
YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N
Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
13Apr06
Review

James Goodman

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Test Information

• Time: Tuesday, May 2: 6-7.30

• Place: CS 279 (here)

• Open-book, notes

• Coverage: lecture material through Tuesday, 11Apr

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Readings
• P. Sweazey and A.J. Smith, “A class of compatible cache consistency 

protocols and their support by the IEEE Futurebus,” Proc. Thirteenth 
International Symposium on Computer Architecture (ISCA-13), Tokyo, 
Japan, pp. 414-423, June 1986. 

• M. Herlihy and J.E.B. Moss, “Transactional Memory: Architectural 
Support for Lock-Free Data Structures,” Proc. International 
Symposium on Computer Architecture (ISCA-93), ACM Press, 1993, 
pp. 289-300. 

• R. Rajwar & J.R. Goodman, “Speculative Lock Elision: enabling highly 
concurrent multithreaded execution,” 34th Annual International 
Symposium on Microarchitecture (MICRO-34), December 2001, pp. 
294-305. 

• Hennessy & Patterson, “Distributed shared-memory architectures,” Section 6.5 
from Computer Architecture: A Quantitative Approach (3rd Ed.), 2003.

• W.-H. Wang, J.-L Baer, & H.M. Levy, “Organization and performance of a two-
level virtual-real cache hierarchy,” ISCA-16, pp. 140-148, June 1989.

• Mark Hill, “Processors should support simple memory-consistency models,” IEEE 
Computer, 31(8), pp. 28-34, August 1998. 

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

First-week topics

• Overview, Moore’s Law

• Multiprocessing, Multithreading, & Multicores

• Multiprocessing Issues
– Lost updates

– Memory ordering

– Cache coherence



YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Threads and Thread programming

From assignment, you should have experience with 
threads

• Creation

• Use of Mutex

• Condition variables

• Thread-safe, MT-safe functions

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Interconnection networks
& topologies

• Crossbar vs. buses

• Direct vs. indirect networks

• Trees, fat trees, mesh, torus, ring, hypercube

• Perfect shuffle, Omega

• Topological measures (diameter, degree, bisection 
bandwidth)

• Avoiding deadlock in routing, virtual circuits

• Store-and-Forward routing

• Wormhold & Cut-through routing

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Simulation

• General Simulation techniques
– time-based, event-based and process-based simulation

– validation of results

• Architecture-specific simulation
– instruction emulation

– trace collection, reduction, processing

• Simulation tools

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Scalable Memory Systems

Interaction of

• Virtually-addressed cache

• Multi-level cache

• Cache coherence

• Non-blocking cache



YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Scalable Memory Systems (2)
• Directory-based protocols vs. snooping

– Snooping has serious limitations of scale

– Directory-based is always slower, but scalable

– Basic protocol is simpler (3 states), but requires 
more serial events

• Maintaining a sharing list in the directory

• Distributed writes are slow

• Dealing with races

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Cache Coherence-MOESI Model

• Attributes
– ownership

– exclusiveness

– validity

• Five states
– Allowed state changes

– Permitted combination of states

• Example of lock contention

YEAR

20
06

Th
e 

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d 
| N

ew
 Z

ea
la

nd
PR

ES
EN

T
A

T
IO

N

Better programming Models
• Critical sections

• Atomic RMW operations
– T&S, T&T&S, Atomic Swap

– Compare & Swap

– LL/SC

• Notion of transactional memory
– Atomic insertion of a transaction (linearizability)

– Hardware support (SLE)

– Implementing Transactional Memory
Hardware
Software


