
YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes 1
28Feb06

Moore’s Law

James Goodman

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Dr. Gordon Moore

1965 2003

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Data: 1965

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Observation

"The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year.... Certainly over the short
term this rate can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit more uncertain,
although there is no reason to believe it will not remain nearly
constant for at least ten years. That means by 1975, the number of
components per integrated circuit for minimum cost will be 65 000.“

— Gordon E. Moore
“Cramming more components onto integrated circuits,”
Electronics, pp. 114-117, Apr. 1965.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Prediction

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Company

http://www.intel.com/research/silicon/mooreslaw.htm

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Motivation

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Formula

Minimum cost # of components/chip

N = 2 (year – 1959)

Extrapolating to 2006,

N = 2 (2006 – 1959) = 141 * 10 12

= 141 Trillion transistors

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Correction: 1975

There is no room left to squeeze anything out by being
clever. Going forward from here we have to depend on
the two size factors – bigger dice and finer dimensions.

— Gordon E. Moore
Electronic Devices Meeting, 1975.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Corrected Formula

Minimum cost # of components

N = 2 (year – 1959)/1.5 = 1.59 (year – 1959)

Extrapolating to 2006,

N = 1.59 (2006 – 1959) = 2.9 * 10 9

= 2.9 billion transistors

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

http://www.icknowledge.com/economics/dramcosts.html
IC Knowledge, 2001

Drop in DRAM Cost per Bit

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

http://www.icknowledge.com/economics/productscostscosts2.html
IC Knowledge, 2001

Other Measures of Cost Reduction

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

My estimate for 2006: ~620,000,000,000,000,000,000

i.e., 620 quintillion transistors!

Total Transistor Production

• Reduction in cost: 35%/year
• Increase in sales volume: 15%/year
• Increase in transistor production:

1.15/.65 = 77%/year

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N • Limited gain in performance derives

directly from semiconductor gains

• The rest comes from better architecture

Transistors ≠ Performance

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Performance Gains from Physics

Smaller transistors are closer together
– switch faster

– communicate faster

– require less energy

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

A Different Exponential Law

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ
W

at
ts

/c
m

2

i386
i486

Pentium ® processor

Pentium Pro ® processor

Pentium II ® processor
Pentium III ® processor

Hot plate

Nuclear Reactor Rocket
Nozzle

Sun’s
Surface

Fred Pollack, Intel Corp. 2000

Time

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Joy’s Law

“PERFORMANCE of a microprocessors doubles every three years.”

—William Joy, 1980

Also known as “Popular Moore's Law”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Joy’s Law

Relative Performance of Microprocessor

P = 2 (year – 1980)/3 = 1.26 (year – 1980)

Realistic rate has been closer to 40%/year:

P = 1.40 (2006 – 1980) = 6300X

Extrapolating to 2006 relative to 1980,

P = 1.26 (2006 – 1980) = 407X

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Best Uniprocessor Performance 1955-
1995

1

10

100

1000

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

“Big Iron” (14%)

Year

R
el

at
iv

e
P

er
fo

rm
an

ce

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Best Uniprocessor Performance 1955-
1995

1

10

100

1000

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

M
icr

op
ro

ce
sso

rs
(4

0%
)

??

“Big Iron” (14%)

Year

R
el

at
iv

e
P

er
fo

rm
an

ce

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Microprocessor Improvements

• Microprocessors are a good match for
Moore’s Law: single-chip processors

• Previous technology created a “bag of tricks”
to be exploited

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Architectural Advances 1950-1990

• Branch prediction: 1995 (1959)

• Out-of-order issue: 1993 (1963)

• Multi-threading: 1995 (1963)

• Cache memories: 1985 (1965)

• Superscalar Processing (mult instrs/cycle): ~1990 (1960s)

• Register renaming: ~1992 (1967)

• Deep pipelining: ~1993 (1976)

• Speculative execution: ~1995 (1983)

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

When Does It End?

“We’re half way down the learning curve [after 11 years]”

— Professor Carlo Sequin, UC-Berkeley, 1976.

“It can’t go on much longer. We’re pushing against some really
fundamental limits!”

