576

Chapter Six Multiprocessors and Thread-Level Parallelism

[Ty Se——

Coherence requests are a significant but not overwhelming component in the
scientific processing workload. We can expect, however, that coherence requests
will be more important in parallel programs that are less optimized.

The question of how these cache miss rates affect CPU performance depends
on the rest of the memory system, including the latency and bandwidth of the
interconnect and memory.

Distributed Shared-Memory Architectures

A scalable multiprocessor supporting shared memory could choose to exclude or
include cache coherence. The simplest scheme for the hardware is to exclude
cache coherence, focusing instead on a scalable memory system. Several compa-
nies have built this style of multiprocessor; the Cray T3D/E is the best known
example. In such multiprocessors, memory is distributed among the nodes and all
nodes are interconnected by a network. Access can be either local or remote—a
controller inside each node decides, on the basis of the address, whether the data
reside in the local memory or in a remote memory. In the latter case a message is
sent to the controller in the remote memory to access the data.

These systems have caches, but to prevent coherence problems, shared data
are marked as uncacheable and only private data are kept in the caches. Of
course, software can still explicitly cache the value of shared data by copying the
data from the shared portion of the address space to the local private portion of
the address space that is cached. Coherence is then controlled by software. The
advantage of such a mechanism is that little hardware support is required,
although support for features such as block copy may be useful, since remote
accesses fetch only single words (or double words) rather than cache blocks.

There are several disadvantages to this approach. First, compiler mecha-
nisms for transparent software cache coherence are very limited. The techniques
that currently exist apply primarily to programs with well-structured loop-level
parallelism or a very strict form of object-oriented programming, and these tech-
niques have significant overhead arising from explicitly copying data. For irreg-
ular problems or problems involving dynamic data structures and pointers
(including operating systems, for example), compiler-based software cache
coherence is currently impractical. The basic difficulty is that software-based
coherence algorithms must be conservative: Every block that might be shared
must be treated as if it is shared. Being conservative results in excess coherence
overhead because the compiler cannot predict the actual sharing accurately
enough. Due to the complexity of the possible interactions, asking programmers
to deal with coherence is unworkable.

Second, without cache coherence, the multiprocessor loses the advantage of
being able to fetch and use multiple words in a single cache block for close to the
cost of fetching one word. The benefits of spatial locality in shared data cannot be
leveraged when single words are fetched from a remote memory for each refer-
ence. Support for a DMA mechanism among memories can help, but such mech-

6.5 Distributed Shared-Memory Architectures = 577

anisms are often either costly to use (since they may require OS intervention) or
expensive to implement (since special-purpose hardware support and a buffer are
needed). For message-passing programs, however, such mechanisms can be
extremely useful, since programmers can overcome the usage penalties by using
large messages.

Third, mechanisms for tolerating latency such as prefetch are more useful
when they can fetch multiple words, such as a cache block, and where the fetched
data remain coherent; we will examine this advantage in more detail later.

These disadvantages are magnified by the large latency of access to remote
memory versus a local cache. For example, on the Cray T3E a local cache access
has a latency of 2 cycles and is pipelined. A remote memory access takes up to
400 processor clock cycles for a remote memory using the 450 MHz Alpha pro-
cessor in the T3E-900.-

For these reasons, cache coherence is an accepted requirement in small-scale
multiprocessors. For larger-scale architectures, there are new challenges to
extending the cache-coherent shared-memory model. Although the bus can cer-
tainly be replaced with a more scalable interconnection network (e.g., the Sun
Enterprise servers use up to four buses), and we could certainly distribute the
memory so that the memory bandwidth could also be scaled, the lack of scalabil-
ity of the snooping coherence scheme needs to be addressed.

A snooping protocol requires communication with all caches on every cache
miss, including writes of potentially shared data. The absence of any centralized
data structure that tracks the state of the caches is both the fundamental advantage
of a snooping-based scheme, since it allows it to be inexpensive, as well as its
Achilles’ heel when it comes to scalability. For example, with only 16 processors,
a block size of 64 bytes, and a 512 KB data cache, the total bus bandwidth
demand (ignoring stall cycles) for the four programs in the scientific/technical
workload ranges from about 1 GB/sec (for Barnes) to about 42 GB/sec (for FFT),
assuming a processor that sustains a data reference every 1 ns, which is what a
2001 superscalar processor with nonblocking caches might generate. In compari-
son, the Sun Enterprise system with the Starfire interconnect, the highest-
bandwidth SMP system in 2001, can support about 12 GB/sec of random
accesses for the 16 x 16 crossbar and has a maximum bandwidth of 21.3 GB/sec
at the memory system. Although the cache size used in these simulations is mod-
erate (but large enough to eliminate much of the uniprocessor miss traffic), so is
the problem size.

