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ABSTRACT 

This paper reports the results of a study of VAX- 
11/780 processor performance using a novel hardware 
moni tor ing  technique.  A micro-PC h i s tog ram 
monitor was built for these measurements. It keeps a 
count of the number of microcode cycles executed at 
each microcode location. Measurement experiments 
were performed on live t imesharing workloads as 
well as on synthetic workloads of several types. The 
his togram counts  al low the ca lcu la t ion  of the 
frequency of various architectural events, such as the 
frequency of different types of opcodes and operand 
specif iers ,  as well  as the  f r e q u e n c y  of some 
implementation-specific events, such as translation 
buffer misses. The measurement  technique also 
yields the amount of processing time spent in various 
activities, such as ordinary microcode computation, 
memory  m a n a g e m e n t ,  and processor s t a l l s  of 
different kinds. This, paper reports in detail the 
amount  of time the ' average ' fVAX ins t ruct ion 
spends in these activities. 

1. INTRODUCTION 

Processor performance is often assessed by 
benchmark speed, and sometimes by trace-driven 
studies of instruction execution; neither method can 

Ve the details of instruction timing, and neither can 
applied to operating systems or to multiprocessing 

workloads. From the hardware designer's or the 
computer architect's point of view, these are serious 
limitations. A lack of detailed timing information 
impairs efforts to improve processor performance, and 
a dependence on user program behavior ignores the 
substantial contribution to system performance made 
by operating systems and by multi-processing effects. 

In th is  paper  we use a novel  me thod  to  
characterize VAX-11/780 processor performance 
under real timesharing workloads [13]. Our main 
goal is to at tr ibute the time spent in instruction 
execution to the various activities a VAX instruction 
may engage in, such as operand fetching, waiting for 
cache and translation buffer misses, and unimpeded 
microcode execution. Another goal is to establish the 
frequency of occurrence of events impor t an t  to 
p e r f o r m a n c e ,  such as cache  mi s se s ,  b r a n c h  
i n s t ruc t i on  success,  and  m e m o r y  ope ra t ions .  
Throughout this paper we will report most results in 
frequency or time per VAX instruction. This provides 
a good characterization of the overall performance 

effect of many architectural  and implementat ion 
features. 

Prior related work includes studies of opcode 
f requency  and o the r  f e a t u r e s  of  i n s t r u c t i o n -  
processing [10, 11, 15, 16]; some studies report timing 
information as well [1, 4, 12]. 

After describing our methods and workloads in 
Section 2, we will report the frequencies of various 
processor events in Sections 3 and 4. Section 5 

resents the complete, detailed timing results, and 
ection 6 concludes the paper. 

2. DEFINITIONS AND METHODS 

2.1 VAX-ll/780 S t ruc ture  

The 11/780 processor is composed of two major 
subsystems: the CPU pipeline, and the memory 
subsystem. These subsystems and their constituent 
components are illustrated in Figure 1. The CPU 
pipeline is responsible  for most  of the ac tua l  
instruction execution, and as is shown, consists of 
three stages. The operation of the CPU pipeline may 
be most easi ly understood by not ing tha t  VAX 
instructions are composed of an opcode followed by 
zero to six operand specifiers, which describe the data 
operands required by the instruction. The 11/780 
implementation of the VAX architecture breaks the 
execution of an ins t ruct ion into a sequence of 
operations that  correspond to the accessing of the 
da ta  operands of the i n s t ruc t ion  and then  its 
execution. In general these operations correspond to 
the tasks that  flow down the CPU pipeline. 

The individual stages of the CPU pipeline are: 
the I-Fetch stage, which sequential ly fetches the 
instruction stream into the Instruction Buffer or IB; 
the I-Decode stage, which takes instruction bytes 
from the IB and decodes an opcode and/or specifier, 
determines a microcode dispatch address for the 
EBOX, and extracts additional specifier information 
that  is used by the EBOX; and  the EBOX stage, 
which is a microcoded function unit  that  does most of 
the actual work associated with fetching operands 
and executing instructions. In fact, the EBOX and 
the I-Decode stages are very tightly coupled, so that  I- 
Decode operations only take place under specific 
control of  the EBOX. The first  I-Decode for an 
i n s t r u c t i o n  c a n n o t  occur u n t i l  the  p r e v i o u s  
i n s t ruc t ion  has  been competed,  so the  EBOX 
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FIGURE I 

VAX-11/780 Block Diagram 
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expe r i e nc e s  a s ingle  n o n - o v e r l a p p e d  I-Decode 
operation cycle for each instruction. 

The EBOX can perform a number of autonomous 
operations, such as arithmetic and boolean 
computations; it can command the I-Fetch unit to 
start fetching at the target of a branch instruction; it 
can command reads and writes of memory data; and 
as a stage of the CPU pipeline, it can branch to a 
microinstruction location determined by the I-Decode 
stage. In this final instance it may have to wait as a 
result of a pipeline delay if the I-Decode stage has not 
yet been able to compute the desired location. We 
will call this delay an IB stall. 

