
COMPSCI 703

© Manoharan 1

An Introduction to Simulation
Simulation Modelling

• Constructing a dynamic model of a given system
is called simulation modelling.

• The function of the model, called a simulator, is to
mimic the behaviour of the system within the
limitations of the system description.
– Give some examples of simulations we see around us

A Bank Simulation
The current state of the system: A
teller lady with access to lots of
money; a man who wants to
convince the teller that he should
get some money from his mate’s
account; a lady patiently waiting in
the queue; and a girl who’s walking
in to join the queue.

A Bank Simulation
• How much time does a customer spend in the

bank on average?
• What percentage of customers wait for service?
• What is the average waiting time per customer?
• What is the average waiting time of those

customers that wait?

COMPSCI 703

© Manoharan 2

A Bank Simulation
• What is percentage of time the teller idles?
• What performance difference would we see if we

have two tellers?

A Bank Simulation

10011535214210
801352475399
03947389388
40535341307
201134259236
40825214175
02621156154
01213112113
052108282
0-330301

Time in
queue

Idle
time

Time in
system

Time
service
ends

Time
service
begins

Service
time

Arrival
time

Customer

Input data

Why Simulate?
• A real system may not be there

– E.g., A new processor design at its conception
• A real system may be too difficult or too

expensive to access
– E.g., a nuclear reactor, cockpit, etc.

• A real system may not be perturbed
– E.g., an airline reservation system, because of

potential loss of revenue if system goes down due to
perturbations

Simulation Modelling
• How do we get the input data?

– Measurement
– Random numbers

• How do we generate the output, given the input?
– By hand
– By a computer programme (the simulator)

• What insight do we get from the output data?
– What are the performance figures we are looking for?

COMPSCI 703

© Manoharan 3

Simulation Modelling
• A system consists of several physical entities, or

components.
• At any given time, each of these entities has state

information associated with it.
– For instance, a server might have two states: busy and

idle.
• Ideally, the state of the simulator at a given

simulation time should correspond to the state of
the system at the corresponding real time.

Simulation Modelling
• The change of state is called an event.
• An event triggers an activity - a unit of work - in

the simulator.
– An activity will typically cause the creation of further

events.
• A logically-related set of activities constitutes a

process.
• As the simulation proceeds, the simulation time

advances in steps, depicting the changes in states
and mimicking the corresponding activities.

Endogenous and Exogenous Events
• Events internal to a system are called endogenous

events; events external to the system are
exogenous events.
– A customer arrival event in the bank simulation is an

exogenous event.
– A teller acquisition event is an endogenous event.

Time-based Simulators
• In a time-based or time-driven simulator, the time

steps are regular, that is, the interval between
any two successive time steps stays constant.
– If the time interval is too large, the simulator might

miss some state changes.
– On the other hand, if the time interval is too small, the

simulator would waste time advancing through time
steps during which there are no state changes.

– Thus, in general, a time-based simulator lacks either
accuracy or efficiency, or both.

COMPSCI 703

© Manoharan 4

Time-based Simulators

Using global variables to represent global entities is perfectly OK. Time, for
example, is a global entity.

int gclock = 0;

for (; ;) { // repeat forever
if (eventsExistAt(gclock)) {

// do what’s required for the time step
processEventsAt(gclock);

}
++gclock;

}

Event-based Simulators
• Event-based simulators advance the simulation

time only to those points where there are state
changes.
– Consequently, the time steps here are irregular.

• These simulators maintain an event list that is a
diary of all unprocessed events.

• The simulation proceeds by removing from the
list the event with the earliest time and
modelling the corresponding activities.

Event-based Simulators
Event e = EventManager.NextEvent();

while (e != null)
{

switch (e.Type)
{

// process each event, possibly generating more
…

}
e = EventManager.NextEvent();

}

Bank Simulation: Event-based
const int MAX_CUSTOMERS = 10;
Random arrivalGenerator = new Random();
const int MAX_INTERARRIVAL = 20;

const int MAX_TELLERS = 1;
Random tellerConsumptionGenerator = new Random();
const int MAX_TELLER_CONSUMPTION = 10;

COMPSCI 703

© Manoharan 5

Bank Simulation: Event-based
Resource teller = new Resource(MAX_TELLERS); // Modelled as resource
Entity god = new Entity("God");

Event adamsArrival
= new LocalEvent(EventType.CUSTOMER_ARRIVAL, god);

EventManager.Schedule(adamsArrival, 0);

Event evesArrival
= new LocalEvent(EventType.CUSTOMER_ARRIVAL, god);

EventManager.Schedule(evesArrival,
arrivalGenerator.Next(MAX_INTERARRIVAL));

int customersSoFar = 2;

Bank Simulation: Event-based
for (LocalEvent e = (LocalEvent)EventManager.NextEvent();

e != null; e = (LocalEvent)EventManager.NextEvent()) {
switch (e.Type) {

case EventType.CUSTOMER_ARRIVAL :
// Process customer arrival event
break;

case EventType.TELLER_ACQUISITION :
// Process teller acquisition event
break;

case EventType.TELLER_RELEASE :
// Process teller release event
break;

case EventType.CUSTOMER_DEPARTURE :
// Process customer departure event
break;

} // end switch
} // end for

Bank Simulation: Arrival
Entity thisCustomer = new Entity("Customer");
Event onAcquire = new LocalEvent(EventType.TELLER_ACQUISITION,

thisCustomer);
teller.Acquire(onAcquire);
if (customersSoFar < MAX_CUSTOMERS)
{

++customersSoFar;
Event newArrival

= new LocalEvent(EventType.CUSTOMER_ARRIVAL, god);
long arrivalDelta = arrivalGenerator.Next(MAX_INTERARRIVAL);
EventManager.Schedule(newArrival, arrivalDelta);

}

Bank Simulation: Teller Acquisition
long howLong2keep =

tellerConsumptionGenerator.Next(MAX_TELLER_CONSUMPTION);
Event releaseEvent =

new LocalEvent(EventType.TELLER_RELEASE, e.Owner);
EventManager.Schedule(releaseEvent, howLong2keep);

COMPSCI 703

© Manoharan 6

Bank Simulation: Teller Release
teller.Release();
Event customerDepart = new

LocalEvent(EventType.CUSTOMER_DEPARTURE, e.Owner);
EventManager.Schedule(customerDepart, 0);

Bank Simulation: Departure
// Nothing to do; sit pretty

How does the teller pick up the next customer when the current customer departs?