Alternatively, we could build scalable shared-memory architectures that
include cache coherency. The key is to find an alternative coherence protocol to
the snooping protocol. One alternative protocol is a directory protocol. A direc-
tory keeps the state of every block that may be cached. Information in the direc-
tory includes which caches have copies of the block, whether it is dirty, and so
on. (Section 6.11 on page 622 describes a hybrid approach that uses directories to
extend a snooping protocol.)

Existing directory implementations associate an entry in the directory with each
memory block. In typical protocols, the amount of information is proportional to
the product ‘of the number of memory blocks and the number of processors. This

578 & Chapter Six Multiprocessors and Thread-Level Parallelism

overhead is not a problem for multiprocessors with less than about 200 processors
because the directory overhead will be tolerable. For larger multiprocessors, we
need methods to allow the directory structure to be efficiently scaled. The methods
that have been proposed either try to keep information for fewer blocks (e.g., only
those in caches rather than all memory blocks) or try to keep fewer bits per entry.

To prevent the directory from becoming the bottleneck, directory entries can
be distributed along with the memory, so that different directory accesses can go
to different locations, just as different memory requests go to different mermories.
A distributed directory retains the characteristic that the sharing status of a block
is always in a single known location. This property is what allows the coherence
protocol to avoid broadcast. Figure 6.27 shows how our distributed-memory mul-
tiprocessor looks with the directories added to each node.

Directory-Based Cache Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared.
clean cache block. (Handling a write miss to a shared block is a simple combina-
tion of these two.) To implement these operations, a directory must track the state
of each cache block. In a simple protocol, these states could be the following:

® Shared—One or more processors have the block cached, and the value in
memory is up to date (as well as in all the caches).

|

Interconnection network

Directory Directory
Processor
+ cache

Figure 6.27 A directory is added to each node to implement cache coherence ina
distributed-memory multiprocessor. Each directory is responsible for tracking the
caches that share the memory addresses of the portion of memory in the node.The
directory may communicate with the processor and memory over a common bus, as
shown, or it may have a separate port to memory, or it may be part of a central node
controller through which all intranode and internode communications pass.

6.5 Distributed Shared-Memory Architectures s 579

® Uncached—No processor has a copy of the cache block.

® FExclusive—Exactly one processor has a copy of the cache block, and it has
written the block, so the memory copy is out of date. The processor is called
the owner of the block.

In addition to tracking the state of each cache block, we must track the pro-
cessors that have copies of the block when it is shared, since they will need to be
invalidated on a write. The simplest way to do this is to keep a bit vector for each
memory block. When the block is shared, each bit of the vector indicates whether
the corresponding processor has a copy of that block. We can also use the bit vec-
tor to keep track of the owner of the block when the block is in the exclusive
state. For efficiency reasons, we also track the state of each cache block at the
individual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. We make the same simplifying assumptions that we made in
the case of the snooping cache: Attempts to write data that are not exclusive in the
writer’s cache always generate write misses, and the processors block until an
access completes. Since the interconnect is no longer a bus and since we want to
avoid broadcast, there are two additional complications. First, we cannot use
the interconnect as a single point of arbitration, a function the bus performed in the
snooping case. Second, because the interconnect is message oriented (unlike the
bus, which is transaction oriented), many messages must have explicit responses.

Before we see the protocol state diagrams, it is useful to examine a catalog of
the message types that may be sent between the processors and the directories.
Figure 6.28 shows the type of messages sent among nodes. The local node is the
node where a request originates. The home node is the node where the memory
location and the directory entry of an address reside. The physical address space
is statically distributed, so the node that contains the memory and directory for a
given physical address is known. For example, the high-order bits may provide
the node number, while the low-order bits provide the offset within the memory
on that node. The local node may also be the home node. The directory must be
accessed when the home node is the local node, since copies may exist in yet a
third node, called a remote node.

A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an
assumption that messages will be received and acted upon in the same order they
are sent. This assumption may not be true in practice and can result in additional
complications, some of which we address in Section 6.8 when we discuss mem-
ory consistency models. In this section, we use this assumption to ensure that
invalidates sent by a processor are honored immediately.

