

Simulation Modelling

- Constructing a dynamic model of a given system is called simulation modelling.
- The function of the model, called a *simulator*, is to mimic the behaviour of the system within the limitations of the system description.
 - Give some examples of simulations we see around us

A Bank Simulation

The current *state* of the *system*: A teller lady with access to lots of money; a man who wants to convince the teller that he should get some money from his mate's account; a lady patiently waiting in the queue; and a girl who's walking in to join the queue.

A Bank Simulation

- How much time does a customer spend in the bank on average?
- What percentage of customers wait for service?
- What is the average waiting time per customer?
- What is the average waiting time of those customers that wait?

A Bank Simulation

- What is percentage of time the teller idles?
- What performance difference would we see if we have two tellers?

A Bank Simulation

		service begins	service ends	system	time	queue
0	3	0	3	3	-	0
8	2	8	10	2	5	0
11	2	11	13	2	1	0
15	6	15	21	6	2	0
17	4	21	25	8	0	4
23	9	25	34	11	0	2
30	1	34	35	5	0	4
38	9	38	47	9	3	0
39	5	47	52	13	0	8
42	1	52	53	11	0	10
	1 5 7 3 60 88 89	2 1 2 5 6 7 4 3 9 0 1 8 9 9 5	2 8 1 2 11 5 6 15 7 4 21 3 9 25 0 1 34 8 9 38 9 5 47	2 8 10 1 2 11 13 5 6 15 21 7 4 21 25 3 9 25 34 00 1 34 35 88 9 38 47 99 5 47 52	2 8 10 2 1 2 11 13 2 5 6 15 21 6 7 4 21 25 8 33 9 25 34 11 00 1 34 35 5 88 9 38 47 9 9 5 47 52 13	2 8 10 2 5 1 2 11 13 2 1 5 6 15 21 6 2 7 4 21 25 8 0 3 9 25 34 11 0 0 1 34 35 5 0 8 9 38 47 9 3 9 5 47 52 13 0

Why Simulate?

- A real system may not be there
 - E.g., A new processor design at its conception
- A real system may be too difficult or too expensive to access
 - E.g., a nuclear reactor, cockpit, etc.
- A real system may not be perturbed
 - E.g., an airline reservation system, because of potential loss of revenue if system goes down due to perturbations

Simulation Modelling

- How do we get the input data?
 - Measurement
 - Random numbers
- How do we generate the output, given the input?
 - By hand
 - By a computer programme (the *simulator*)
- What insight do we get from the output data?
 - What are the performance figures we are looking for?

Simulation Modelling

- A system consists of several physical entities, or components.
- At any given time, each of these entities has state information associated with it.
 - For instance, a server might have two states: *busy* and *idle*.
- Ideally, the state of the simulator at a given simulation time should correspond to the state of the system at the corresponding real time.

Simulation Modelling

- The change of state is called an *event*.
- An event triggers an *activity* a unit of work in the simulator.
 - An activity will typically cause the creation of further events.
- A logically-related set of activities constitutes a *process*.
- As the simulation proceeds, the simulation time advances in steps, depicting the changes in states and mimicking the corresponding activities.

Endogenous and Exogenous Events

- Events internal to a system are called *endogenous* events; events external to the system are *exogenous* events.
 - A customer arrival event in the bank simulation is an exogenous event.
 - A teller acquisition event is an endogenous event.

Time-based Simulators

- In a *time-based* or *time-driven* simulator, the time steps are regular, that is, the interval between any two successive time steps stays constant.
 - If the time interval is too large, the simulator might miss some state changes.
 - On the other hand, if the time interval is too small, the simulator would waste time advancing through time steps during which there are no state changes.
 - Thus, in general, a time-based simulator lacks either accuracy or efficiency, or both.

Time-based Simulators

int gclock = 0;

for (;;) { // repeat forever
if (eventsExistAt(gclock)) {
 // do what's required for the time step
 processEventsAt(gclock);

, ++gclock;

Using global variables to represent global entities is perfectly OK. Time, for example, is a global entity.

