
Computer Science

© Manoharan 1

Threads and Threads Programming Processes

Static

Dynamic

Code

Registers

St
ac

k

Memory

Process

Static

Dynamic

Code

Registers

St
ac

k

Memory

Process

Threads and Processes

Static

Dynamic

Code

Registers

St
ac

k

Memory

Process

Static

Dynamic

Code

Registers

St
ac

k

Registers

St
ac

k

Registers

St
ac

k

Process with threads

ThreadThreadThread

Memory

Threads
• A thread is a single, sequential flow of control

within a program. Within each thread, there is a
single point of execution.

• Threads execute concurrently.
• Most traditional programs consist of a single

thread.
• Threads execute within (and share) a single

address space.
• Synchronization elements ensure proper memory

access.

Computer Science

© Manoharan 2

Advantages of using Threads
• Improve performance

– Multiprocessors: threads may run on separate
processors concurrently.

– Uniprocessors: threads permit overlapping of slow
operations (such as I/O) with computation.

Advantages of using Threads
• Use the natural parallelism in applications.

– E.g., User interaction (slow) can be a thread.
• Multiple threads allow a server to handle clients'

requests in parallel instead of artificially
serializing them (e.g. Unix login process) or
creating one server process per client, at great
expense (e.g. httpd).

Shared Resources
• Address space, shared storage
• The process ID, parent process ID, process group ID
• User ids: real and effective.
• Group ids: real and effective.
• Supplementary group ids
• Current working directory, root directory
• File-mode creation mask
• File descriptor table
• Signal handlers
• Timers

Private Resources
• A unique thread identifier
• Resources required to support a flow of control

(such as a stack)
• C/Unix errno

• Thread-specific key/value bindings
• Per-thread cancellation handlers
• Per-thread signal masks

Computer Science

© Manoharan 3

Thread Operations
• Creation
• Execution
• Termination
• Cancellation
• Deletion
• Wait for termination
• Synchronization

Mutex
• A mutex is used by multiple threads to ensure

the integrity of a shared object that they access by
allowing only one thread to access it at a time.

• A mutex has two states, locked and unlocked.
• Each thread locks a mutex before it accesses the

shared object and unlocks the mutex when it is
finished accessing that object.

• If the mutex is locked by another thread, the
thread requesting the lock waits for the mutex to
be unlocked.

Mutex
• For each shared object, all threads accessing that

data must use the same mutex.
• Each mutex must be initialized before use.

Condition Variables
• A condition variable allows a thread to block its

own execution until a condition is met (some
shared data reaches a particular state).

• A condition variable is a synchronization object
used in conjunction with a mutex.

Computer Science

© Manoharan 4

Condition Variables
• A mutex controls access to shared data; a

condition variable allows threads to wait for that
data to enter a defined state.

• The state is defined by a Boolean expression
called a predicate.

• A predicate may be a Boolean variable in the
shared data or the predicate may be indirect. E.g.,
testing whether a counter has reached a certain
value; testing whether a queue is empty.

Condition Variables
• Each predicate should have its own unique

condition variable.
• Sharing a single condition variable between more

than one predicate can introduce inefficiency or
errors unless you use extreme care.

POSIX Threads
• Thread library standardized by POSIX
• Portable across different processor architectures
• Applies to both multiprocessor and single

processor systems
• Set of library routines to support thread

operations and a set of defined types to support
objects relating to threads.

Thread creation
• Thread is created using pthread_create.
• This routine

– creates the thread object based on the specified or
default attributes, and

– starts execution of a specified function.

void * hello(void *) { cout << "hello "; return 0; }

…

pthread_t th;

pthread_attr_t *tattr = 0;

pthread_create(&th, tattr, hello, 0);

Computer Science

© Manoharan 5

Threads Example #1
void * hello(void *) { cout << "hello "; return 0; }

void * world(void *arg) {

pthread_t *th = (pthread_t *)(arg);

pthread_join(*th, 0); cout << "world";

return 0;

}

void main() {

pthread_t th, tw;

pthread_attr_t *tattr = 0;

pthread_create(&th, tattr, hello, 0);

pthread_create(&tw, tattr, world, &th);

pthread_join(tw, 0); cout << endl;

pthread_exit(0);

}

Main thread creates
two threads ‘hello’
and `world'. The
`hello’ thread prints
"hello " and exits.
The `world’ thread
waits for the `hello’
thread to finish,
prints "world", and
then exits. The
main thread, after
creating these two
threads, waits for
the `world’ thread
to finish, prints
end-of-line, and
terminates.

Threads Example #2
pthread_mutex_t m;

pthread_cond_t cv;

bool helloDone = false;

void * hello(void *) {

cout << "hello ";

pthread_mutex_lock(&m);

helloDone = true;

pthread_cond_signal(&cv);

pthread_mutex_unlock(&m);

return 0;

}

Similar to the
previous example,
but here a condition
varaible and mutex
is uesd to serialize
the `hello’ and
`world’ threads.

