
YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Computer Science 703

Advance Computer Architecture
2008 Semester 1

Lecture Notes 3
11Mar08

Multiprocessing Issues

James Goodman

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Readings

Today: Mark Hill, “Multiprocessors Should Support Simple
Memory-Consistency Models”

Tomorrow: Sweazey & Smith, “A class of compatible cache
consistency protocols and their support by the IEEE
Futurebus”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Multiprocessing Issues

• “Missing Update Problem”

• Memory Consistency

• Cache Coherence

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Multiprocessing Issues

• “Missing Update Problem”

• Memory Consistency

• Cache Coherence

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

The “Missing Update” Problem

• Assume there is a shared int x = 3;
• CPU1 executes a program fragment x = X - 1;
• CPU2 executes a program fragment x = X - 2;
• What is the final value of the shared variable x?

CPU1 CPU2

Memory

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $2,x

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Possible Answer: 1

lw $1, x
sub $1, $1, 1 lw $1, x
sw $1,x sub $1, $1, 2

sw $1,x

CPU 1 CPU 2

Result: x = 1

Is this acceptable?

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Possible Answer: 2

lw $1, x
lw $1, x sub $1, $1, 2
sub $1, $1, 1 sw $1,x
sw $1,x

CPU 1 CPU 2

Result: x = 2

Is this acceptable?

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Expectation of Atomicity & Isolation

• In the example, we expect that the code
x = x - 1

will be executed atomically and in isolation

Isolation: the appearance that a sequence of operations
occur at a single instant in time.

Atomicity: the requirement that the sequence of
operations either occurs in its entirety or not at all.

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Parallel “Correctness”

• Our programs must execute “correctly” no matter how the two
sequences of instructions are interleaved

• But correctness must be defined. The example introduces a
data race

• If only a result of zero is acceptable, the code must explicitly
eliminate data races

• Data races can be eliminated by the use of locks (semaphores)
and critical sections

Observation: This problem has nothing to do
with cache consistency or coherence!

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Programming a Multiprocessor

• Multiprocessors may simply execute independent tasks that
require more computing power that is available on a single
processor.
– Particularly useful if one or more jobs is computationally intensive

– Often a maximum of two processors can handle all the jobs

• Major challenge: divide up a single job into pieces that can
be computed concurrently.

• Two general models of parallel computation
– The epoch model

– The work queue model

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

The Epoch Model

• The program involves similar operations on large amounts of data
(large, regular data structures)

• The data is partitioned into non-overlapping parts and assigned to
various threads

• A fixed amount of computation is performed independently, then
coalesced through synchronization
– All nodes run the same code, over a different range of data

– This is an epoch

• This process is repeated
– A barrier assures that none of the threads proceed beyond the

synchronization point until all have arrived at it

• Within an epoch, usually no races are allowed, i.e., no variable can
be written by some node and read by another.

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Synchronization Mechanism for Epochs
The barrier: wait for all nodes to arrive here before continuing:

Initially, Count = # of threads

barrier() {
Count -= 1;
while (Count > 0)
;

}

Note: decrementing Count on multiple nodes introduces a
race condition!

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

The Work Queue Model

• The system is initialized by identifying a set of tasks to be
performed. These are placed on a queue with information
identifying the task and its parameters.

• Processors remove an assignment from the queue and perform
the task. In the process, they may identify new tasks to be
performed and place them on the queue.

• This process continues until all the tasks have been completed.

• The challenge is to divide tasks up fine enough so that all the
threads can be kept busy, but course enough so that the threads
don’t spend all their time dealing with the work queue

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Multiprocessing Issues

• “Missing Update Problem”

• Memory Consistency

• Cache Coherence

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Memory Ordering

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Initial state: A = 0
B = 0

CPU 1 CPU 2

Is it acceptable?

Is this possible?

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Sequential Consistency

Definition: “...the result of any execution is the same
as if the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor appear in
this sequence in the order specified by its program.”

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Memory Ordering Requirement (1)

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Is this permitted?
SC: No
Intel: No
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Alpha Memory Ordering Requirements

• Reads and writes may appear out of order

• A memory barrier assures that all previous
operations have been made globally visible
before any subsequent operations are made
visible

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Memory Ordering Requirement (1)

Write A = 1
MemBar
Write B = 1

Read B = 1
MemBar
Read A = 0

Is this permitted?

SC: No
Intel: No
Alpha: No

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Memory Ordering Requirement (2)

Write A = 1
Read B = 0

Write B = 1
Read A = 0

Is this permitted?

SC: No
Intel: Yes
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Yet Another Memory Model

• Release Consistency
– Assumes that locks are used to protect shared data

– No reads may be performed before acquiring the lock

– All writes must be completed before releasing the lock

YEAR

20
08

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

PR
ES

EN
T

A
T

IO
N

Summary of Memory Ordering

• Identical code sequences may result in different
acceptable answers on multiprocessors with different
memory models

• Compilers must account for memory model
– Recognize potential data races

– Insert barriers if necessary to assure correctness

