
YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Computer Science 703

Advance Computer Architecture
2008 Semester 1

Lecture Notes for
7May08

Virtualizing Transactional Memory

James Goodman



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Test

• Tuesday, 13May, in-class (room 279)

• Coverage: through STM

• Open book, notes
– Calculators allowed (but not needed)

– No communication devices



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Lecture Time Change!

• There will be a special review session 3-4 on 
Monday, 12th May.

• After next week, no lectures at 3pm on most 
Tuesdays/Thursdays due to conflict.

• There will be additional lectures on Mondays, 
in room 561 (5th floor common room)
including the 19th & 26th of May but not the 
2nd of June.



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Criteria VTMs must meet to integrate into 
existing systems

• Virtualization must ensure the performance of common-case hardware-
only transactional mode is unaffected.

• Conflict detection between active transactions and transactions with 
overflowed state should be efficient, should not impede unrelated 
transactions

• Committing and aborting a transaction should not delay transactions that 
do not conflict

• Context switches and page faults may impede transaction progress, but 
should not prevent transactions from eventually committing.

• Nontransactional operations may abort transactions but should not 
compromise any transaction’s consistency (strong isolation).

• This virtualization should be transparent to application programmers, 
much in the way virtual memory management is.



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Virtual Transactional Memory

“… a combined hardware/software system architecture that 
allows the programmer to obtain the benefits of transactional 
memory without having to provide explicit mechanisms to 
deal with those rare instances in which transactions 
encounter resource or scheduling limitations. The underlying 
VTM mechanism transparently hides resource exhaustion 
both in space (cache overflows) and time (scheduling and 
clock interrupts). When a transaction overflows its buffers, 
VTM remaps evicted entries to new locations in virtual 
memory. When a transaction exhausts its scheduling 
quantum (or is interrupted), VTM saves its state in virtual 
memory so that the transaction can be resumed later.



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

“Virtualization provides essential 
functionality, but should have an 
insignificant effect on performance.”



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Assumptions

• No programming model, semantics, or software policies
• Simple TM programming model

– multiple s/w threads running in a single shared virtual address space

• Each thread has XSW that is monitored continually by the 
processor.

• VTM assumes each processor has support for a typical 
bounded HTM (“best-effort hardware”)
– buffer updates
– track transactional accesses
– detect conflicts using h/w mechanisms.

• Best-effort hardware handles most (nearly all?) cases



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Two Modes of operation

• Hardware-only fast mode (“best-effort hardware” not 
specified here) provides transactional execution for common-
case transactions that
– do not exceed hardware resources
– are not interrupted

• Programmer-transparent software structures and hardware 
machine collectively support transactions that encounter
– buffer overflow
– page faults
– context switches
– thread migration



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Transactional State

• Locally-cached state resides in processor-local 
buffers

• Overflowed state reside in data structures in 
the application’s virtual memory



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

XSW

• Each transaction (associated with a single thread) 
has a Transaction Status Word (XSW)

• VTM implementation commits or aborts a 
transaction by atomically updating its XSW in two-
step process (for overflowed transactions)
– Logical commit

– Multi-step physical commit



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Transaction Address Data Table (XADT)

• Keeps track of transactional state that has 
overflowed from processors to memory.

• Common to all transactions sharing an 
address space.

• Invoked in two ways
– a running transaction evicts a cache line
– an entire transaction may be swapped out, 

evicting all transactional cache lines.



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Interaction of XADT

• On every transactional cache miss, must 
check XADT

• Mechanisms to minimize overhead
1. Global bit indicating if XADT is empty, 

checked by hardware (claimed to be normally 
empty)

2. XADT filter detects most cases where line is not
present in XADT, checked by hardware

3. Software invoked to check for conflict



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

XADT Specification

• Like virtual memory, where page size is 
architecture-specific, cache line size is a 
system parameter.

• Accesses similar to virtual memory, walking 
equivalent of page table (without TLB)



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Invoking XADT

• On Transactional Cache Overflow…
– Cache overflow triggers system-supported copy of cache line to 

XADT

• On Context Switch…
– Saving transactional buffers to XADT is accomplished as part of 

context switch

• Overflow state maintained per process, not per processor
– Can isolate runaway process
– Easier to detect conflicts if only one process
– Easier to support debuggers, profiling libraries, etc.

• Tracking done through virtual addresses
– Processes with transactions in progress can be swapped out



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

XSW’s Three “Dimensions”

1. Transaction State
• Running (R)
• Committed, not yet fully visible (C)
• Aborted (B)

2. Process state
• Actively executing (A) 
• Swapped out (S)

3. Execution State
• Cache entirely locally (L)
• (Partially) Overflowed (O)

Only valid states: RAL, RAO, RSO, BAO, BSO, CAO



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

XADT: details

• Records an overflow count that is globally visible
• Information stored for each entry

– Status bits marking
1. whether the entry is valid
2. whether a transaction read or write the address

– Other miscellaneous details
– Virtual address of the data block overflowed
– Data field for buffering updates
– Point to the overflowing transaction’s status word (XSW)
– Content of data, even if only read
– Other information relevant to transaction (conflict & scheduling

priorities, links to other entries, temporary register state



YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

XADT Filter (XF)

Bloom filter provides two operations

• add(x) inserts x into the set

• member(x) queries whether x is in the set
– May include occasional false positive

How to remove element from Bloom filter?

• Periodically rebuild list

• “Counting” Bloom filter


