
Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
4Apr06

Atomic RMW Memory Operations

James Goodman

31-Mar-06 CS210CS703 2

Assignments

Tuesday (today):

M. Herlihy and J.E.B. Moss, “Transactional memory: 
architectural support for lock-free data structures,” ISCA-20, pp.
289–300, May 1993.

Wednesday (tomorrow):
R. Rajwar and J. Goodman, "Speculative lock elision: enabling 
highly concurrent multithreaded execution,” Intl. Symp. on 
Microarchitecture, pp. 294-305, Dec 2001.

Friday 14Apr (no class):
Assignment 1 due at 9am.

31-Mar-06 CS210CS703 3

Atomic Read-Modify-Write 
Memory Operations

• A third type of memory operation

• Necessary for reasonable implementation of locks and 
other synchronization mechanisms

• Many variations, not all equivalent

• Must provide mechanism for
–atomic reading and writing

–failure detection

31-Mar-06 CS210CS703 4

A Survey of Primitives

• Atomic Swap

• Test & Set
–Test & Test & Set

• Fetch&Add (Increment)
–Combining property

–This never fails!

• Compare & Swap
–Scalable!

• Load_Linked/Store_Conditional

• The Oklahoma Update/Transactional Memory



31-Mar-06 CS210CS703 5

Atomic Swap

Operation: atomically exchange a register value and a 
memory value

• Might be as little as a single bit

• Test for failure: register indicates bit was already set

Useful for: Acquiring a lock

Reference: ???

31-Mar-06 CS210CS703 6

Test & Set

Operation: Set memory value (single bit) to 1; report 
previous value of memory location

• Test for failure: memory bit was already 1

• Variant of Atomic Swap

• Also: Test & Clear

Useful for: Acquiring a lock

Reference: IBM System/360 (1959)

31-Mar-06 CS210CS703 7

Test & Test & Set

Operation: Two-stage test: don’t attempt to set bit until 
it is clear

• Software implementation: Test + Test&Set

• Test for failure: after second test, same as Test & Set

• No guaratee after first test, but avoids spinning on 
bus

Useful for: Acquiring a lock, reduced contention

Reference: L. Rudolph and Z. Segall, “Dynamic decentralized cache 
schemes for MIMD parallel processors.” In ISCA-11, pages 340-347, 
June 1984. 

31-Mar-06 CS210CS703 8

Fetch&Add
Operation: Atomically add a value to a memory location; set 

register value to old memory value
• Test for failure: Must be interpreted

• Generalization: Fetch&Φ where Φ is any function that is associative and 
commutative

• Interesting scalability feature (without cache): combining

Useful for: Simple atomic operations (acquiring a lock, 
semaphore, assigning unique number)

Reference:
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, 
“The NYU Ultracomputer — Designing an MIMD Shared Memory Parallel 
Computer,” IEEE Transactions on Computers, 32(2), February 1983, pp.175-189.



31-Mar-06 CS210CS703 9

Compare & Swap

Operation:
• Test if memory location is same as previous value (stored in R1)

• if unchanged, atomically swap memory location and R2

• return success or failure

Powerful primitive: values swapped may be pointers

Reference: IBM System/370 (1970)

30-May-06 CS210CS703 10

MCS Locks

Operation: build software queue using Compare&Swap 
that allows local spinning and notification when 
previous lock holder has released lock

Widely used in software today; significant overhead to 
set up

References:
(1) J.M. Mellor-Crummey & M.L. Scott, “Synchronization without 

contention,” ASPLOS-4, pp. 269-278, Apr. 1991 .

(2) T. E. Anderson, “The performance of spin lock alternatives for shared-
memory multiprocessors,” IEEE Transactions on Parallel and 
Distributed Systems, 1(1), p.6-16, January 1990.

30-May-06 CS210CS703 11

Load_Linked/Store_Cond
Operations:

• Load_Linked: Load memory location into R and monitor memory 
location

• Execute computation

• Store_Conditional: If memory location is known to be undisturbed, 
write R to memory location

• Return success or failure

Powerful primitive in theory: execute critical section 
atomically

Reference: E.H. Jensen, G.W. Hagensen, and J.M. Broughton, “A new
approach to exclusive data access in shared memory multiprocessors,”
Technical Report UCRL-97663, Lawrence Livermore National Laboratory, 
Livermore, CA, November 1987.