As the EBOX contains the microcode and does 
the majority of the instruction computation, we will 
be focusing mainly on its activity. We use the EBOX 
microinstruct ion time of 200 nanoseconds as the 
definition of a cycle. 

In the process of instruct ion execution by the 
CPU pipeline, both the I-Fetch and EBOX stages may 
make references to memory. In order to support the 
virtual  memory of the VAX these references must  
first pass through a translation buffer, or TB, where 
the  v i r t u a l  address  g e n e r a t e d  by the  CPU is 
t rans la ted  into a physical address. A successful 
translation is called a TB hit, and conversly a failed 
translation is called a TB miss. In the event of a TB 
miss for an EBOX reference, a microcode interrupt  is 
asserted and a microcode routine is invoked which 
inserts the desired translation into the TB. In the 
event of a TB miss for an I-Fetch reference, a flag is 

set; when the EBOX finds insufficient data bytes in 
the IB to do a desired decode, it recognizes tha t  the 
flag is set and again goes about the task of putt ing the 
appropriate translation into the TB. 

After successful translation by the TB, the 
physical address that was generated is used to access 
the data cache. Just as with the TB, we can have 
cache hits and misses. In the case of a read hit, data 
is simply passed back to the requesting unit. In the 
case of a read miss, a reference is made over the 
backplane bus, called the SBI for Synchronous 
Backplane Interconnect, to fetch the data from 
memory into the cache and to forward it to the 
requesting unit. During the time the data is being 
read from memory on behalf of an EBOX request the 
EBOX itself is read stalled waiting for the data, while 
during I-Fetch requests the EBOX is free to run 
unimpeded unless it too needs data from memory. A 
read operation which results in a hit in both the TB 
and cache consumes one cycle. 

Only the EBOX is capable of doing data writes, 
and the 11/780 implements a write-through memory 
scheme in which all data writes are passed through to 
the memory via the SBI. Jus t  as with reads, the TB is 
used to generate a physical address for the reference. 
In order to avoid waiting for the write to complete in 
memory the 11/780 provides a 4-byte write buffer. 
Thus it takes one cycle for the EBOX to init iate a 
write and then it continues microcode execution,  
which will be held up in the future only if another 
write request  is made before the last one completed. 
The delay caused when a write encounters another 
write in progress is called a write stall. In addition, 
during a data write, the cache is accessed to update 
its contents  with the data  be ing  wr i t t en .  Note,  
however, tha t  if the write access misses, the cache is 
not updated. 

2.2 Methods: Micro-PC Histogram Technique  

Our measurements were collected with a special 
purpose hardware monitor that enabled us to create 
histograms of microcode execution in the 11/780 
processor. This uPC monitor consists of a general 
purpose histogram count board, which has 16,000 
addressable count locations (or histogram buckets), 
and is capable of incrementing the count in a selected 
location at the rnicrocode execution rate of the 780. A 
processor-specific interface board was also required. 
It provided the address of a histogram count bucket 
and control lines to signal when a count should be 
made. For these experiments the interface board 
addressed a distinct histogram bucket for each 
microcode location in the processor's control store, 
and a count was taken for each microinstruction 
executed. 

The histogram collection board was designed as a 
Unibus device, and Unibus commands can be used to 
start and stop data collection, as well as to clear and 
read the histogram count buckets. Coincidentally, 
since the 11/780 has a Unibus, the histogram 
collection monitor could be installed directly on the 
system being measured, obviating the cost and 
nuisance of using a second machine for the hardware 
monitor. This was a further convenience as the data 
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collected was immediately available on a machine of 
sufficient capacity to do the data reduction. Note, 
however, that  while actually monitoring microcode 
execution, the data  collection hardware is totally 
passive, causing no Unibus activity and having no 
effect on the execution of programs on the system. 
Thus this technique yields measurements  of all 
system activity at full speed. 

The capacity of the counters on the histogram 
collection board were sufficient to collect data for 1 to 
2 hours of heavy processing on the CPU. 

Since much of the activity in the ll/780processor 
is under the direct command of microcode functions, 
the frequency of many events can be determined 
through examination of the relative execution counts 
of various microinstructions.The uPC histogram data 
is especially useful, since it forms a general resource 
from which  the  a n s w e r s  to m a n y  q u e s t i o n s  
concerning the operation of the 11/780 running the 
same workload can be obtained simply by doing 
additional interpretation of the raw histogram data. 

One disadvantage of this method of hardware 
monitoring lies in the fact tha t  certain hardware 
events are not visible to the microcode. For example, 
the counts of instruction stream memory references 
are not available, because they are made by a distinct 
portion of the processor not under direct control of the 
microcode. Another is that  to save microcode space, 
the  m i c r o p r o g r a m m e r s  f r e q u e n t l y  s h a r e d  
microinstructions; in such cases we cannot usually 
distinguish the sharers. A third disadvantage of this 
measurement technique is that  the analysis produces 
only average behavior  charac ter iza t ions  of the 
processor over the measurement interval,  since no 
measures of the variation of the statistics during the 
measurement are collected. 

