to support chosen OS (Ch. 5, 8)

Size of address space
Memory management
Protection

Very important feature (Ch. 5); may limit applications
Required for modern OS; may be paged or segmented (Ch. 5)
Different OS and application needs: page vs. segment protection (Ch. 5)

Standards
Floating point

I/O bus

Operating systems
Networks

Programming languages

Certain standards may be required by marketplace

Format and arithmetic: IEEE 754 standard (App. H), special arithmetic for
graphics or signal processing

For I/O devices: Ultra ATA, Ultra SCSI, PCI (Ch. 7, 8)

UNIX, PalmOS, Windows, Windows NT, Windows CE, CISCO I0S
Support required for different networks: Ethernet, Infiniband (Ch. 8)
Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (Ch. 2)

Figure 1.4 Summary of some of the most important functional requirements an architect faces.The left-hand
column describes the class of requirement, while the right-hand column gives examples of specific features that
might be needed. The right-hand column also contains references to chapters and appendices that deal with the

specific issues.

1.3 Technology Trends = 11

summarizes some requirements that need to be considered in designing a new
machine. Many of these requirements and features will be examined in depth in
later chapters.

Once a set of functional requirements has been established, the architect must
try to optimize the design. Which design choices are optimal depends, of course,
on the choice of metrics. The changes in the computer applications space over the
last decade have dramatically changed the metrics. Although desktop computers
remain focused on optimizing cost-performance as measured by a single user,
servers focus on availability, scalability, and throughput cost-performance, and
embedded computers are driven by price and often power issues.

These differences and the diversity and size of these different markets lead to
fundamentally different design efforts. For the desktop market, much of the effort
goes into designing a leading-edge microprocessor and into the graphics and I/O
system that integrate with the microprocessor. In the server area, the focus is on
integrating state-of-the-art microprocessors, often in a multiprocessor architec-
ture, and designing scalable and highly available I/O systems to accompany the
processors. Finally, in the leading edge of the embedded processor market, the
challenge lies in adopting the high-end microprocessor techniques to deliver most
of the performance at a lower fraction of the price, while paying attention to
demanding limits on power and sometimes a need for high-performance graphics
or video processing.

In addition to performance and cost, designers must be aware of important
trends in both the implementation technology and the use of computers. Such
trends not only impact future cost, but also determine the longevity of an archi-
tecture. The next two sections discuss technology and cost trends.

Technology Trends

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—the core of the IBM mainframe has been in use
for more than 35 years. An architect must plan for technology changes that can
increase the lifetime of a successful computer.

To plan for the evolution of a machine, the designer must be especially
aware of rapidly occurring changes in implementation technology. Four imple-
mentation technologies, which change at a dramatic pace, are critical to modern
implementations:

m [ntegrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling in somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 55% per
year. Device speed scales more slowly, as we discuss below.

12

Chapter One Fundamentals of Computer Design

m Semiconductor DRAM (dynamic random-access —memory)—Density
increases by between 40% and 60% per year, quadrupling in three to four
years. Cycle time has improved very slowly, decreasing by about one-third in
10 years. Bandwidth per chip increases about twice as fast as latency
decreases. In addition, changes to the DRAM interface have also improved
the bandwidth; these are discussed in Chapter 5.

® Magnetic disk technology—Recently, disk density has been improving by
more than 100% per year, quadrupling in two years. Prior to 1990, density
increased by about 30% per year, doubling in three years. It appears that disk
technology will continue the faster density growth rate for some time to
come. Access time has improved by one-third in 10 years. This technology is
central to Chapter 7, and we discuss the trends in greater detail there.

® Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. Both
latency and bandwidth can be improved, though recently bandwidth has been
the primary focus. For many years, networking technology appeared to
improve slowly: for example, it took about 10 years for Ethernet technology
to move from 10 Mb to 100 Mb. The increased importance of networking has
led to a faster rate of progress, with 1 Gb Ethernet becoming available about
five years after 100 Mb. The Internet infrastructure in the United States has
seen even faster growth (roughly doubling in bandwidth every year), both
through the use of optical media and through the deployment of much more
switching hardware.