Event-based Simulators

- *Event-based* simulators advance the simulation time only to those points where there are state changes.
 - Consequently, the time steps here are irregular.
- These simulators maintain an event list that is a diary of all unprocessed events.
- The simulation proceeds by removing from the list the event with the earliest time and modelling the corresponding activities.

Event-based Simulators

Event e = EventManager.NextEvent();

while (e != null)

switch (e.Type)

// process each event, possibly generating more

e = EventManager.NextEvent();

Bank Simulation: Event-based

const int MAX_CUSTOMERS = 10; Random arrivalGenerator = new Random(); const int MAX_INTERARRIVAL = 20;

const int MAX_TELLERS = 1; Random tellerConsumptionGenerator = new Random(); const int MAX_TELLER_CONSUMPTION = 10;

Bank Simulation: Event-based

Resource teller = new Resource(MAX_TELLERS); // <u>Modelled as resource</u> Entity god = new Entity("God");

Event adamsArrival = new LocalEvent(EventType.CUSTOMER_ARRIVAL, god); EventManager.Schedule(adamsArrival, 0);

Event evesArrival = new LocalEvent(EventType.CUSTOMER_ARRIVAL, god); EventManager.Schedule(evesArrival, arrivalGenerator.Next(MAX_INTERARRIVAL));

int customersSoFar = 2;

Bank Simulation: Event-based

for (LocalEvent e = (LocalEvent)EventManager.NextEvent(); e != null; e = (LocalEvent)EventManager.NextEvent()) { switch (e.Type) { case EventType.CUSTOMER_ARRIVAL : // Process customer arrival event break; case EventType.TELLER_ACQUISITION : // Process teller acquisition event break; case EventType.TELLER_RELEASE : // Process teller release event break: case EventType.CUSTOMER_DEPARTURE : // Process customer departure event break; } // end switch } / / end for

Bank Simulation: Arrival

Entity thisCustomer = new Entity("Customer"); Event <u>onAcquire</u> = new LocalEvent(EventType.TELLER_ACQUISITION, thisCustomer); teller.Acquire(onAcquire);

if (customersSoFar < MAX_CUSTOMERS)

++customersSoFar;

Event <u>newArrival</u> = new LocalEvent(EventType.CUSTOMER_ARRIVAL, god); long arrivalDelta = arrivalGenerator.Next(MAX_INTERARRIVAL); EventManager.Schedule(newArrival, arrivalDelta);

Bank Simulation: Teller Acquisition

long howLong2keep =

tellerConsumptionGenerator.Next(MAX_TELLER_CONSUMPTION); Event releaseEvent =

new LocalEvent(EventType.TELLER_RELEASE, e.Owner); EventManager.Schedule(<u>releaseEvent</u>, howLong2keep);

Bank Simulation: Teller Release

teller.Release(); Event <u>customerDepart</u> = new LocalEvent(EventType.CUSTOMER_DEPARTURE, e.Owner); EventManager.Schedule(<u>customerDepart</u>, 0);

<text>

Exercise

What implications are there if we move the customer arrival generation code to the *DEPARTURE* event processing from the *ARRIVAL* event processing?

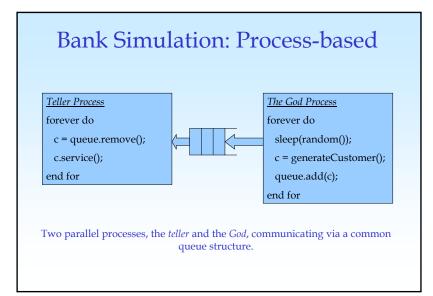
if (customersSoFar < MAX_CUSTOMERS)

++customersSoFar;

Event newArrival

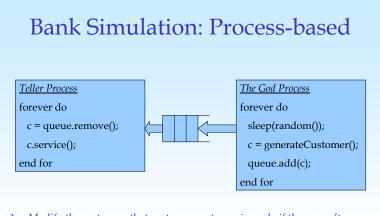
= new LocalEvent(EventType.CUSTOMER_ARRIVAL, god); long arrivalDelta = arrivalGenerator.Next(MAX_INTERARRIVAL); EventManager.Schedule(<u>newArrival</u>, arrivalDelta);

Bank Simulation: Event-based


- Go through the event-based bank simulation system supplied in the course resources.
- Modify the system to collect useful performance metrics (you define what's useful) and statistics.
 - E.g., Do female customers require less service time at the teller?
- Modify the system further to answer more "What-if" questions.
 - E.g., What effect giving a two-hourly 15 min break to each teller has on the performance of the system?