30-May-06 CS210CS703 12

The Oklahoma Update/ 
Transactional Memory

Operation: Generalization of LL/SC: multiple memory 
locations monitored and modified atomically

Powerful primitive in theory: How to implement?

References:
(1) M. Herlihy and J.E.B. Moss, “Transactional memory: architectural

support for lock-free data structures,” ISCA-20, pp. 289–300, May 1993.

(2) J.M. Stone, H.S. Stone, P. Heidelberger, and J. Turek, “Multiple
reservations and the Oklahoma update,” IEEE Parallel & Distributed 
Technology, 1(4):58–71, November 1993.



Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
5Apr06

Transactional Memory

James Goodman

30-May-06 CS210CS703 14

What’s Wrong with Locks?
• Priority inversion occurs when a lower-priority process

is preempted while holding a lock needed by higher-
priority processes.

• Convoying occurs when a process holding a lock is 
rescheduled, perhaps by exhausting its scheduling 
quantum, by a page fault, or by some other kindl of 
interrupt. When such an interruption occurs, other 
processes capable of running maybe unable to progress.

• Deadlock can occur if processes attempt to lock the
same set of objects in different orders, Deadlock
avoidance can be awkward if processes must lock 
multiple data objects, particularly if the set of objects is
not known in advance.

30-May-06 CS210CS703 15

Transactional Memory

Basic insight behind Transactional Memory:

• Can generalize LL/SC to handle multiple reads and 
writes

• Invalidation-based cache coherence protocols can be 
used to detect transaction conflicts.

• By using the existing cache coherence protocol, 
atomic transactions can be supported cheaply.

Reference: M. Herlihy and J.E.B. Moss, “Transactional memory: 
architectural support for lock-free data structures,” ISCA-20, 
pp. 289–300, May 1993.

30-May-06 CS210CS703 16

Lock-Free & Wait-Free Algorithms

In contrast to algorithms that protect access to shared data with 
locks, lock-free and wait-free algorithms are specially designed 
to allow multiple threads to read and write shared data 
concurrently without corrupting it.

Lock-free refers to the fact that a thread cannot lock up: every 
step it takes brings progress to the system. This means that no 
synchronization primitives such as mutexes or semaphores can 
be involved, as a lock-holding thread can prevent global 
progress if it is switched out.

Wait-free refers to the fact that a thread can complete any 
operation in a finite number of steps, regardless of the actions of 
other threads. It is possible for an algorithm to be lock-free but 
not wait-free. 

Source: Wikipedia
(http://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms)



30-May-06 CS210CS703 17

Nonblocking, Lock-free, Wait-Free

• Nonblocking algorithms guarantee that if there are 
one or more active processes trying to perform 
operations on a shared data structure, some operation 
will complete within a finite number of time steps.

• A wait-free algorithm is both non-blocking and 
starvation free: it guarantees that every active process 
will make progress within a bounded number of time 
steps.

• A lock-free algorithm may not be non-blocking, i.e., it 
does not use locking mechanisms, but allows a slow 
process to delay faster processes indefinitely.

Reference: M.M. Michael and M.L. Scott, “Simple, fast, and practical non-blocking and 
blocking concurrent queue algorithms,”15th ACM Symp. on Principles of Distributed 
Computing, May 1996.

30-May-06 CS210CS703 18

The Critical Section

CriticalSection() {
acquire(lock);
read(data1);
read(data2);
…
write(data1);
…
release(lock);

}

acquire(lock) {
while (swap(lock,HELD) != FREE)

;
MemBar();

}

release(lock) {
MemBar();
lock = FREE;

}

30-May-06 CS210CS703 19

Transactions

atomic {
mumble;

} catch (AbortedException e) {
}

Programmer defines transaction 
scope

© 2002 Maurice Herlihy
30-May-06 CS210CS703 20

Problems with Transactional Memory

• Requires six new instructions for programmers to 
use

• Uses an extra cache called the transactional cache to 
buffer optimistic updates

• Supports arbitrary read-modify-write operations, 
size of the operations limited only by the processor’s 
transactional cache.