The uPC histogram measurements were taken in 
two different experimental settings: live timesharing, 
and synthetic workloads. The live t imeshar ing  
m e a s u r e m e n t s  were t aken  from two d i f f e r en t  
machines within Digital engineering.  The f irst  
machine belonged to the research group, and was 
used for general t imesharing and some performance 
data analysis. Its workload consisted of such things 
as text-editing, program development, and electronic 
mail. It was relatively l ightly loaded during the 
measurement interval, with approximately 15 users 
logged in. 

The second t imeshar ing measurements  were 
taken from a machine being used by a group in the 
initial stages of development of a VAX CPU. The 
load on this machine consisted of the same type of 
gene ra l  purpose  t i m e s h a r i n g  as in the  f i r s t  
experiment ,  wi th  the  add i t ion  of some c i rcui t  
s imu la t ion  and microcode development .  This  
machine had a heavier load with approximately 30 
users logged in during the measurement interval. 

Al though real is t ic ,  these  live t i m e s h a r i n g  
workloads are difficult to characterize and are not 
repeatable, since the computat ional  load varies  
greatly over time. A second experimental sett ing 
addressed this problem. In it, a Remote Terminal 
Emula to r  or RTE [7, 14] provided a rea l - t ime  

s imu la t i on  of a n u m b e r  of t i m e s h a r i n g  users  
connected to the VAX. The RTE is a PDP-11 with 
many  asynchronous  te rmina l  interfaces;  output  
characters generated by the RTE from canned user 
scripts are seen as terminal input characters by the 
VAX, and vice versa .  Three  R T E - g e n e r a t e d  
w o r k l o a d s  were  m e a s u r e d :  an  e d u c a t i o n a l  
environment, with 40 simulated users doing program 
development in various languages and some file 
manipulation; a scientific/engineering environment, 
with 40 simulated users doing scientific computation 
and program development ;  and  a commerc ia l  
t r a n s a c t i o n - p r o c e s s i n g  e n v i r o n m e n t ,  wi th  32 
s i m u l a t e d  users  doing t r a n s a c t i o n a l  d a t ab ase  
inquiries and updates. 

All five experiments lasted about one hour. In 
this paper we will report results for the composite of 
all five, that  is, the sum of the five uPC histograms. 

The VMS operating system (version 2) [5, 9] was 
used in all our experiments. The VMS Null process, 
which runs when the system is idle, was excluded 
from measurement because its trivial code structure 
(branch to self, awaiting an interrupt) would bias all 
per-instruction statistics in proportion to the idleness 
of the system. 

Al l  of  t he  VAXes  h a d  F l o a t i n g  P o i n t  
Accelerators, and all had 8 Megabytes of memory. 

3. ARCHITECTURAL EVENTS 

An architectural event is an event that  would 
occur  in a n y  i m p l e m e n t a t i o n  of  t h e  VAX 
architecture; an implementation event is one whose 
occurrence depends on the particular implementation 
of tha t  architecture. Thus, for example, a data- 
stream memory read is usual ly an archi tec tura l  
e v e n t ,  b u t  a c o n s e q u e n t  cache  mi s s  is an  
implementation event. We discuss the former here, 
and the latter in Section 4. 

We will need to make certain assumptions about 
all VAX implementations for this distinction to be 
valid. We assume, for the purposes of our discussion, 
that: 

All VAX implementations have 32-bit data paths 
to the closest level of the memory h ie ra rchy  
(usually the cache). Since the VAX is a 32-bit 
architecture, this is a very minor restriction. 
This allows us to count architectural memory 
references by measuring hardware references in 
the 11/780 implementation. 

All VAX implementations experience the same 
rate of operating system events. This allows us 
to treat  instruction frequency as an architectural 
concern, ignoring the fact that  an increased rate 
of, say, page faults would increase the frequency 
of instructions in the page fault routine. 

3 . 1 0 p c o d e s  

VAX opcode frequency has been reported and 
discussed in other papers [4, 15]. The uPC method 
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cannot distinguish all opcodes in the 11/780. The 
redominant reason for this is that hardware is used 
r the implementa t ion  of some opcode-specific 

functions. For example, integer add  and subtract 
instructions use the same microcode, with the ALU 
control field determined by hardware that  looks at  
the opcode. 

We can, however, report the frequency of groups 
of opcodes. Table 1 shows this for our composite 
workload. The following observation about this table 
is by now almost a clichd: moves, branches, and 
simple instructions account for most ins t ruct ion  
executions. It will turn out, however, that  some of the 
rarer, more complex instructions are responsible for a 
great deal of the memory references and processing 
time; this point has also been made before [12]. Note 
t ha t  VAX subrout ine  l i nkage  is qui te  s imple,  
involving only a push or pop of the PC together with a 
jump; procedure linkage ,s more complex, involving 
considerable state saving and restoring on the stack 
[6, 131. 