The communication
between `hello’ &
`world’ threads is
via a shared variable
helloDone.

Threads Example #2
void * world(void *) {

pthread_mutex_lock(&m);

while (!helloDone) pthread_cond_wait(&cv, &m);

pthread_mutex_unlock(&m);

cout << "world";

return 0;

}

void main() {

pthread_t th, tw; pthread_attr_t *tattr = 0;

pthread_mutex_init(&m, 0);

pthread_cond_init(&cv, 0);

pthread_create(&tw, tattr, world, 0);

pthread_create(&th, tattr, hello, 0);

pthread_join(tw, 0); cout << endl; pthread_exit(0);

}

The `hello’ thread
sets helloDone
when it finishes and
sends a signal to the
`world’ thread. The
`world’ thread waits
for this signal and
when it receives it
asserts helloDone is
set and prints
"world". The main
thread, as before,
waits for the `world’
thread to finish,
prints end-of-line,
and terminates.

Waiting for Thread Termination
• A thread waits for the termination of another

thread by calling the pthread_join routine.
• Execution in the current thread is suspended

until the specified thread terminates.
• Behavior is undefined if multiple threads call

pthread_join and specify the same thread.
This is because completion of the first join will
detach the target thread.

• Specifying the current thread with the
pthread_join routine, results in a deadlock.

Computer Science

© Manoharan 6

Mutexes
• Define mutexes as global variables since

they are generally required to be visible to
all the threads that contend.

• Initialize the mutex by calling
pthread_mutex_init. You can also use the
static initializer PTHREAD_MUTEX_INITIALIZER.

Mutexes
• Initialize a mutex only once.
• After deciding that a mutex is no longer

used or needed, use
pthread_mutex_destroy to release the
resources associated with it.

• Note that the second argument to
pthread_mutex_init specifies the
attributes of the mutex; a 0 value indicates
the default mutex attribute.

Condition Variables
• Use pthread_cond_init routine to initialize a

condition variable. You can also use the static
initializer PTHREAD_COND_INITIALIZER.

• Use the pthread_cond_wait routine to cause a
thread to wait until the condition is signaled or
broadcasted.

• Use pthread_cond_signal to wake one thread
that is waiting on the condition variable.

• Use pthread_cond_broadcast to wake all
threads that are waiting on a condition variable.

Condition Variables
• Define condition variables as global variables

since they are usually required to be visible to all
the threads that use them.

• Associate a boolean with a condition variable.
• Initialize the condition variable by calling

pthread_cond_init before use.
• Initialize a condition variable only once.
• Destroy a condition variable and reclaim its

storage by calling the pthread_cond_destroy.

Computer Science

© Manoharan 7

Condition Variables

pthread_mutex_t m;

pthread_cond_t cv;

bool condition_met = false;

//

pthread_mutex_lock(&m);

while (! condition_met) {

pthread_cond_wait(&cv, &m);

}

pthread_mutex_unlock(&m);

Java Threads
• Every object inherited from the class Thread is a

thread.
• Every object that implements the interface

Runnable is runnable under a thread.
• The method run contains the code that should be

run by the thread.
• There are methods to manipulate the threads.

Monitors
• Monitors provide mutual exclusion. Every object

that has a synchronized method is a monitor.
• Only one thread can be executing any of the

synchronized methods of a monitor.

Monitors
• When a thread executing a synchronized

method cannot proceed due to some condition, it
may voluntarily wait for the condition to be
satisfied.

• Another thread that executes code that will
change this condition may notify the original
thread that the condition has been changed.

Computer Science

© Manoharan 8

Monitors
• wait makes the thread wait until notified by

another thread of a change in this object. The
current thread must own this object's monitor.
The thread releases ownership of this monitor
and waits until another thread notifies threads
waiting on this object's monitor to wake up either
through a call to the notify method or the
notifyAll method. The thread then waits until it
can re-obtain ownership of the monitor and
resumes execution.

Monitors
• notify wakes up a single thread that is

waiting on this object's monitor.
• notifyAll wakes up all threads that are

waiting on this object's monitor.

C# Threads
• Similar to Java in many respects

– Thread creation similar to POSIX threads
• A ThreadStart delegate points to the code that

should be run by the thread

public void DoSomething() { ... }

ThreadStart ts = new ThreadStart(DoSomething);
Thread t = new Thread(ts);
t.Start();

Thread t2 = new Thread(new ThreadStart(DoSomething));
t2.Start();

C# Threads
• Monitor.Enter for entry to critical section, and

Monitor.Exit to exit out of the critical section.
• Monitor.Wait releases the lock on an object and

blocks the current thread until it reacquires the
lock. Same as the Java wait.

• Monitor.Pulse notifies a thread in the waiting
queue of a change in the locked object's state.

• Monitor.PulseAll notifies all waiting threads of a
change in the object's state.