— Dr. Joel Emer, DEC, 1996.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The End is Not in Sight

The Roadmap continues to call for reduction [until 2012]
in geometric dimensions in accordance with Moore’s Law,
but allows for short-term adjustments based on current
practices.

— Semiconductor Industry Association: The (US)
National Technology Roadmap for
Semiconductors, 1997.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The End is Not in Sight

International Technology Roadmap for Semiconductors, 2005 Edition (Executive Summary). Figure 10, p. 68.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Moore’s Motivation

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Source: http://www.comp-buyer.co.uk/buyer/processors/news/64478/
intel-abandons-clock-speed-chase-and-drops-4ghz-pentium.html

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Today’s Hot Technology

• Hyperthreading

• Multithreading

• Multicore

That is, Multiprocessing

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Do I belong in this course?

• You should have taken CS313, SE363, or equivalent
(Patterson/Hennessy book)
– Processor design (pipelining)

– Memory systems
❷ memory hierarchies

❷ virtual memory (TLBs)

• You should have learned about operating systems
– Virtual memory

– Critical sections

– Process model

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes 2
1Mar06

Multiprocessing & Multithreading

James Goodman

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessors, Multi-Cores, Multi-threading,
and Hyperthreading

Terminology

• Multiprocessors: multiple processors sharing a common memory
(SMP, tightly-coupled MP)

• Multi-cores: multiple processors sharing a common silicon die
and memory system (CMP)

• Multithreading: a single processor capable of maintaining the
state of multiple threads or processes while executing

• Hyperthreading: Intel’s term for a certain type of multithreading
(SMT)

• Chip Multithreading (CMT): a multi-core die with
multithreaded processors

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Lectures this week

• Wednesday: Multithreading/Hyperthreading

• Thursday: Multiprocessing

• Friday: MP Programming and Hardware
Support

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Lectures Next Week

• Tuesday: P-threads

• Wednesday: Interconnection Networks

• Thursday: Interconnection Networks

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Why Multi-threading

• Resources can be used more effectively
– Up to 30% more throughput from two threads

(Intel)

– About 5% additional die area for second thread

• Threads can actively share memory data very
efficiently

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory System

• Threads on same core share all memory
except registers

• Multi-cores often share L2 cache, not L1

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Variations of Multithreading
• Fine-grained multithreading switches between threads on each

instruction, causing the execution of multiple threads to be interleaved.
This interleaving is often done in a round-robin fashion, skipping any
threads that are stalled at that time.

• Coarse-grained multithreading switches threads only on costly stalls, such
as level-2 cache misses.

• Simultaneous multithreading (SMT) is a variation on multithreading that
uses the resources of a multiple-issue, dynamically scheduled processor to
exploit thread-level parallelism (TLP) at the same time it exploits
instruction-level parallelism (ILP)

Hennessey &Patterson, pp. 608-609.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Comparison of Multi-threading and
True Multiprocessing

• Multi-threading is limited to exploiting wasted
resources

• Multi-threading can have faster communication
through memory

• Multi-threading can share code in L1 cache (but
may also require more cache if code is not shared)

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Interesting Multithreading Trade-off
• Multiple threads implies greater tolerance for cache

misses

but…

• Multiple threads implies multiple contexts

• Multiple contexts implies larger memory
requirements

Multithreading makes sense if throughput is important!

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes 3
2Mar06

Multiprocessing Issues

James Goodman

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Cache blocks may be in one of four possible states

• Modified: copy in cache is different than copy in main memory, which
is stale

• Exclusive: copy in cache can be modified without external permission,
but is the same as main memory.