A p a r t i c u l a r l y  i n t e r e s t i n g  opcode-oriented 
performance measu re  is the f requency  of PC- 
chang ing  i n s t r u c t i o n s  and  the  p ropor t ion  of 
conditional branches tha t  actually do branch. In 
Table 2 below we show these figures for the composite 
workload. The upper section of the table consists of 
members of the SIMPLE group of Table 1. Because of 
microcode-sharing, two uncondi t ional  branches  
(BRB and BRW) are grouped with simple conditional 
branches. We believe from other measurements that  
these are about 2 percent of all instructions, leaving 
about 17 percent due to true conditional branches. 
The  r e m a i n i n g  rows are  t he  P C - c h a n g i n g  
in s t ruc t ions  from the FIELD, CALL/RET and 
SYSTEM instruction groups. 

PC-changing instructions are quite common, 
accounting for almost 40 percent of all instructions 
executed in the composite workload. Furthermore, 
the proportion of these that  actually change the PC is 
also quite high. Both properties are in line with other 
measurements of such instructions, both in the VAX 
and other architectures. Note that  about 9 out of 10 
loop branches actually branched. Therefore the 
average number of iterations of all loops that  used 
these instructions was about 10. 

3 . 2 0 p e r a n d  Specifiers  

VAX instructions specify the location of their  
data through one or more encoded operand specifiers 
t ha t  follow the opcode in the I-s t ream. These 
indicate, for example, whether a read operand is to be 
found in a register, or in memory addressed by a 
register, or with a variety of other addressing modes 
[6, 13]. The data type (byte, longword, floating-point, 
etc.) and access mode (read, modify, write, etc.) of an 
operand specifier are defined by the instruction that  
uses it. Branch d i sp lacements  are considered 
separately. 

In the 11/780 microcode, all access to scalar data, 
and to the addresses of non-scalar data, are done by 
specifier microcode. We thus consider the reading 
and  wr i t i ng  of s ca l a r  da t a ,  and  the  add re s s  

TABLE 1 

Opcode Group  F r e q u e n c y  

Group Frequency 
name Constituents (Percent) 
....................................................................... 

SIMPLE Move instructions 83.60 
Simple arith, operations 
Boolean operations 
Simple and loop branches 
Subroutine calland return 

FIELD 

FLOAT 

Bit field operations 6.92 

Floating point 3.62 
Integer multiply/divide 

CALL/RET Procedure call and return 3.22 
Multi-register push and pop 

SYSTEM Privileged operations 2.11 
Context switch instructions 
Sys. serv. requests and return 
Queue manipulation 
Protection probe instructions 

CHARACTER 

DECIMAL 

Char. string instructions 0.43 

Decimal instructions 0.03 

TABLE 2 

PC-Changing Instructions 

Percent Act. branch 
Branch Percent that  as percent 
Type of Inst. branch of all inst. 
...................................................................... 

Simple cond., 19.3 56 10.9 
plus BRB, BRW 

Loop branches 4.1 91 3.7 

Low-bit tests 2.0 41 0.8 

Subroutine 4.5 100 4.5 
call and return 

Unconditional 0.3 100 0.3 
(JMP) 

Case branch 0.9 100 0.9 
(CASEx) 
....................................................................... 

Bit branches 4.3 44 1.9 

Procedure 2.4 100 2.4 
call and return 

System branches 0.4 100 0.4 
(CHMx, REI) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL 38.5 67 25.7 
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calculation of non-scalar data, to be associated with 
operand specifier process ing and not wi th  the 
ins t ruct ion itself. A simple in t ege r  Move, for 
example,  is accomplished e n t i r e l y  by specif ier  
microcode: first a read, then a write. 

The 11/780 specifier-processing microcode allows 
us to distinguish first specifiers, called SPEC1 (those 
that  direct ly follow the opcode) from all o ther  
specifiers, called SPEC2-6. It also lets us count PC- 
relative branch displacements, which appear in the 
last  specif ier  posi t ion of ce r ta in  PC-chang ing  
instructions. Not all PC-changing instructions use 
branch displacements: some determine their targets 
with ordinary operand specifiers (e.g., JMP, CALLS), 
while others determine their targets implicitly (e.g., 
RSB, RET, REI). 

Table 3 shows the number  of specifiers and 
branch displacements per average VAX instruction. 

Table 4 shows the frequency of operand specifier 
types. Because of microcode-sharing, we are able to 
report the individual frequencies of the various types 
of memory-referencing specifiers only in the total 
co lumn.  M e m o r y - r e f e r e n c i n g  spec i f i e r s  can  
optionally be indexed: the percentage of all specifiers 
that are indexed is shown in the bottom line of the 
table. 

Register mode is the most common addressing 
mode, especially in specifiers after the first. Since the 
last specifier is general ly the des t inat ion of the 
instruction's result (if not a branch), this probably 
reflects a tendency to store results in registers. The 
encoded short l i teral ,  in which a single byte is 
expanded to one of a small number of values whose 
data type is instruction-dependent,  is also quite 
common, particularly as the first specifier. We note 
the scarcity of immediate data ((PC)+), the other 
method of supplying I-s t ream cons tan ts  to the 
instruction. Short literals apparently do this job 
fairly well. 