• Requires programmers to reason about correctness 
of lock-free algorithms.



30-May-06 CS210CS703 21

Speculative Lock Elision

(Class presentation, no notes)

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
6Apr06

HW & SW Transactional Memory

James Goodman

30-May-06 CS210CS703 23

SLE: the Ultimate Solution?

Good start, but not the end

1. What to do about conflicts?
• Transactional Lock Removal (TLR)

• Use SLE, but resolve conflicts in hardware, queueing requests 
for data

• Must deal with deadlock problem: two cache lines requested 
in different order

2. What about long-running transactions?
• Speculation requires duplicating state

• Cache will eventually overflow

• How to handle transactions that don’t fit in the cache?

30-May-06 CS210CS703 24

Transactional Linux

• Almost all of the transactions require < 100 cache lines
– 99.9% need fewer than 54 cache lines

• There are, however, some very large transactions!
– >500k-byte fully-associative cache required

9.355x10^6

10^6

10^4

10^2

 1
 8144 1000 100 10 1

Nu
m

be
r o

f o
ve

rfl
ow

in
g 

tra
ns

ac
tio

ns

Fully associative cache size (64 byte lines)

make
dbench

 
 

Log-log scale

Source: Unbounded Transactional Memory, MIT



30-May-06 CS210CS703 25

Virtual Transactional Memory (VTM)

• Assumes high-speed scheme for common case (SLE)

• Only an overflow mechanism
– No overhead on common in-cache case

• Check shared overflow counter on cache miss

– Low overhead when no conflict
• Shared Bloom Filter rules out conflicts

• Filter resides in virtual memory

– Higher overhead on possible conflict
• Hardware table walk to detect actual conflict

• Table resides in virtual memory

• Only incurred by large transactions with likely conflict

• Supports context switches and paging

R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing
Transactional Memory,” ISCA-32, Jun. 2005.

30-May-06 CS210CS703 26

VTM Structures

• XSW--Transaction Status Word register
– Running

– Aborted

– Committing (updates not yet visible

• XADT: Transaction Address Data Table
– Common to all transactions sharing the address space

– Table of overflowed cache lines

30-May-06 CS210CS703 27

Making Common Case Fast

• On cache miss

• Check overflow flag

• If overflow, check XADT
– Special access to XADT: Bloom filter

• High-speed check with possible false positives

– If positive, walk XADT table to find element

• On commit, if overflow, make XADT entries visible

• While committing, conflict detected in overflowed 
cannot return old value.  
– Other accesses to XADT may be delayed during this (rare) 

phase

30-May-06 CS210CS703 28

LogTM:
Log-based Transactional Memory

Kevin E. Moore, Jayaram Bobba, Michelle J. 
Moravan, Mark D. Hill & David A. Wood

Multifacet Project (www.cs.wisc.edu/multifacet)

Directed by Mark D. Hill & David A. Wood

Computer Sciences Department

University of Wisconsin—Madison

Appeared in HPCA 2006



30-May-06 CS210CS703 29

LogTM Summary

• Chip multiprocessors make threaded programming important
• But locks challenging (to get simplicity & performance)

• Transactional Memory (TM) promising

• begin_transaction { atomic execution } end_transaction

• Existing (Hardware) TMs
– Mostly keep Old values “in place” & New values “elsewhere”

– Commits slower than aborts, but commits more common

• New LogTM: Log-based Transactional Memory
– Old values to log in thread-private virtual memory (like DBMSs)

– New values “in place” to make common commits fast

– Also allows cache overflow & software abort handling

• See http://www.cs.wisc.edu/multifacet/

30-May-06 CS210CS703 30

Software Transactional Memory

• Transactions can be handled entirely in software

• So far, implementations are very slow
– Hardware is fundamentally parallel

– Software is fundamentally serial, not easy to parallelize

Dynamic Software Transactional Memory (DSTM)
M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III, “Software 

Transactional Memory for Dynamic-Sized Data Structures,”
Twenty-Second ACM Symp. on Principles of Distributed 
Computing (PODC), Boston, Massachusetts, Jul. 2003.

30-May-06 CS210CS703 31

State of the Art

• Hardware is fast, but has hard resource limits

• Software has vastly greater hardware limits, but is 
slow

Hybrid?