• Shared: copy in cache is valid for reading, but may not be modified
without eliminating other potential copies

• Invalid: data in cache is stale

CPU 1 CPU 2

Cache 1 Cache 2

Memory

Basic MESI Protocol

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multilevel Cache Coherence

Memory

L1 Cache

CPU 1

T1 T2

L1 Cache

CPU 2

T3 T4

L2 Cache
Core 1

L1 Cache

CPU 1

T5 T6

L1 Cache

CPU 2

T7 T8

L2 Cache
Core 2

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Summary of Snooping Caches

• Snooping cache coherence protocols are the
dominant multiprocessor technique used today

• Most microprocessors conform to snooping cache
protocols (e.g., Intel Pentium: up to 4 processors on
the bus)

• Snooping has been extended to much larger systems
by a series of creative methods, but scalability is
fundamentally limited by broadcast requirements

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Coherency in Multiple-Bus Systems

• Scalable protocols involve maintaining a directory auxiliary
information keeping track of which caches have copies of
which cache lines

• Directory-based scheme can use point-to-point connections,
which potentially have both higher speed and much higher
bandwidth than a bus

• Because of the additional delay (typically three hops for most
transactions), only very large systems benefit from directory-
based schemes.

• There have been several commercial products, but so far, no
directory-based scheme has been highly successful.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Terminology

• Snooping-based schemes have been extended beyond a single
bus (maintaining the notion of a single “logical” bus).
Broadcast-based schemes are called Symmetric MultiProcessing
(SMP)

• Directory-based schemes continue to be widely studied, and
there are many variations proposed and some products. Such
schemes are often referred to as Non-Uniform Memory Access
(NUMA) systems.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory Ordering

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Initial state: A = 0
B = 0

CPU 1 CPU 2

Is it acceptable?

Is this possible?

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Sequential Consistency

Definition: “...the result of any execution is the same
as if the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor appear in
this sequence in the order specified by its program.”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory Ordering Requirement (1)

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Is this permitted?
SC: No
Intel: No
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Alpha Memory Ordering
Requirements

• Reads and writes may appear out of order

• A memory barrier assures that all previous
operations have been made globally visible
before any subsequent operations are made
visible

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory Ordering Requirement (1)

Write A = 1
MemBar
Write B = 1

Read B = 1
MemBar
Read A = 0

Is this permitted?

SC: No
Intel: No
Alpha: No

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory Ordering Requirement (2)

Write A = 1
Read B = 0

Write B = 1
Read A = 0

Is this permitted?

SC: No
Intel: Yes
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Yet Another Memory Model

• Release Consistency
– Assumes that locks are used to protect shared data

– No reads may be performed before acquiring the lock

– All writes must be completed before releasing the lock

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Summary of Memory Ordering

• Identical code sequences may result in different
acceptable answers on multiprocessors with different
memory models

• Compilers must account for memory model
– Recognize potential data races

– Insert barriers if necessary to assure correctness

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The “Missing Update” Problem

• Assume there is a shared int x = 3;
• CPU1 executes a program fragment x = X - 1;
• CPU2 executes a program fragment x = X - 2;
• What is the final value of the shared variable x?

CPU1 CPU2

Memory

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $2,x

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Possible Answer: 1

lw $1, x
sub $1, $1, 1 lw $1, x
sw $1,x sub $1, $1, 2

sw $1,x

CPU 1 CPU 2

Result: x = 1

Is this acceptable?

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Possible Answer: 2

lw $1, x
lw $1, x sub $1, $1, 2
sub $1, $1, 1 sw $1,x
sw $1,x

CPU 1 CPU 2

Result: x = 2

Is this acceptable?

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Expectation of Atomicity & Isolation

• In the example, we expect that the code
x = x - 1

will be executed atomically and in isolation

Isolation: the appearance that a sequence of operations
occur at a single instant in time.

Atomicity: the requirement that the sequence of
operations either occurs in its entirety or not at all.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Parallel “Correctness”

• Our programs must execute “correctly” no matter how the two
sequences of instructions are interleaved

• But correctness must be defined. The example introduces a
data race

• If only a result of zero is acceptable, the code must explicitly
eliminate data races

• Data races can be eliminated by the use of locks (semaphores)
and critical sections

Observation: This problem has nothing to do
with cache consistency or coherence!

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Programming a Multiprocessor

• Multiprocessors may simply execute independent tasks that
require more computing power that is available on a single
processor.
– Particularly useful if one or more jobs is computationally intensive

– Often a maximum of two processors can handle all the jobs

• Major challenge: divide up a single job into pieces that can
be computed concurrently.