The  mos t  c o m m o n  m e m o r y  s p e c i f i e r  is 
d isplacement  off a register .  Other  resul ts  [15] 
suggest that  the displacement is most often a byte, 
less often a 4-byte longword, and least often a word. 
Index mode is surprisingly common; 6.3 percent of all 
specifiers were indexed. 

The average number of specifiers per instruction 
in the composite workload is 1.48 (remember that this 
does not include branch displacements). 

3.3 M e m o r y  Opera t ions  

3.3.1 Data  

Operand-specif ier  processing accounts for a 
ma jo r i ty  of the D-s t ream m e m o r y  ope r a t i ons  
performed on the VAX. Most other reads and writes 
are due to the manipulation of non-scalar data such 

TABLE 3 

Specifiers and Branch Displacements 
per Average Instruction 

First specifiers 0.726 
Other specifiers 0.758 
Branch displacements 0.312 

TABLE 4 

Operand specifier distribution (percent) 

SPEC1 SPEC2-6 Total 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Register R 28.7 52.6 41.0 

Short Literal #n 21.1 10.8 15.8 
Immediate (PC) + 3.2 1.7 2.4 

Displacement I 1 f 3  9 t  25.0 ,e e re  9.2 
Auto-inc. (R) + | / 2.1 
Disp. Deferred @D(R) ~47.0~ 4. 2.7 
Absolute @(PC) + 1  / 0.6 
Auto-inc.def. @(R)+ | | 0.3 
Auto-dec. -(R) L . J  0.9 

Percent Indexed [R] 8.5 4.2 6.3 

as character  strings and stack frames.  Table 5 
reports the frequency of read and write operations per 
average instruction, broken down by the source of the 
operation. After specifiers, procedure call and return 
instructions, which push and pop registers on and off 
the stack, account lbr the greatest portion of reads 
and writes. 

Because the results are in terms of events per 
average instruction, the number of reads reported for 
the CALL/RET group, for example, is not the average 
number of reads executed by the average CALL/RET 
instruction. Rather, it is the number of CALL/RET 
reads averaged over all instruction executions. Put  
another way, it is the number of CALL/RET reads 
w e i g h t e d  by the  f r e q u e n c y  of o c c u r e n c e  of  
instructions in the CALL/RET group. This way of 
l ook ing  a t  the  d a t a  d i r e c t l y  m e a s u r e s  t he  
contribution of the various instruction groups to 
overall performance. 

Overall, the ratio of reads to writes is about two 
to one. Some of these references  are to 32-bit 
longwords that  are unaligned with respect to the 
physical organization of the cache, and that  therefore 
require two physical references. The frequency of 
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TABLE 5 

D-stream Reads and Writes 
per Average Instruction 

Reads Writes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Specl .306 .000 
Spec2-6 .148 .161 

Simple .029 .033 
Field .049 .007 
Float .000 .008 
Call/Ret .133 .130 
S~stem .015 .014 

aracter .039 .046 
Decimal .002 .001 

Other .062 .008 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL .783 .409 

unaligned D-stream references is very low: 0.016 per 
instruction in the composite workload. 

3.3.2 Ins t ruc t ions  

Many memory reads are due to ins t ruc t ion  
fetching, but it is difficult to characterize this in a 
strictly architectural way. Different organizations of 
the I-stream prefetching hardware can have very 
different streams of references to memory. The only 
truly architectural feature of the I-stream references 
is the size of the instructions. The average size of an 
operand specifier can be calculated from Table 3, 
together with displacement  f igures (byte, word, 
longword) from [15], and is 1.68 bytes. The average 
instruction has one byte of opcode, some number of 
specifiers, and some fractional number of branch 
displacements. Table 6 puts all of this together to 
show that  the average size of a VAX instruction in 
our workload was 3.8 bytes. 

3.4 Other  Events  

Two other interesting architectural events are 
interrupts  and context switches. The la t te r  are 
accomplished by the save-process-context and load- 
p r o c e s s - c o n t e x t  i n s t r u c t i o n s  (SVPCTX a n d  
LDPCTX). In VMS these are used only for a switch 
from one user process to another;  in ter rupts ,  in 

ar t icular ,  do not cause context switches. The 
equency of these events is shown in Table 7. For 

ease of understanding we invert our usual metric and 
report these in terms of the average ins t ruct ion 
headway between events. VMS sometimes services 
hardware interrupts by chaining together several 
successively lower-priori ty software i n t e r rup t s .  
Table 7 includes the headway between requests for 
software interrupts. 

