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Dr. Gordon Moore

1965 2003
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Moore’s Data: 1965
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Moore’s Observation

"The complexity for minimum component costs has increased at a 
rate of roughly a factor of two per year....  Certainly over the short 
term this rate can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit more uncertain, 
although there is no reason to believe it will not remain nearly
constant for at least ten years.  That means by 1975, the number of 
components per integrated circuit for minimum cost will be 65 000.“

— Gordon E. Moore
“Cramming more components onto integrated circuits,”
Electronics, pp. 114-117, Apr. 1965.
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Moore’s Prediction
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Moore’s Company

http://www.intel.com/research/silicon/mooreslaw.htm
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Moore’s Motivation
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Moore’s Formula

Minimum cost # of components/chip

N = 2 (year – 1959)

Extrapolating to 2006,

N = 2 (2006 – 1959) = 141 * 10 12

= 141 Trillion transistors
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Moore’s Correction: 1975

There is no room left to squeeze anything out by being 
clever. Going forward from here we have to depend on 
the two size factors – bigger dice and finer dimensions.

— Gordon E. Moore
Electronic Devices Meeting, 1975.
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Moore’s Corrected Formula

Minimum cost # of components

N = 2 (year – 1959)/1.5 = 1.59 (year – 1959)

Extrapolating to 2006,

N = 1.59 (2006 – 1959) = 2.9 * 10 9

= 2.9 billion transistors
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http://www.icknowledge.com/economics/dramcosts.html
IC Knowledge, 2001

Drop in DRAM Cost per Bit
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http://www.icknowledge.com/economics/productscostscosts2.html
IC Knowledge, 2001

Other Measures of Cost Reduction
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My estimate for 2006: ~620,000,000,000,000,000,000

i.e., 620 quintillion transistors!

Total Transistor Production

• Reduction in cost: 35%/year
• Increase in sales volume: 15%/year
• Increase in transistor production:

1.15/.65 = 77%/year
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directly from semiconductor gains

• The rest comes from better architecture

Transistors ≠ Performance
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Performance Gains from Physics

Smaller transistors are closer together
– switch faster

– communicate faster

– require less energy
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A Different Exponential Law
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Fred Pollack, Intel Corp. 2000

Time
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Joy’s Law

“PERFORMANCE of a microprocessors doubles every three years.”

—William Joy, 1980

Also known as “Popular Moore's Law”
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Joy’s Law

Relative Performance of Microprocessor

P = 2 (year – 1980)/3 = 1.26 (year – 1980)

Realistic rate has been closer to 40%/year:

P = 1.40 (2006 – 1980) = 6300X

Extrapolating to 2006 relative to 1980,

P = 1.26 (2006 – 1980) = 407X
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Best Uniprocessor Performance 1955-
1995
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Microprocessor Improvements

• Microprocessors are a good match for 
Moore’s Law: single-chip processors

• Previous technology created a “bag of tricks” 
to be exploited
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Architectural Advances 1950-1990

• Branch prediction: 1995 (1959)

• Out-of-order issue: 1993 (1963)

• Multi-threading: 1995 (1963 )

• Cache memories: 1985 (1965)

• Superscalar Processing (mult instrs/cycle): ~1990 (1960s)

• Register renaming: ~1992 (1967)

• Deep pipelining: ~1993 (1976)

• Speculative execution: ~1995 (1983)
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When Does It End?

“We’re half way down the learning curve [after 11 years]”

— Professor Carlo Sequin, UC-Berkeley, 1976.

“It can’t go on much longer. We’re pushing against some really 
fundamental limits!”

— Dr. Joel Emer, DEC, 1996.
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The End is Not in Sight

The Roadmap continues to call for reduction [until 2012] 
in geometric dimensions in accordance with Moore’s Law, 
but allows for short-term adjustments based on current 
practices.

— Semiconductor Industry Association: The (US)
National Technology Roadmap for 
Semiconductors, 1997.
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The End is Not in Sight

International Technology Roadmap for Semiconductors, 2005 Edition (Executive Summary). Figure 10, p. 68.
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Moore’s Motivation
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Source: http://www.comp-buyer.co.uk/buyer/processors/news/64478/
intel-abandons-clock-speed-chase-and-drops-4ghz-pentium.html
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Today’s Hot Technology

• Hyperthreading

• Multithreading

• Multicore

That is, Multiprocessing
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Do I belong in this course?