Computer Science

© Manoharan 9

Example: Readers/Writers

In general, the number of reads to shared data exceeds the number
of writes. Reading shared data concurrently can be permitted, but
writing concurrently cannot be. Reading and writing concurrently
cannot be permitted either.

Using a simple mutex to protect shared data restricts concurrent
read accesses as well. Design and implement (using pseudo-code) a
ReadWriteLock object that allows concurrent read accesses, but
disallows concurrent write or read/write accesses. You may use
simple mutexes and/or condition variables in your code.

Hint. This object may have public methods readLock, readUnlock,
writeLock, and writeUnlock to permit locking and locking under read
and write accesses.

Example: Readers/Writers
class ReadWriteLock {

private:

int noOfReaders;

mutex m;

condition_variable cv;

public:

ReadWriteLock();

void readLock();

void readUnlock();

void writeLock();

void writeUnlock();

};

Constructor: initializes noOfReaders to
0, and initializes the mutex m, and
condition variable cv.

Example: Readers/Writers
void ReadWriteLock::readLock()
{

m.lock();
++noOfReaders;
m.unlock();

}

void ReadWriteLock::readUnlock()
{

m.lock();
--noOfReaders;
if (noOfReaders == 0) cv.signal(); // wake up a writer
m.unlock();

}

Example: Readers/Writers
void ReadWriteLock::writeLock()

{

m.lock();

while (noOfReaders > 0) cv.wait(m);

}

void ReadWriteLock::writeUnlock()

{

cv.signal(); // wake up a writer

m.unlock();

}

Computer Science

© Manoharan 10

Example: Monitors
• A monitor provides high-level synchronization

for multiple threads.
– It has mechanisms for Lock, Unlock, Wait, SignalOne,

and SignalAll.
– In OO terms, a monitor is an object that implicitly has

a mutex and a condition variable (cv). The mutex & cv
are automatically added by the compiler.

Example: Monitors
• Typically, Lock and Unlock are implicit. A

monitor may provide a way to specify critical
sections. For example "lock { ... }" or "synchronized
{ ... }". These translate to "{ mutex.lock(); ...;
mutex.unlock(); }" where the mutex operations
are implicitly added by the compiler.

• The Wait and Signal operations can only be used
from within critical sections. Wait releases the
mutex on entry and re-acquires it prior to exit.

Example: Monitors

abstract class Monitor {
private:

mutex m;
condition_variable cv;

public:
void Lock() { m.lock(); }
void Unlock() { m.unlock(); }
void Wait() { cv.wait(m); }
void SignalOne() { cv.signal(); }
void SignalAll() { cv.broadcast(); }

}

Example: Monitors
• A monitor class may derive from Monitor and use

the Monitor operations.
• A monitor class could simply have a Monitor

instance in the class and use the Monitor
operations through this instance.
– Having more than one Monitor instance may lead to

incorrect usage, so derivation is a better approach
than using an instance.

Computer Science

© Manoharan 11

Thread Safety
• A function is thread-safe if simultaneous execution of

the function by multiple threads produces logically
correct results.

• Such a function is also known as a re-entrant function.
• Functions that rely on global states are generally not

thread-safe.
• Thread safety is the avoidance of data races - situations

in which data are set to either correct or incorrect values
depending on the order in which multiple threads
access and modify the data.

Unsafe functions

fputs(const char *s, FILE *stream)

{

char *p;

for (p = s; *p; ++p)

putc((int)*p, stream);

}

An unsafe function has data races. It does not
produce logically correct results.

Thread-Safe Functions
• A thread-safe function would produce

logically correct results even if it is executed
simultaneously by several threads.

• An unsafe function can be made thread-safe
by enclosing it within a lock/unlock.

• A thread-safe function simply serializes
simultaneous accesses.

Thread-Safe functions: An Example

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

fputs(const char *s, FILE *stream)

{

char *p;

pthread_mutex_lock(&m);

for (p = s; *p; ++p)

putc((int)*p, stream);

pthread_mutex_unlock(&m);

}

Computer Science

© Manoharan 12

MT-Safe Functions
• An MT-safe function is not only thread-safe but

also uses the threads that access the function
simultaneously to exploit the parallelism within
the function.

• That is, several threads may be accessing the
function simultaneously, operating on distinct
data.

• In contrast, a thread-safe function simply
serializes simultaneous accesses.

MT-Safe Functions: An Example
• When two threads are calling it to print to

different files, one need not wait for the other;
both can safely print at the same time.

• An MT-safe version of fputs may use one lock
for each file, allowing two threads to print to
different files at the same time.

MT-Safe functions : An Example

pthread_mutex_t m[FOPEN_MAX];

fputs(const char *s, FILE *stream)

{

char *p;

pthread_mutex_lock(&m[fileno(stream)]);

for (p = s; *p; ++p)

putc((int)*p, stream);

pthread_mutex_unlock(&m[fileno(stream)]);

}

Exercises
• Implement a Java monitor that solves the

Readers/Writers problem.
• Develop a solution for a one lane bridge problem

using mutexes and condition variables.