The context-switch figure is useful in setting the 
"flush" interval in cache and t rans la t ion  buffer 

TABLE 6 

Estimated Size of  Average Instruction 

Number Est. Size 
Object per inst Est. Size per inst. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Opcode 1.00 1.00 1.00 
Specifiers 1.48 1.68 2.49 
Branch disp. 0.31 1.00 0.31 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL 3.8 

TABLE 7 

Interrupt and  Context-Switch H e a d w a y  

Event Instruction 
headway 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Software Interrupt Requests 2539 

Hardware and Software Interrupts 637 

Context Switches 6418 

simulations. The impact of context switching on 
VAX Translation Buffer performance is discussed in 
[3]. 

4. IMPLEMENTATION EVENTS 

By an implementation event we mean an event 
whose occurrence depends on the particular 
implementation of the VAX architecture. A cache 
miss is an example; whether a memory reference hits 
or misses in the cache depends on the size and 
configuration--indeed, even the presence--of the cache 
in a particular implementation of the architecture. 

4.1 I -s t ream References  

The II/780's Instruction Buffer or IB makes its I- 
stream referencing behavior implementation- 
specific. The 8-byte IB makes a cache reference 
whenever one or more bytes are empty. When the 
requested longword arrives possibly much later, if 
there was a cache miss the IB accepts as many bytes 
as it has room for then. Thus the IB can make 
repeated references (as many as four) to the same 
long~v, ord, but this is clearly not a requirement of the 
architecture. 

Because the IB is controlled by hardware, the 
uPC histogram technique cannot count IB references. 
But in our earlier cache study [2] we found that the 
average number of cache references by the IB per 
VAX instruction was around 2.2, for three day-long 
measurements of live timesharing workloads. 
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Since the average VAX instruction is 3.8 bytes 
long (Table 6), we conclude that  those 2.2 references 
yielded on average 3.8 bytes, for an average delivery 
per reference of 1.7 bytes. 

4.2 C a c h e  A n d  T r a n s l a t i o n  Buffer  Mis se s  

The 11/780 cache is controlled by hardware, so 
the frequency of cache misses is not measurable with 
the uPC technique .  Our ea r l i e r  cache s tudy,  
however, found that  in live timesharing workloads 
the number of cache read misses per instruction was 
0.28, with 0.18 due to the I-stream and 0.10 due to the 
D-stream. The performance cost of these misses is 
microcode stalls, which are discussed below. 

The vir tual- to-physical  address Trans la t ion  
Buffer, on the other hand, is controlled by microcode, 
and is therefore direct ly visible with the uPC 
technique. A TB miss results in a microcode trap to a 
miss service micro-routine. Entries to this routine 
indicate occurrences of TB misses, and a count of all 
cycles wi th in  the rout ine yields the time spent 
handling TB misses. 

The TB miss rate for the composite workload was 
0.029 misses per instruction, 0.020 from the D-stream 
and 0.009 from the I-stream. The average number of 
cycles used to service a miss was 21.6, of which 3.5 
were read stalls due to the requested page-table 
entry not being in the cache. See [3] for more 
information on the performance of the VAX-11/780 
TB. 

4.3 Stalls 

A stall occurs when a microcode request cannot 
yet be satisfied by the hardware. The result is one or 
more cycles of suspended execution until the reason 
for the stall goes away. As described in Section 2.1, 
there are three types of stall in the VAX-11/780: read 
stall, write stall, and IB stall. 

A read stall occurs when there is a cache miss on 
a D-stream read. The requesting microinstruction 
simply waits for the data to arrive. In the simplest 
case (no concurrent memory activity of other types) 
this takes 6 cycles on the 11/780. Cache hits cause no 
stalls. 

A write will stall if attempted less than 6 cycles 
after the previous write (in the simplest case).VAX 
instructions that  do many writes, such as character- 
string moves, are sometimes microprogrammed to 
reduce write stalls by writing only in every sixth 
cycle. 

The last type of stall, IB stall, occurs when the IB 
does not contain enough bytes to satisfy the 
microcode's request. This can occur at any point in I- 
stream processing, including the initial decode of the 
opcode, specifier decodes, and requests for literal or 
immediate data. Note that IB stall does not occur in 
direct response to an IB cache miss; only when the 
empty byte is actually needed by the microcode can 
stall occur, and by then the cache miss may have 
fin/shed. 

The occurrence and duration of all three types of 
stalls are implementation-specific characteristics of 
the VAX-11/780. The duration, but not the frequency 
of occurrence of all three can be measured with the 
uPC technique.  The h is togram board ac tua l ly  
contains two sets of counts,  one for non-stal led 
microinstructions, and one for read- or write-stalled 
microinstructions. If the microinstruction at address 
X does a cache read, then the non-stalled count at  
location X will  conta in  the  ac tua l  number  of 
successful reads done by that  microinstruction, while 
the stalled count at location X will contain the total 
number of cycles in which that  microinstruction was 
stalled. Write stalls and read stalls are differentiated 
by whether the microinstruction does a read or a 
write (it cannot do both). 

IB stalls are handled in a slightly different way. 
Requests for bytes from the IB result in microcode 
dispatches; decoding hardware maps the IB contents 
into various dispatch microaddresses, one of which 
indicates that  there were insufficient bytes in the IB. 
The number of executions of the microinstruction at 
that  microaddress is the number of cycles with IB 
stall. 

