
COMPSCI 703

© Manoharan 1

Architectural Simulations
Questions Simulations May Answer

• Capacity questions
– How big a cache does this processor require?
– How deep the pipeline should be?

• Performance questions
– What’s the peak performance of the new system on

the Linpack benchmark?
• Comparing alternatives

– Should we schedule the longest instructions first or
the shortest instructions first?

Questions Simulations May Answer
• Fine tuning

– Is it OK to reduce the size of the input buffer?
• Trouble shooting

– Which part of the memory system is the bottleneck?
– Why does the system hang? Is there a deadlock?

Trace-driven Simulations
• Trace-driven simulations use inputs captured

from a real system (but not necessarily the
system that the simulator models).
– Typically used for memory system simulations

• Mostly event-based simulators.

COMPSCI 703

© Manoharan 2

Trace-driven Simulations

An execution trace

…
ST 0x12a73060
EXE 4
LD 0x12a72850
LD 0x12a72c90
EXE 8
…

Simulator

Trace-driven Simulations
• Trace collection: The process of capturing the data

sequence.
• Trace reduction: filter out the data that is not

needed; compress data; etc. Can be combined
with collection.

• Trace processing: Simulation using the traces.

Trace Collection
• Software execution traces can be obtained

through instrumentation. Known as code
annotation.
– Trace logging can be manually inserted into the

source, if source code is known.
– Automatic binary instrumentation tools (e.g. pixie,

ATOM) can be used

Code Annotation
for (i = 0; i < 10; i +=2) {

sum += array[i];
sum += array[i+1];

}

for (i = 0; i < 10; i +=2) {
sum += array[i];
printf(“LD %x”, &array[i]);
sum += array[i+1];
printf(“LD %x”, &array[i+1]);

}

Source Annotation

COMPSCI 703

© Manoharan 3

Code Annotation

Loop:

bne $a0, $t9, Loop
addiu $a0, $a0, 8
add $s0, $s0, $t0
lw $t0, 4($a0)
add $s0, $s0, $t0
lw $t0, 0($a0)

add $at, 4, $a0
sw $at, trace($s2)
addiu $s2, $s2, 4

add $at, 0, $a0Loop:
sw $at, trace($s2)
addiu $s2, $s2, 4

bne $a0, $t9, Loop
addiu $a0, $a0, 8
add $s0, $s0, $t0
lw $t0, 4($a0)

add $s0, $s0, $t0
lw $t0, 0($a0)

Binary Annotation

Trace Collection
• Execution traces can also be obtained using

performance counters, if they exist
– Counters are too specific and using them for general

trace collection may not be feasible

Trace-driven Simulations
• The traces (i.e. the captured inputs) can be re-

used, if stored.
– Large space may be required for storage

• Pipe the trace directly into the simulator.
– Trace collection process runs concurrently with the

simulation
– Sometimes called an execution-driven simulation
– Advantage: no storage space required.

Trace-driven Simulations
• The pipe may be a socket-type channel from

another machine, or a pipe from another process
on the same machine
– Where more than one pipe is required, named pipes

or message queues can be used.
• Other execution-driven solutions: procedure calls

or RPC; memory-stream

COMPSCI 703

© Manoharan 4

Trace Collection
• Trace generation process needs to ensure that the

normal course of events and the use of resources
(such as memory) are not perturbed
– This may be difficult to achieve, but one must ensure

that the errors caused by the perturbation does not
affect the validity of the model

Execution Profiling
• Execution profiling is useful to determine

program parts that consume most of the
execution time.
– Typically used for program optimization

• Code annotation need only consider those parts
that execute most.
– This discards the traces that generally don’t count.
– Need to ensure that traces that count aren’t discarded

• Compare results with complete traces & reduced traces

Instruction Emulators
• Instruction emulators execute instruction set of

one ISA (target ISA) on another ISA (host ISA).
– E.g., SimpleScalar (www.simplescalar.com)

• Emulators are quite useful in
– developing software for a machine that has not been

built
– migrating to a new ISA (e.g. Pentium to Itanium)

• They are also useful for studying a new system
or investigating enhancements to an existing
system.

Instruction Emulators
• Typically execute instructions to provide the

results of execution.
– In general, does not simulate architectural

components (e.g. pipelines, caches, etc.)
– Some call it execution-driven simulation!

• Mostly a time-based simulator. The time unit is
an instruction step or the clock tick.
– Detailed simulators that take into account pipelines

etc use clock tick as the time unit

COMPSCI 703

© Manoharan 5

Instruction Emulators

...

bne $a0, $t9, Loop

...

Loop:

Instructions

addiu $a0, $a0, 8

add $s0, $s0, $t0

lw $t0, 4($a0)

add $s0, $s0, $t0

lw $t0, 0($a0)

31
…

Register File

0
ValueRegister #Fetch

Decode

Execute

reg[16] = reg[16] + reg[8]

Instruction Emulators
• Most emulators run as user-level processes.
• Real programs need kernel services – emulators

may intercept system calls and pass them onto
the underlying host OS for handling
– Performance measurement can be skewed because of

system calls

Instruction Emulators
• The Java virtual machine and the CLR virtual

machine are emulators – the target ISA is the
Java byte code/CLI assembly while the host ISA
is the ISA that the VM runs on
– Just-in-time compilation to speed up emulation
– Compiled code fragments cached for repeated

execution
• The emulators can be in hardware. E.g.

Transmeta processors (www.transmeta.com).

Further Reading
• Uhlig, R. and Mudge, T., “Trace-driven Memory

Simulation: A Survey”, ACM Computing
Surveys, 29 (2), pages 128-170, 1997.

• Eustace, A. and Srivastava, A., “ATOM: A
flexible interface for building high performance
program analysis tools”, In the Proceedings of the
Usenix Conference on Unix and Advanced
Computing Systems, pages 303-314, 1995.

COMPSCI 703

© Manoharan 6

Further Reading
• Cmelik, B. and Keppel, D., “Shade: A fast

instruction-set simulator for execution profiling”,
In Proceedings of the SIGMETRICS Conference on
Measurement & Modeling of Computer Systems,
pages 128-137, 1994.