• You should have taken CS313, SE363, or equivalent 
(Patterson/Hennessy book)
– Processor design (pipelining)

– Memory systems
❷ memory hierarchies

❷ virtual memory (TLBs)

• You should have learned about operating systems
– Virtual memory

– Critical sections

– Process model
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Multiprocessing & Multithreading

James Goodman

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Multiprocessors, Multi-Cores, Multi-threading, 
and Hyperthreading

Terminology

• Multiprocessors: multiple processors sharing a common memory 
(SMP, tightly-coupled MP)

• Multi-cores: multiple processors sharing a common silicon die 
and memory system (CMP)

• Multithreading: a single processor capable of maintaining the 
state of multiple threads or processes while executing

• Hyperthreading: Intel’s term for a certain type of multithreading 
(SMT)

• Chip Multithreading (CMT): a multi-core die with 
multithreaded processors
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Lectures this week

• Wednesday: Multithreading/Hyperthreading

• Thursday: Multiprocessing

• Friday: MP Programming and Hardware 
Support
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Lectures Next Week

• Tuesday: P-threads

• Wednesday: Interconnection Networks

• Thursday: Interconnection Networks
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Why Multi-threading

• Resources can be used more effectively
– Up to 30% more throughput from two threads 

(Intel)

– About 5% additional die area for second thread

• Threads can actively share memory data very 
efficiently
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Memory System

• Threads on same core share all memory 
except registers

• Multi-cores often share L2 cache, not L1
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Variations of Multithreading
• Fine-grained multithreading switches between threads on each 

instruction, causing the execution of multiple threads to be interleaved.  
This interleaving is often done in a round-robin fashion, skipping any 
threads that are stalled at that time.

• Coarse-grained multithreading switches threads only on costly stalls, such 
as level-2 cache misses.

• Simultaneous multithreading (SMT) is a variation on multithreading that 
uses the resources of a multiple-issue, dynamically scheduled processor to 
exploit thread-level parallelism (TLP) at the same time it exploits 
instruction-level parallelism (ILP)

Hennessey &Patterson, pp. 608-609.
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Comparison of Multi-threading and
True Multiprocessing

• Multi-threading is limited to exploiting wasted 
resources

• Multi-threading can have faster communication 
through memory

• Multi-threading can share code in L1 cache (but 
may also require more cache if code is not shared)
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Interesting Multithreading Trade-off
• Multiple threads implies greater tolerance for cache 

misses

but…

• Multiple threads implies multiple contexts

• Multiple contexts implies larger memory 
requirements

Multithreading makes sense if throughput is important!
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Multiprocessing Issues

James Goodman
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Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”
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Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”
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Cache blocks may be in one of four possible states

• Modified: copy in cache is different than copy in main memory, which 
is stale

• Exclusive: copy in cache can be modified without external permission, 
but is the same as main memory.

• Shared: copy in cache is valid for reading, but may not be modified 
without eliminating other potential copies

• Invalid: data in cache is stale

CPU 1 CPU 2

Cache 1 Cache 2

Memory

Basic MESI Protocol
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Multilevel Cache Coherence

Memory

L1 Cache

CPU 1

T1 T2

L1 Cache

CPU 2

T3 T4

L2 Cache
Core 1

L1 Cache

CPU 1

T5 T6

L1 Cache

CPU 2

T7 T8

L2 Cache
Core 2
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Summary of Snooping Caches

• Snooping cache coherence protocols are the 
dominant multiprocessor technique used today

• Most microprocessors conform to snooping cache 
protocols (e.g., Intel Pentium: up to 4 processors on 
the bus)

• Snooping has been extended to much larger systems 
by a series of creative methods, but scalability is 
fundamentally limited by broadcast requirements
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Coherency in Multiple-Bus Systems

• Scalable protocols involve maintaining a directory auxiliary 
information keeping track of which caches have copies of 
which cache lines

• Directory-based scheme can use point-to-point connections, 
which potentially have both higher speed and much higher 
bandwidth than a bus

• Because of the additional delay (typically three hops for most 
transactions), only very large systems benefit from directory-
based schemes.