Exercise

if (customersSoFar < MAX_CUSTOMERS)
{

++customersSoFar;
Event newArrival

= new LocalEvent(EventType.CUSTOMER_ARRIVAL, god);
long arrivalDelta = arrivalGenerator.Next(MAX_INTERARRIVAL);
EventManager.Schedule(newArrival, arrivalDelta);

}

What implications are there if we move the customer arrival generation code to
the DEPARTURE event processing from the ARRIVAL event processing?

Bank Simulation: Event-based
• Go through the event-based bank simulation

system supplied in the course resources.
• Modify the system to collect useful performance

metrics (you define what’s useful) and statistics.
– E.g., Do female customers require less service time at

the teller?
• Modify the system further to answer more

“What-if” questions.
– E.g., What effect giving a two-hourly 15 min break to

each teller has on the performance of the system?

COMPSCI 703

© Manoharan 7

Event-based Simulators
• In an event-based simulator, the system is

modelled as a collection of events.
• Coding an event-based simulator is tedious and

it is hard to get the code correct.
• Maintaining and updating the simulator is also

tedious and time consuming.

Process-based Simulators
• An easier and more natural approach to model a

system is to describe the behaviour of its
components and the way they interact.

• Process-based simulators take this approach in
which every active component of the system is
modelled by a process, so that the actions and
interactions of the processes correspond to those
of the system's active components.

Bank Simulation: Process-based

Teller Process

forever do

c = queue.remove();

c.service();

end for

The God Process

forever do

sleep(random());

c = generateCustomer();

queue.add(c);

end for

Two parallel processes, the teller and the God, communicating via a common
queue structure.

Process-based Simulators
• A process could simply be a description of the

system component's operation in the simulator's
host language.

• Should the definition of a system component
change, the simulator is updated by modifying
the corresponding process that models the
component.

• Process-based simulators are modular and thus
make the construction and maintenance of large-
scale models easy.

COMPSCI 703

© Manoharan 8

Bank Simulation: Process-based

Teller Process

forever do

c = queue.remove();

c.service();

end for

The God Process

forever do

sleep(random());

c = generateCustomer();

queue.add(c);

end for

1. Modify the system so that customers gets service only if there aren’t any
disabled customers waiting. Assume that there is no pre-empting.

2. Examine the effect of having a queue for each teller rather than having a
single queue.

Static and Dynamic Structures
• In modelling the system components, it is

necessary to specify their static and dynamic
structures.
– The static structure of a system component specifies

its physical framework. The dynamic structure, on the
other hand, specifies the way the component
accomplishes its work.

Static and Dynamic Structures
• It is the dynamic structure that contributes

towards the active nature of a component; thus,
components that have no dynamic structure are
said to be passive.

• In general, a system has both active and passive
components.
– E.g., A resource is a passive entity that can be acquired

and released by active entities.
– E.g., the queue in the process-based bank simulation

is passive while the customers are active.

Random Variables
• Most simulation models use random variables to

mimic the input data (e.g. customer arrival time).
• Given a phenomenon that we intend to model,

we must choose an appropriate probability
distribution.
– This choice is critical to a successful model.
– The data set of random observations from a

distribution must be statistically indistinguishable
from the empirical observations of the phenomenon
we intend to model.

COMPSCI 703

© Manoharan 9

Random Variables

ErlangTime to complete a bank
transaction

Duration

PoissonNumber of customer arrivals
per hour

Frequency
ExponentialTime between customer arrivalsInterval
NormalWeight of a shipmentQuantity

BernoulliTossing a coin; Sex of a
customer

Choice
outcome

Distribution that
often describes the
phenomenon

ExamplePhenomenon

Validation
• The results from the simulations are only as good

as the model
• Validation of the results is an important aspect of

simulation. Where possible:
– compare results from a real system to the results from

the simulated system
– perform sanity checks
– check conformance with analytical models

Software Engineering Rules
• A simulator is a software, so the rules of software

engineering hold for the simulator.
– Modularity, extensibility, and re-usability
– Design for ease of maintenance

• Performance matters!
– Simulators typically run for hours. Profile and

optimize.
– Consider distributed or parallel simulation.

Summary
• A simulator is a dynamic model that mimics the

behaviour of a system (within the limitations of
the system description).

• The quality of the simulation depends on the
quality of the model. There are no known GIGO
systems.
– Build a well-focussed model that will answer your

questions about the system
– Ensure, however, the model is extensible so that you

can modify it to answer further questions

COMPSCI 703

© Manoharan 10

Further Reading
• Jerry Banks, “Introduction to simulation”, In the

Proceedings of the 2000 Winter Simulation
Conference, pages 9-16, 2000.

• Arne Thesen and Laurel Travis, “Introduction to
simulation”, In the Proceedings of the 1990 Winter
Simulation Conference, pages 14-21, 1990.

• Richard Fujimoto, “Parallel and Distributed
Simulation Systems”, In the Proceedings of the
2001 Winter Simulation Conference, pages 147-157,
2001.

