
YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes 5
19Mar08

Speculation; Atomic RMW Primitives

James Goodman

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

How to predict branch decision?

• Brute force: fetch down both paths

• Statically
– Branch type

• Special instructions for loop variables

• Software may predict

– Forward not take, backward taken

• Dynamically
– What happened last time(s)?

– How did we get here?

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

How Can We Speculate?

A process has state, consisting of
• Registers
• Memory
• Distinguish between

– completing the execution of an instruction
– changing state

Method 1
• Take a snapshot of state
• On failed speculation, roll back to snapshot
• Can be performed quickly if state is small
Method 2
• Create log of changes of state
• On failure, “unexecute” log
• Recovery is proportional to length of speculation + startup

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Important Requirement

Results of speculative execution must never be
visible to other threads

• Reading a value may be deferred
momentarily, but not indefinitely

• Once value is supplied, it cannot be changed
– Speculation may have to be aborted

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

How Do We Speculate?

• Registers are small in number, can be saved as
snapshot quickly with hardware support

• Memory is too large to take a snapshot, but
– Cache is already a snapshot!

– Save changes in cache and discard on failure

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Other Kinds of Prediction: Cache Misses

• Pattern detected (e.g., stride)
– Prefetch data into cache before requested

• Software may predict cache miss

• Thread-level speculation

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Thread-level Speculation

Two threads executing “the same” code
• One thread races ahead, but doesn’t execute all

instructions
– Just branch instructions and those that affect branch

decisions
– Tests cache on loads/stores. On miss, initiates fetch into

cache, but doesn’t wait

• Second thread runs behind, hitting in the catch and
predicting branches correctly

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Other Speculation: Slow Memory Operations

• Store operation hasn’t completed yet
– Load datum

– Execute speculatively

– Check before committing

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Value Prediction

• Can we predict the value in a register before and
instruction writing to it completes?
– Perhaps, e.g., if it is an index variable

• When we miss in the cache, can we predict the value
while we wait?
– If the cache line fell out of the cache because of capacity,

probably not

– If the cache line was invalidated because another process
modified it, possibly so!

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

False Sharing

• Cache coherence granularity is a cache line

• Two threads are reading and writing disjoint
data in the same cache line

• Cache line is “ping-ponging” between caches

• Data is actually in the cache, but marked stale

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Value Speculation

Solution to false sharing

• Fetch stale data but initiate cache miss

• Assume that data is correct (i.e., the false
sharing is occurring)
– Take checkpoint

– Begin speculative execution

• If assumption was incorrect
– Restore state and execute with correct data

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Critical Section

• Discover that lock variable is present in cache, but
– lock is read-only
– lock is FREE

• Take checkpoint, but begin executing critical section speculatively as if
lock were held

• Abort if
– lock is invalidated
– data read during speculation is invalidated by another thread
– data written during speculation is read by another thread

• When lock release is encountered, commit without acquiring lock!
– Commit entire critical section simultaneously
– Lock could have been acquired at the beginning and released at the end

• In zero time, the lock was acquired, the critical section executed, then the
lock was released