• There have been several commercial products, but so far, no 
directory-based scheme has been highly successful.
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Terminology

• Snooping-based schemes have been extended beyond a single 
bus (maintaining the notion of a single “logical” bus).  
Broadcast-based schemes are called Symmetric MultiProcessing
(SMP)

• Directory-based schemes continue to be widely studied, and 
there are many variations proposed and some products.  Such 
schemes are often referred to as Non-Uniform Memory Access
(NUMA) systems.
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Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”
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Memory Ordering

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Initial state: A = 0
B = 0

CPU 1 CPU 2

Is it acceptable?

Is this possible?
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Sequential Consistency

Definition: “...the result of any execution is the same 
as if the operations of all the processors were 
executed in some sequential order, and the 
operations of each individual processor appear in 
this sequence in the order specified by its program.”

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

Memory Ordering Requirement (1)

Write A = 1
Write B = 1

Read B = 1
Read A = 0

Is this permitted?
SC: No
Intel: No
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2
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Alpha Memory Ordering 
Requirements

• Reads and writes may appear out of order

• A memory barrier assures that all previous 
operations have been made globally visible 
before any subsequent operations are made 
visible
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Memory Ordering Requirement (1)

Write A = 1
MemBar
Write B = 1

Read B = 1
MemBar
Read A = 0

Is this permitted?

SC: No
Intel: No
Alpha: No

Initial state: A = 0
B = 0

CPU 1 CPU 2
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Memory Ordering Requirement (2)

Write A = 1
Read B = 0

Write B = 1
Read A = 0

Is this permitted?

SC: No
Intel: Yes
Alpha: Yes

Initial state: A = 0
B = 0

CPU 1 CPU 2
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Yet Another Memory Model

• Release Consistency
– Assumes that locks are used to protect shared data

– No reads may be performed before acquiring the lock

– All writes must be completed before releasing the lock
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Summary of Memory Ordering

• Identical code sequences may result in different 
acceptable answers on multiprocessors with different 
memory models

• Compilers must account for memory model
– Recognize potential data races

– Insert barriers if necessary to assure correctness
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Multiprocessing Issues

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”
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The “Missing Update” Problem

• Assume there is a shared int x = 3;
• CPU1 executes a program fragment x = X - 1;
• CPU2 executes a program fragment x = X - 2;
• What is the final value of the shared variable x?

CPU1 CPU2

Memory

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $2,x
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Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0
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Possible Answer: 0

lw $1, x
sub $1, $1, 1
sw $1,x

lw $1, x
sub $1, $1, 2
sw $1,x

CPU 1 CPU 2

Result: x = 0
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Possible Answer: 1

lw $1, x
sub $1, $1, 1 lw $1, x
sw $1,x sub $1, $1, 2

sw $1,x

CPU 1 CPU 2

Result: x = 1

Is this acceptable?
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Possible Answer: 2

lw $1, x
lw $1, x sub $1, $1, 2
sub $1, $1, 1 sw $1,x
sw $1,x

CPU 1 CPU 2

Result: x = 2

Is this acceptable?
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Expectation of Atomicity & Isolation

• In the example, we expect that the code
x = x - 1

will be executed atomically and in isolation

Isolation: the appearance that a sequence of operations 
occur at a single instant in time.

Atomicity: the requirement that the sequence of 
operations either occurs in its entirety or not at all.
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Parallel “Correctness”

• Our programs must execute “correctly” no matter how the two 
sequences of instructions are interleaved

• But correctness must be defined.  The example introduces a 
data race

• If only a result of zero is acceptable, the code must explicitly
eliminate data races

• Data races can be eliminated by the use of locks (semaphores)
and critical sections

Observation: This problem has nothing to do 
with cache consistency or coherence!
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Programming a Multiprocessor

• Multiprocessors may simply execute independent tasks that 
require more computing power that is available on a single 
processor.
– Particularly useful if one or more jobs is computationally intensive

– Often a maximum of two processors can handle all the jobs

• Major challenge: divide up a single job into pieces that can 
be computed concurrently.