580 = Chapter Six Multiprocessors and Thread-Level Parallelism

Message

Message type Source Destination contents Function of this message

Read miss local cache home directory P A Processor P has a read miss at address A;
request data and make P a read sharer.

Write miss local cache home directory P, A Processor P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate home directory remote cache A Invalidate a shared copy of data at address A.

Fetch home directory remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate home directory remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the cache.

Data value reply home directory local cache D Return a data value from the home memory.

Data write back

remote cache

home directory A,D Write back a data value for address A.

Figure 6.28 The possible messages sent among nodes to maintain coherence, along with the source and desti-
nation node, the contents (where P = requesting processor number, A = requested address, and D = data con-
tents), and the function of the message. The first two messages are miss requests sent by the local cache to the
home.The third through fifth messages are messages sent to a remote cache by the home when the home needs the
data to satisfy a read or writ€ miss request. Data value replies are used to send a value from the home node back to
the requesting node. Data value write backs occur for two reasons: when a block is replaced in a cache and must be
written back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing
back the data value whenever the block becomes shared simplifies the number of states in the protocol, since any
dirty block must be exclusive and any shared block is always available in the home memory.

An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly like
those in a snooping protocol, and the states in the directory are also analogous to
those we showed earlier. Thus we can start with simple state diagrams that show
the state transitions for an individual cache block and then examine the state dia-
gram for the directory entry corresponding to each block in memory. As in the
snooping case, these state transition diagrams do not represent all the details of a
coherence protocol; however, the actual controller is highly dependent on a num-
ber of details of the multiprocessor (message delivery properties, buffering struc-
tures, and so on). In this section we present the basic protocol state diagrams. The
knotty issues involved in implementing these state transition diagrams are exam-
ined in Appendix I, along with similar problems that arise for snooping caches.
Figure 6.29 shows the protocol actions to which an individual cache responds.
We use the same notation as in the last section, with requests coming from outside
the node in gray and actions in bold. The state transitions for an individual cache
are caused by read misses, write misses, invalidates, and data fetch requests; these
operations are all shown in Figure 6.29. An individual cache also generates read
and write miss messages that are sent to the home directory. Read and write misses
require data value replies, and these events wait for replies before changing state.

6.5 Distributed Shared-Memory Architectures = 581

CPU read hit

Invalidate

Shared
(read only)

CPU read

Send read miss message

CPU write

Read miss

Data write back

Send write miss message

Fetch
invalidate

Exclusive
(read/write)

CPU write miss
CPU write hit
CPU read hit
Data write back
Write miss

Figure 6.29 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black and those from the
home directory are shown in gray. The states are identical to those in the snooping
case, and the transactions are very similar, with explicit invalidate and write-back
requests replacing the write misses that were formerly broadcast on the bus. As we did
for the snooping controller, we assume that an attempt to write a shared cache block is
treated as a miss; in practice, such a transaction can be treated as an ownership request
or upgrade request and can deliver ownership without requiring that the cache block
be fetched.

The operation of the state transition diagram for a cache block in Figure 6.29
is essentially the same as it is for the snooping case: The states are identical, and
the stimulus is almost identical. The write miss operation, which was broadcast
on the bus in the snooping scheme, is replaced by the data fetch and invalidate
operations that are selectively sent by the directory controller. Like the snooping
protocol, any cache block must be in the exclusive state when it is written, and
any shared block must be up to date in memory.

In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
actions: updates of the directory state and sending additional messages to satisfy
the request. The states in the directory represent the three standard states for a

582 =& Chapter Six Multiprocessors and Thread-Level Parallelism

block; unlike in a snoopy scheme, however, the directory state indicates the state
of all the cached copies of a memory block, rather than for a single cache block.
The memory block may be uncached by any node, cached in multiple nodes and
readable (shared), or cached exclusively and writable in exactly one node. In
addition to the state of each block, the directory must track the set of processors
that have a copy of a block; we use a set called Sharers to perform this function.
In multiprocessors with less than 64 nodes (which may represent two to four
times as many processors), this set is typically kept as a bit vector. In larger mul-
tiprocessors, other techniques, which we discuss in Exercise 6.16, are needed.
Directory requests need to update the set Sharers and also read the set to perform
invalidations.

