
YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Computer Science 703

Advance Computer Architecture
2008 Semester 1

Lecture Notes for
6May08

Herlihy/Moss: Transactional Memory

James Goodman

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Test

• Tuesday, 13May, in-class

• Coverage: through STM

• Open book, notes
– Calculators allowed (but not needed)

– No communication devices

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Lecture Time Change!

• After next week, no lectures at 3pm on most
Tuesdays/Thursdays due to conflict.

• There will be additional lectures on Mondays,
including the 19th & 26th of May and the 2nd

of June.

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Background

Precursor: T. F. Knight, “An architecture for mostly functional
languages,” In Proc. ACM Lisp and Functional Programming
Conference, pp. 105–112 Aug. 1986.)

“Knight describes a hardware system to parallelize a single
thread program speculatively, and to execute it on a
multiprocessor system. A compiler divides a program into a
series of code blocks called transactions. For doing the
division, the compiler assumes that these transactions do not
have memory dependencies. These blocks then execute
optimistically on the processors.
“The hardware enforces correct execution and uses caches to
detect when a memory dependence violation between threads
occurs [27].”

--Larus/Rajwar

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

“Transactional Memory”

M. Herlihy and J.E.B. Moss, Transactional Memory: Architectural Support for Lock-Free Data
Structures, Proc. International Symposium on Computer Architecture (ISCA-93), ACM Press,
1993, pp. 289-300. This paper (Herlihy/Moss) coined the term "Transactional Memory"

“Our transactions satisfy the same formal serializability and atomicity properties as database-
style transactions …, but they are intended to be used very differently. Unlike database
transactions, our transactions are short-lived activities that access a relatively small number
of memory locations in primary memory. The ideal size and duration of transactions are
implementation-dependent, but, roughly speaking, a transaction should be able to run to
completion within a single scheduling quantum, and the number of locations accessed
should not exceed an architecturally specified limit.”

Lock-free data structures do not require mutual exclusion. They avoid common problems:
1. priority inversion
2. convoying
3. deadlock

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Justification of HTM

“Experimental evidence suggests that in the absence of inversion, convoying, or
deadlock, software implementations of lockfree data structures often do not perform
as well as their locking-based counterparts.

“A transaction is a finite sequence of machine instructions, executed by a single
process, satisfying the following properties:

“Serializability: Transactions appear to execute serially, meaning that the steps of one
transaction never appear to be interleaved with the steps of another. Committed
transactions are never observed by different processors to execute in different orders.

“Atomicity: Each transaction makes a sequence of tentative changes to shared memory. When
the transaction completes, it either commits, making its changes visible to other processes
(effectively) instantaneously, or it aborts, causing its changes to be discarded.”

No mention of isolation!

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

New Instructions
“We assume here that a process executes only one transaction at a time. Although the model

could be extended to permit overlapping or logically nested transactions, we have seen no
examples where they are needed.”

Memory Instructions
• Load-transactional (LT) reads the value of a shared memory location into a private register.
• Load-transactional-exclusive (LTX) reads the value of a shared memory location into a

private register, “hinting” that the location is likely to be updated.
• Store-transactional (ST) tentatively writes a value from a private register to a shared memory

location. This new value does not become visible to other processors until the transaction
successfully commits (see below).

Defines read set as locations read by LT, write set as locations read by LTX, data set as union.

Manipulation instructions:
• Commit: make changes permanent (visible). Indicates success/failure
• Abort: discards all updates to the write set.
• Validate: TRUE indicates transaction has not (yet) aborted.

No Begin Transaction operation

Hardware detecting conflict may cause spontaneous abort, but no immediate indication to
software.

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Transactional & non-Transactional Operations
Two caveats:
(From TR): For brevity, we have chosen not to specify how transactional and non-transactional operations

interact when applied concurrently to the same location. We expect that such a conflict is almost always
an error. One reasonable choice is to abort a transaction when a non-transactional operation tries to
revoke its ownership. Another choice is to signal some kind of error condition.

“We also leave unspecified the precise circumstances that will cause a transaction to abort. In particular,
implementations are free to abort transactions in response to certain interrupts (such as page faults,
quantum expiration, etc.), context switches, or to avoid or resolve serialization conflicts.”

Replace critical section with:

1. Use LT or LTX to read from a set of locations,
2. Use VALIDATE to check that the values read are consistent,
3. Use ST to modify a set of locations, and
4. Use COMMIT to make the changes permanent. If either the VALIDATE or the COMMIT fails, the

process returns to Step (1).