• Two general models of parallel computation
– The epoch model

– The work queue model

YEAR

20
06

T
he

 U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

| N
ew

 Z
ea

la
nd

P
R

E
S

E
N

TA
TI

O
N

The Epoch Model

• The program involves similar operations on large amounts of data
(large, regular data structures)

• The data is partitioned into non-overlapping parts and assigned to 
various threads

• A fixed amount of computation is performed independently, then 
coalesced through synchronization
– All nodes run the same code, over a different range of data

– This is an epoch

• This process is repeated
– A barrier assures that none of the threads proceed beyond the 

synchronization point until all have arrived at it

• Within an epoch, usually no races are allowed, i.e., no variable can 
be written by some node and read by another.
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Synchronization Mechanism for Epochs
The barrier: wait for all nodes to arrive here before continuing:

Initially, Count = # of threads

barrier() {
Count -= 1;
while (Count > 0)
;

}
Note: decrementing Count on multiple nodes introduces a 

race condition!
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The Work Queue Model

• The system is initialized by identifying a set of tasks to be 
performed.  These are placed on a queue with information 
identifying the task and its parameters.

• Processors remove an assignment from the queue and perform 
the task.  In the process, they may identify new tasks to be 
performed and place them on the queue.

• This process continues until all the tasks have been completed.

• The challenge is to divide tasks up fine enough so that all the 
threads can be kept busy, but course enough so that the threads 
don’t spend all their time dealing with the work queue
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Conventional Wisdom

• Writing a correct parallel program is not hard

• Writing a fast parallel program is not hard

• Writing a fast, correct parallel program is hard
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Why is Parallel Programming Hard?

• Cache Coherence

• Memory Consistency

• “Missing Update Problem”
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Airline Reservation Problem

• Want to travel AKL->LHR

• Fastest way:
– AKL/BNE on Air New Zealand 131

– BNE/HKG on Qantas 97

– HKG/LHR on British Airways 26

• How to book?
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Database ACID Properties
Atomicity refers to the ability of the DBMS to guarantee that either all of the 

tasks of a transaction are performed or none of them are. The transfer of funds 
can be completed or it can fail for a multitude of reasons, but atomicity 
guarantees that one account won't be debited if the other is not credited as well.

Consistency refers to the database being in a legal state when the transaction begins and when it ends. This means that 
a transaction can't break the rules, or integrity constraints, of the database. If an integrity constraint states that all 
accounts must have a positive balance, then any transaction violating this rule will be aborted.

Isolation refers to the ability of the application to make operations in a transaction appear 
isolated from all other operations. This means that no operation outside the transaction 
can ever see the data in an intermediate state; a bank manager can see the transferred 
funds on one account or the other, but never on both—even if she ran her query while 
the transfer was still being processed. More formally, isolation means the transaction 
history is serializable. For performance reasons, this ability is the most often relaxed 
constraint.

Durability refers to the guarantee that once the user has been notified of success, the transaction will persist, and not 
be undone. This means it will survive system failure, and that the database system has checked the integrity 
constraints and won't need to abort the transaction. Typically, all transactions are written into a log that can be 
played back to recreate the system to its state right before the failure. A transaction can only be deemed committed 
after it is safely in the log.

http://en.wikipedia.org/wiki/ACID --1Mar06
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Serializability

Serializability ensures that a schedule for 
executing concurrent transactions is 
equivalent to one that executes the 
transactions serially in some order. 
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Events in a Transaction

A Transaction is a set of changes to the state of 
a database (and possible external effects, such 
as I/O)
– Writes to the database are events that change its 

state.

– Reads from the database are observations that 
events have previously occurred.

Note similarity of serializability to Sequential 
Consistency
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Overlapping of Transactions

• Two transactions can be executed concurrently as long 
as the events occurring in one transaction are not 
observed to have occurred before any of the events in 
the other are observed.

• No event will be observed unless another transaction 
accesses the same memory location, either for reading 
or writing.  This is is called a conflict.
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Goal: Transactional Memory

atomic {
mumble;

} catch (AbortedException e) {
}

• Can software provide this model?
– Yes, but…

– It’s not easy (i.e., it’s slow)

• Can hardware assist in providing this model?
– Yes, but…

– Not if the transaction is too big