• Two general models of parallel computation
– The epoch model

– The work queue model

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The Epoch Model

• The program involves similar operations on large amounts of data
(large, regular data structures)

• The data is partitioned into non-overlapping parts and assigned to
various threads

• A fixed amount of computation is performed independently, then
coalesced through synchronization
– All nodes run the same code, over a different range of data

– This is an epoch

• This process is repeated
– A barrier assures that none of the threads proceed beyond the

synchronization point until all have arrived at it

• Within an epoch, usually no races are allowed, i.e., no variable can
be written by some node and read by another.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Synchronization Mechanism for Epochs
The barrier: wait for all nodes to arrive here before continuing:

Initially, Count = # of threads

barrier() {
Count -= 1;
while (Count > 0)
;

}
Note: decrementing Count on multiple nodes introduces a

race condition!

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The Work Queue Model

• The system is initialized by identifying a set of tasks to be
performed. These are placed on a queue with information
identifying the task and its parameters.

• Processors remove an assignment from the queue and perform
the task. In the process, they may identify new tasks to be
performed and place them on the queue.

• This process continues until all the tasks have been completed.

• The challenge is to divide tasks up fine enough so that all the
threads can be kept busy, but course enough so that the threads
don’t spend all their time dealing with the work queue

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes 3
2Mar06

Multiprocessor Programming
& Hardware Support

James Goodman

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Conventional Wisdom

• Writing a correct parallel program is not hard

• Writing a fast parallel program is not hard

• Writing a fast, correct parallel program is hard

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Why is Parallel Programming Hard?

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Airline Reservation Problem

• Want to travel AKL->LHR

• Fastest way:
– AKL/BNE on Air New Zealand 131

– BNE/HKG on Qantas 97

– HKG/LHR on British Airways 26

• How to book?

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Database ACID Properties
Atomicity refers to the ability of the DBMS to guarantee that either all of the

tasks of a transaction are performed or none of them are. The transfer of funds
can be completed or it can fail for a multitude of reasons, but atomicity
guarantees that one account won't be debited if the other is not credited as well.

Consistency refers to the database being in a legal state when the transaction begins and when it ends. This means that
a transaction can't break the rules, or integrity constraints, of the database. If an integrity constraint states that all
accounts must have a positive balance, then any transaction violating this rule will be aborted.

Isolation refers to the ability of the application to make operations in a transaction appear
isolated from all other operations. This means that no operation outside the transaction
can ever see the data in an intermediate state; a bank manager can see the transferred
funds on one account or the other, but never on both—even if she ran her query while
the transfer was still being processed. More formally, isolation means the transaction
history is serializable. For performance reasons, this ability is the most often relaxed
constraint.

Durability refers to the guarantee that once the user has been notified of success, the transaction will persist, and not
be undone. This means it will survive system failure, and that the database system has checked the integrity
constraints and won't need to abort the transaction. Typically, all transactions are written into a log that can be
played back to recreate the system to its state right before the failure. A transaction can only be deemed committed
after it is safely in the log.

http://en.wikipedia.org/wiki/ACID --1Mar06

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Serializability

Serializability ensures that a schedule for
executing concurrent transactions is
equivalent to one that executes the
transactions serially in some order.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Events in a Transaction

A Transaction is a set of changes to the state of
a database (and possible external effects, such
as I/O)
– Writes to the database are events that change its

state.

– Reads from the database are observations that
events have previously occurred.

Note similarity of serializability to Sequential
Consistency

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Overlapping of Transactions

• Two transactions can be executed concurrently as long
as the events occurring in one transaction are not
observed to have occurred before any of the events in
the other are observed.

• No event will be observed unless another transaction
accesses the same memory location, either for reading
or writing. This is is called a conflict.

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f
A

uc
kl

an
d

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Goal: Transactional Memory

atomic {
mumble;

} catch (AbortedException e) {
}

• Can software provide this model?
– Yes, but…

– It’s not easy (i.e., it’s slow)

• Can hardware assist in providing this model?
– Yes, but…

– Not if the transaction is too big