Event-based Simulators

- In an event-based simulator, the system is modelled as a collection of events.
- Coding an event-based simulator is tedious and it is hard to get the code correct.
- Maintaining and updating the simulator is also tedious and time consuming.


Process-based Simulators

- An easier and more natural approach to model a system is to describe the behaviour of its components and the way they interact.
- *Process-based* simulators take this approach in which every active component of the system is modelled by a process, so that the actions and interactions of the processes correspond to those of the system's active components.

Process-based Simulators

- A process could simply be a description of the system component's operation in the simulator's host language.
- Should the definition of a system component change, the simulator is updated by modifying the corresponding process that models the component.
- Process-based simulators are modular and thus make the construction and maintenance of large-scale models easy.

- 1. Modify the system so that customers gets service only if there aren't any disabled customers waiting. Assume that there is no pre-empting.
- 2. Examine the effect of having a queue for each teller rather than having a single queue.

Static and Dynamic Structures

- In modelling the system components, it is necessary to specify their static and dynamic structures.
 - The *static* structure of a system component specifies its physical framework. The *dynamic* structure, on the other hand, specifies the way the component accomplishes its work.

Static and Dynamic Structures

- It is the dynamic structure that contributes towards the *active* nature of a component; thus, components that have no dynamic structure are said to be *passive*.
- In general, a system has both active and passive components.
 - E.g., A *resource* is a passive entity that can be *acquired* and *released* by active entities.
 - E.g., the queue in the process-based bank simulation is passive while the customers are active.

Random Variables

- Most simulation models use random variables to mimic the input data (e.g. customer arrival time).
- Given a phenomenon that we intend to model, we must choose an appropriate probability distribution.
 - This choice is critical to a successful model.
 - The data set of random observations from a distribution must be statistically indistinguishable from the empirical observations of the phenomenon we intend to model.

Phenomenon	Example	Distribution that often describes the phenomenon			
Choice outcome	Tossing a coin; Sex of a customer	Bernoulli			
Quantity	Weight of a shipment	Normal			
Interval	Time between customer arrivals	Exponential			
Frequency	Number of customer arrivals per hour	Poisson			
Duration	Time to complete a bank transaction	Erlang			

Validation

- The results from the simulations are only as good as the model
- Validation of the results is an important aspect of simulation. Where possible:
 - compare results from a real system to the results from the simulated system
 - perform sanity checks
 - check conformance with analytical models

Software Engineering Rules

- A simulator is a software, so the rules of software engineering hold for the simulator.
 - Modularity, extensibility, and re-usability
 - Design for ease of maintenance
- Performance matters!
 - Simulators typically run for hours. Profile and optimize.
 - Consider distributed or parallel simulation.

Summary

- A simulator is a dynamic model that mimics the behaviour of a system (within the limitations of the system description).
- The quality of the simulation depends on the quality of the model. There are no known GIGO systems.
 - Build a well-focussed model that will answer your questions about the system
 - Ensure, however, the model is extensible so that you can modify it to answer further questions

Further Reading

- Jerry Banks, "Introduction to simulation", In the *Proceedings of the 2000 Winter Simulation Conference*, pages 9-16, 2000.
- Arne Thesen and Laurel Travis, "Introduction to simulation", In the *Proceedings of the 1990 Winter Simulation Conference*, pages 14-21, 1990.
- Richard Fujimoto, "Parallel and Distributed Simulation Systems", In the *Proceedings of the* 2001 Winter Simulation Conference, pages 147-157, 2001.