Figure 6.30 shows the actions taken at the directory in response to messages
received. The directory receives three different requests: read miss, write miss,
and data write back. The messages sent in response by the directory are shown in
bold, while the updating of the set Sharers is shown in bold italics. Because all
the stimulus messages are external, all actions are shown in gray. Our simplified

Data value reply;
Sharers = {P}

Shared
(read only)

Uncached

Read miss

Write miss

{}

Sharers
Data value reply;
Sharers = {P}

Data value reply
Sharers = Sharers + {P}

Data
write back

Exclusive
(read/write)

Fetch/invalidate
Data value reply
Sharers = (P}

Figure 6.30 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray
because they are all externally caused. Bold indicates the action taken by the directory
in response to the request. Bold italics indicate an action that updates the sharing set,
Sharers, as opposed to sending a message.

6.5 Distributed Shared-Memory Architectures = 583

protocol assumes that some actions are atomic, such as requesting a value and
sending it to another node; a realistic implementation cannot use this assumption.
To understand these directory operations, let’s examine the requests received
and actions taken state by state. When a block is in the uncached state, the copy in
memory is the current value, so the only possible requests for that block are

® Read miss—The requesting processor is sent the requested data from memory
and the requestor is made the only sharing node. The state of the block is
made shared.

m Write miss—The requesting processor is sent the value and becomes the shar-
ing node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date, so the same
two requests can occur:

B Read miss—The requesting processor is sent the requested data from memory
and the requesting processor is added to the sharing set.

® Write miss—The requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, and the Sharers set is to contain the
identity of the requesting processor. The state of the block is made exclusive.

When the block is in the exclusive state, the current value of the block is held in
the cache of the processor identified by the set Sharers (the owner), so there are
three possible directory requests:

® Read miss—The owner processor is sent a data fetch message, which causes
the state of the block in the owner’s cache to transition to shared and causes the
owner to send the data to the directory, where it is written to memory and sent
back to the requesting processor. The identity of the requesting processor is
added to the set Sharers, which still contains the identity of the processor that
was the owner (since it still has a readable copy).

® Data write back—The owner processor is replacing the block and therefore
must write it back. This write back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached,
and the Sharers set is empty.

& Write miss—The block has a new owner. A message is sent to the old owner,
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to the identity of the new owner, and the state of the
block remains exclusive.

This state transition diagram in Figure 6.30 is a simplification, just as it was
in the snooping cache case. In the directory case it is a larger simplification, since
our assumption that bus transactions are atomic no longer applies. Appendix I
explores these issues in depth.

584 & Chapter Six Multiprocessors and Thread-Level Parallelism

§6.6

In addition, the directory protocols used in real multiprocessors contain addi-
tional optimizations. In particular, in this protocol when a read or write miss
occurs for a block that is exclusive, the block is first sent to the directory at the
home node. From there it is stored into the home memory and also sent to the
original requesting node. Many of the protocols in use in commercial multipro-
cessors forward the data from the owner node to the requesting node directly (as
well as performing the write back to the home). Such optimizations often add
complexity by increasing the possibility of deadlock and by increasing the types
of messages that must be handled.

Performance of Distributed Shared-Memory
Multiprocessors

The performance of a directory-based multiprocessor depends on many of the
same factors that influence the performance of bus-based multiprocessors (e.g.,
cache size, processor count, and block size), as well as the distribution of misses
to various locations in the memory hierarchy. The location of a requested data
item depends on both the initial allocation and the sharing patterns. We start by
examining the basic cache performance of our scientific/technical workload and
then look at the effect of different types of misses.

Because the multiprocessor is larger and has longer latencies than our snooping-
based multiprocessor, we begin with a slightly larger cache (128 KB) and a larger
block size of 64 bytes.

In distributed-memory architectures, the distribution of memory requests
between local and remote is key to performance because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for the
figures in this section we separate the cache misses into local and remote
requests. In looking at the figures, keep in mind that, for these applications, most
of the remote misses that arise are coherence misses, although some capacity
misses can also be remote, and in some applications with poor data distribution
such misses can be significant (see the pitfall on page 643).

As Figure 6.31 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the
miss rate rises at 64 processors. This rise results from two factors: an increase in
mapping conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the coherence
misses, which are all remote.

Figure 6.32 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or no
reduction in coherence misses leads to a slower decrease in the remote misses
than in the local misses. By the time we reach the largest cache size shown, 512
KB, the remote miss rate is equal to or greater than the local miss rate. Larger
caches would amplify this trend.