“A more complex transaction, such as one that chains down a linked list (see Figure 3), would alternate LT
and VALIDATE instructions. When contention is high, programmers are advised to apply adaptive
backoff [3, 28] before retrying.”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Observations

• No notion of “Begin Transaction”
• Can abort transaction explicitly, but didn't

have concept of jumping/trapping on abort;
had to do this explicitly. Presumably the
technique is:
1. Preload value into register from memory
2. Validate()
3. Use value in register

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

The Transactional Cache

“The idea is that the transactional cache holds all the tentative
writes, without propagating them to other processors or to main
memory unless the transaction commits. If the transaction aborts,
the lines holding tentative writes are dropped (invalidated); if the
transaction commits, the lines may then be snooped by other
processors, written back to memory upon replacement, etc. We
assume that since the transactional cache is small and fully
associative it is practical to use parallel logic to handle abort or
commit in a single cache cycle.”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Detection Invalidation

“The VALIDATE instruction is motivated by considerations of
software engineering. A set of values in memory is inconsistent
if it could not have been produced by any serial execution of
transactions. An orphan is a transaction that continues to
execute after it has been aborted (i.e., after another committed
transaction has updated its read set). It is impractical to
guarantee that every orphan will observe a consistent read set.
Although an orphan transaction will never commit, it may be
difficult to ensure that an orphan, when confronted with
unexpected input, does not store into out-of-range locations,
divide by zero, or perform some other illegal action. All values
read before a successful VALIDATE are guaranteed to be
consistent. Of course, VALIDATE is not always needed, but it
simplifies the writing of correct transactions and improves
performance by eliminating the need for ad-hoc checks.”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Deadlock

“The implementation described here aborts any transaction that tries to revoke access of a
transactional entry from another active transaction. This strategy is attractive if one assumes
(as we do) that timer (or other) interrupts will abort a stalled transaction after a fixed
duration, so there is no danger of a transaction holding resources for too long.”

From Tech Report from same authors:
“Deadlock (cyclic waiting) is impossible in this implementation because transactions never
wait for one another. A high-priority transaction cannot be delayed indefinitely by a lower-
priority transaction, because the latter will be aborted by a timer interrupt if it runs too
long. Starvation, however, is still possible. We believe that the best way to avoid starvation is
to advise programmers to adopt an adaptive backoff strategy: a transaction that repeatedly
aborts should wait for some duration before retrying.
“We originally considered incorporating a backoff strategy in the cache coherence protocol
itself. Our simulations, however, show that backoff schemes need to be tuned to perform
well, and so hardware backoff seems overly inflexible. Anderson [Anderson, 1990] reports a
similar experience in alleviating contention for spin locks: exponential backoff works well,
but the parameters must be chosen carefully.”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Practical Implications

1. “[F]or programs to be written in a uniform and portable manner, one needs to guarantee at
the instruction set architecture level the minimum transaction size that the architecture
supports. At present we do not have a good feel for what such a size might be, but it should
probably be between 10 and 100. Since one might not want to put a fully associative cache
of this size into every implementation of the architecture, schemes that use some hardware
but handle larger transactions via software traps seem to be desirable. In fact, one can avoid
hard limits on transaction size by offering the software overflow mechanism with all
implementations.” [TR]

2. “For programs to be portable, the instruction set architecture must guarantee a minimum
transaction size, thus establishing a lower bound for the transactional cache size. An
alternative approach is suggested by the LimitLESS directory-based cache coherence scheme
of Chaiken, Kubiatowicz, and Agarwal [6]. This scheme uses a fast, fixed size hardware
implementation for directories. If a directory overflows, the protocol traps into software,
and the software emulates a larger directory. A similar approach might be used to respond to
transactional cache overflow. Whenever the transactional cache becomes full, it traps into
software and emulates a larger transactional cache. This approach has many of the same
advantages as the original LimitLESS scheme: the common case is handled in hardware, and
the exceptional case in software.” [ISCA93]

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Implementation

• The transactional cache is a fully associative cache that holds all transactional writes without
propagating their values to other processors or to main memory until the transaction
commits. The transactional cache has additional tags with each line that add special
meaning to the regular cache states. If tag is empty, the line has no data. If tag is normal,
the line has committed data. An xcommit tag means the contents must be discarded on
commit, and an xabort tag means the contents must be discarded on an abort.

• The cache coherence protocol is augmented by three new bus cycles. The t_read bus cycle is
for a transactional read request that goes across the bus. This request can be refused
(NACK) by a busy cycle. The t_rfo bus cycle is for a transactional read-for-exclusive request
that goes across the bus. This can be refused (NACK) by a busy cycle. The busy bus cycle
prevents too many transactions from aborting one another too often. This approach may
starve some transactions but a queuing mechanism can address starvation. A busy response
does not cause the transaction execution itself to abort immediately but records hardware
state to allow the transaction to check for whether the transaction has aborted from the
hardware’s perspective. Until this check, the transaction may continue to execute without
aborting.”

--Larus/Rajwar