5. TIME: CYCLES PER INSTRUCTION 

The great strength of the uPC histogram 
technique is its ability to classify every processor 
cycle and thus to establish the durations of processor 
events. Table 8 shows the number of cycles per 
average instruction, arranged in two orthogonal 
dimensions. The first dimension (rows) represents 
the stages of an instruction's execution: its initial 
Decode; then its operand specifier and branch 
displacement processing; then its execute phase; and 
finally severaloverhead activities. 

Instruction decode, as discussed in Section 2.1 
above, takes exactly one EBOX cycle, but may stall if 
there are insufficient bytes in the IB. 

Operand specifier processing consists of address 
calculation for memory specifiers, and the actual read 
and/or write of data for both memory and register 
specifiers, provided the da ta  is scalar. Branch 
displacement processing consists of the calculation of 
the branch target address, which requires one cycle. 
An additional cycle is consumed in the execute phase 
of the instruction to redirect the IB to fetch down the 
target stream. 

The execute phase of an instruction consists of 
those microcycles associated with an instruction's 
actual computation. Table 8 reports these results by 
opcode group as defined in Table 1. 

The overhead activities are not associated with 
any particular instruction. They include interrupts 
and exceptions (Int/Except), memory management  
and alignment microcode (Mem Mgmt), and abort 
cycles (one for each microcode trap and one for each 
microcode patch). 

The second dimension of Table 8 (columns) 
classifies microinstruction execution into one of six 
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T A B L E  8 

Average VAX Instruction Timing (Cycles per Instruction) 

Compute Read R-Stall Write  W-Stall  IB-Stall  Total  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Decode 1.000 0.613 1.613 
Specl  0.895 0.306 0.364 1.565 
Spec2-6 1.052 0.148 0.116 0.161 0.192 0.102 1.771 
B-Disp 0.221 0.005 0.226 

Simple 0.870 0.029 0.017 0.033 0.027 0.977 
Field 0.482 0.049 0.058 0.007 0.002 0.600 
Float  0.292 0.000 0.000 0.008 0.001 0.302 
Call/Ret 0.937 0.133 0.074 0.130 0.184 1.458 
System 0.434 0.015 0.031 0.014 0.028 0.522 
Charac ter  0.318 0.039 0.099 0.046 0.004 0.506 
Decimal 0.026 0.002 0.000 0.001 0.002 0.031 

Int /Except  0.055 0.002 0.005 0.004 0.006 0.071 
Mem Mngmt  0.555 0.061 0.200 0.004 0.003 0.824 
Abort  0.127 0.127 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . :  . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL 7.267 0.783 0.964 0.409 0.450 0.720 10.593 

ca tegor ies .  The  " C o m p u t e "  c a t ego ry  r e p r e s e n t s  
a u t o n o m o u s  E B O X  o p e r a t i o n s ,  t h a t  i s ,  
microins t ruct ions  tha t  do no memory  references.  The 
o the r  ca tegor ies  are  m e m o r y  r e f e r e n c e s  and  the  
v a r i o u s  t ypes  of s ta l l .  On t he  11/780 t he  s ix  
categories are mutua l ly  exclusive,  so t imes  in the  
individual  categories can be summed,  y i e ld ing  the  
TOTAL column of Table 8. 

Wi th  some minor  exceptionst  every  microcycle in 
11/780 execut ion  fa l l s  in to  e x a c t l y  one row and  
exact ly one column. The numbers  repor ted in Table  8 
are the numbers  of cycles spent  a t  each row/column 
i n t e r s e c t i o n ,  d i v i d e d  by  t h e  n u m b e r  o f  V A X  
i n s t r u c t i o n s  execu ted .  T h e y  a r e  t h e r e f o r e  t h e  
numbers  of cycles per average ins t ruct ion for each  
category. The row and column totals  allow analysis  
of a single dimension: for example,  in the ave rage  
instruct ion of 10.6 cycles, a (column) to ta l  of 0.96 
cycles were lost in read stall,  and a (row) total  of 0.30 
cycles were spent  in f loating-point  execution.  

Table  8 shows where 11/780 performance may  be 
improved,  and where i t  may  not  be improved. For  
example,  s av ing  the non-over lapped  Decode cycle 
could  save  one  cycle on each  n o n - P C - c h a n g i n g  
instruct ion.  (The la te r  VAX model 11/750 did this.) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

tTwo remarks on the operand-specifier portion of Table 8 
are necessary. First, the 11/780 has special hardware to 
optimize the execution of certain instructions with literal or 
register oporands. In these cases the first cycle of execution is 
combined with the last cycle of specifier processing. We report 
such cycles in the specifier rows of Table 8; they amounted to 
0.15 cycles per instruction for the SIMPLE group and 0.01 cycles 
per instruction for the FIELD group. The second remark 
concerns the treatment of first specifiers that are indexed. 
Microcode sharing forces use to report the calculation of the base 
address in the SPEC2-6 category. We extimate that this causes 
about 0.06 cycles per instruction belonging to SPEC1 to be 
reported in SPEC2-6. 