These rapidly changing technologies impact the design of a microprocessor
that may, with speed and technology enhancements, have a lifetime of five or
more years. Even within the span of a single product cycle for a computing sys-
tem (two years of design and two to three years of production), key technologies,
such as DRAM, change sufficiently that the designer must plan for these changes.
Indeed, designers often design for the next technology, knowing that when a
product begins shipping in volume that next technology may be the most cost-
effective or may have performance advantages. Traditionally, cost has decreased
at about the rate at which density increases.

Although technology improves fairly continuously, the impact of these
improvements is sometimes seen in discrete leaps, as a threshold that allows a
new capability is reached. For example, when MOS technology reached the point
where it could put between 25,000 and 50,000 transistors on a single chip in the
early 1980s, it became possible to build a 32-bit microprocessor on a single chip.
By the late 1980s, first-level caches could go on chip. By eliminating chip cross-
ings within the processor and between the processor and the cache, a dramatic
increase in cost-performance and performance/power was possible. This design
was simply infeasible until the technology reached a certain point. Such technol-
ogy thresholds are not rare and have a significant impact on a wide variety of
design decisions.

1.3 Technology Trends = 13

Scaling of Transistor Performance, Wires, and Power in
Integrated Circuits

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature sizes
have decreased from 10 microns in 1971 to 0.18 microns in 2001. Since the tran-
sistor count per square millimeter of silicon is determined by the surface area of a
transistor, the density of transistors increases quadratically with a linear decrease
in feature size. The increase in transistor performance, however, is more complex.
As feature sizes shrink, devices shrink quadratically in the horizontal dimension
and also shrink in the vertical dimension. The shrink in the vertical dimension
requires a reduction in operating voltage to maintain correct operation and reli-
ability of the transistors. This combination of scaling factors leads to a complex
interrelationship between transistor performance and process feature size. To a
first approximation, transistor performance improves linearly with decreasing
feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity that
computer architects were created for! In the early days of microprocessors, the
higher rate of improvement in density was used to quickly move from 4-bit, to 8-
bit, to 16-bit, to 32-bit microprocessors. More recently, density improvements
have supported the introduction of 64-bit microprocessors as well as many of the
innovations in pipelining and caches, which we discuss in Chapters 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay. In general, however, wire delay
scales poorly compared to transistor performance, creating additional challenges
for the designer. In the past few years, wire delay has become a major design lim-
itation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires. In 2001, the Pentium 4 broke
new ground by allocating 2 stages of its 20+-stage pipeline just for propagating
signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS
microprocessors, the dominant energy consumption is in switching transistors.
The energy required per transistor is proportional to the product of the load
capacitance of the transistor, the frequency of switching, and the square of the
voltage. As we move from one process to the next, the increase in the number of
transistors switching, and the frequency with which they switch, dominates the

14

Chapter One Fundamentals of Computer Design

1.4

decrease in load capacitance and voltage, leading to an overall growth in power
consumption. The first microprocessors consumed tenths of a watt, while a 2
GHz Pentium 4 consumes close to 100 watts. The fastest workstation and server
microprocessors in 2001 consumed between 100 and 150 watts. Distributing the
power, removing the heat, and preventing hot spots have become increasingly dif-
ficult challenges, and it is likely that power rather than raw transistor count will
become the major limitation in the near future.

Cost, Price, and Their Trends

Although there are computer designs where costs tend to be less important—
specifically supercomputers—cost-sensitive designs are of growing significance:
More than half the PCs sold in 1999 were priced at less than $1000, and the aver-
age price of a 32-bit microprocessor for an embedded application is in the tens of
dollars. Indeed, in the past 15 years, the use of technology improvements to
achieve lower cost, as well as increased performance, has been a major theme in
the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet an understanding of cost and its factors is essential for
designers to be able to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section focuses on cost and price, specifically on the relationship
between price and cost: price is what you sell a finished good for, and cost is the
amount spent to produce it, including overhead. We also discuss the major trends
and factors that affect cost and how it changes over time. The exercises and
examples use specific cost data that will change over time, though the basic deter-
minants of cost are less time sensitive. This section will introduce you to these
topics by discussing some of the major factors that influence the cost of a com-
puter design and how these factors are changing over time.

The Impact of Time, Volume, and Commodification

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
yield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have basically half the cost.

Understanding how the learning curve will improve yield is key to projecting
costs over the life of the product. As an example of the learning curve in action,
the price per megabyte of DRAM drops over the long term by 40% per year.