On the o ther  hand,  optimizing FIELD memory  writes 
wil l  h a v e  a payo f f  of  a t  mos t  0.007 cyc les  pe r  
i n s t r u c t i o n ,  or on ly  a b o u t  0.07 p e r c e n t  of t o t a l  
performance.  

A number  of o the r  observa t ions  can be made  
based on Table  8: 

o The average  VAX inst ruct ion in this  composite 
workload takes  a l i t t le more than  10 cycles. This  
m a k e s  t h e  n u m b e r s  i n  T a b l e  8 e a s i l y  
in tepre table  as percentages  of the total t ime per 
instruct ion.  

o The TOTAL column shows tha t  almost  ha l f  of all 
t h e  t i m e  w e n t  i n t o  d e c o d e  a n d  s p e c i f i e r  
processing, count ing the i r  stalls. 

o The opcode group with the greates t  contr ibut ion 
is  t h e  C A L L / R E T  g r o u p ,  d e s p i t e  i t s  low 
f requency (see Table  1). 

o The  execut ion phase of the SIMPLE instructions,  
which cons t i tu te  84 pe rcen t  of all i n s t ruc t ion  
executions (Table 1), accounts for only about  10 
percent  of the t ime in the composite workload. 

o Sys tem and Charac te r  instructions,  though rare  
(Table 1), also make  noticeable contr ibut ions to 
performance.  

o Most  IB s ta l ls  occur  on the  i n i t i a l  spec i f i e r  
decode, r a t h e r  t h a n  on s u b s e q u e n t  spec i f i e r  
decodes. Al though there  are more bytes in the 
ini t ial  decode then  the subsequent  decodes, we 
i n t e r p r e t  th is  to m e a n  t h a t  most  IB s ta l l  is 
incurred  on cache misses a t  the t a rge t  reference 
of a branch.  

o We note tha t  there  are fewer cycles of compute in 
B-DISP than  there  are branch  displacements  (see 
Table  3), because the branch displacement  need 
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TABLE 9 

Cycles  per  ins t ruct ion Within Each  Group  

Compute Read R-Stall Write W-Stall Total 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Simple 1.04 0.03 0.02 0.04 0.03 1.17 
Field 6.97 0.71 0.85 0.11 0.04 8.67 
Float 8.07 0.00 0.00 0.23 0.03 8.33 
Call/Ret 29.08 4.14 2.29 4.03 5.71 45.25 
System 20.59 0.71 1.47 0.67 1.30 24.74 
Character 73.51 8.97 22.83 10.76 0.97 117.04 
Decimal 84.37 5.64 1.59 3.94 5.24 100.77 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

not be computed when the instruction does not 
branch. 

A comparison of  the  Read and Read-S ta l l  
columns of Table 8 yields another set of observations: 

o Stalled cycles are half  the number of operation 
cycles in the CALL/RET group, but more than 
twice the number  of operat ion cycles in the 
Character group. This is presumably due to the 
good cache locality of the stack and the relatively 
poor locality of character strings. 

o Memory management has more than 3 times as 
many read-stalled cycles as reads. This largely 
reflects the tendency of references to Page Table 
Entries to miss in the cache. 

Comparing Write and Write-stall columns yields 
several more observations: 

o The CALL/RETgroup generates a large amount 
of write stalls. This is due to the write-through 
cache and the one-longword write butter, which 
force the CALL instruction to stall while pushing 
the caller's state onto the stack. 

o Character instructions have little write stall, 
because as mentioned earlier, the microcode was 
explictly written to avoid write stalls. 

Table 9 shows the number of cycles per average 
instruction within  each group, exclusive of specifier 
decode and processing, and not weighted by frequency 
ofoccurence. For example, the average instruction in 
the Decimal group did 84 cycles of Compute and took 
101 cycles overall. 

Table 9 i l lus t ra tes  a number  of in teres t ing 
properties: 

o The computation associated with the average 
simple instruction is quite simple: a little over 
one cycle is all that  it needs. 

o However, the range of cycle time requirements of 
average representatives of these groups covers 
two orders of magnitude. 

o With around 4 reads and writes per average 
CALL/RET or PUSHR/POPR instruction we 
conclude that about 8 registers are being pushed 
and popped. 

o The average character  instruction reads and 
writes 9 to 11 longwords, so the average size of a 
character string is 36-44 characters. 

6. CONCLUSION 

We have presented detailed instruction timing 
resul ts  for the VAX-11/780, eva lua ted  under  a 
timesharing workload. These results are, of course, 
dependent on the characteristics of that workload. 

The uPC histogram method has provided a great 
deal of useful data, showing precisely the impact o f  
architectural and implementation characteristics on 
average processor performance. The generation of a 
uPC histogram provides the analyst  with a database 
from which many performance characteristics can be 
determined. These analyses are particularly useful 
because they are all derived from the same workload. 
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