

Questions Simulations May Answer

- Capacity questions
 - How big a cache does this processor require?
 - How deep the pipeline should be?
- Performance questions
 - What's the peak performance of the new system on the Linpack benchmark?
- Comparing alternatives
 - Should we schedule the longest instructions first or the shortest instructions first?

Questions Simulations May Answer

- Fine tuning
 - Is it OK to reduce the size of the input buffer?
- Trouble shooting
 - Which part of the memory system is the bottleneck?
 - Why does the system hang? Is there a deadlock?

Trace-driven Simulations

- Trace-driven simulations use inputs captured from a real system (but not necessarily the system that the simulator models).
 - Typically used for memory system simulations
- Mostly event-based simulators.

Trace-driven Simulations

- *Trace collection*: The process of capturing the data sequence.
- *Trace reduction*: filter out the data that is not needed; compress data; etc. Can be combined with collection.
- *Trace processing*: Simulation using the traces.

Trace Collection

- Software execution traces can be obtained through instrumentation. Known as *code annotation*.
 - Trace logging can be manually inserted into the source, if source code is known.
 - Automatic binary instrumentation tools (e.g. *pixie*, *ATOM*) can be used

Trace Collection Execution traces can also be obtained using performance counters, if they exist Counters are too specific and using them for general trace collection may not be feasible

Trace-driven Simulations

- The traces (i.e. the captured inputs) can be reused, if stored.
 - Large space may be required for storage
- Pipe the trace directly into the simulator.
 - Trace collection process runs concurrently with the simulation
 - Sometimes called an *execution-driven* simulation
 - Advantage: no storage space required.

Trace-driven Simulations

- The pipe may be a socket-type channel from another machine, or a pipe from another process on the same machine
 - Where more than one pipe is required, named pipes or message queues can be used.
- Other execution-driven solutions: procedure calls or RPC; memory-stream

Trace Collection

- Trace generation process needs to ensure that the normal course of events and the use of resources (such as memory) are not perturbed
 - This may be difficult to achieve, but one must ensure that the errors caused by the perturbation does not affect the validity of the model

Execution Profiling

- Execution profiling is useful to determine program parts that consume most of the execution time.
 - Typically used for program optimization
- Code annotation need only consider those parts that execute most.
 - This discards the traces that generally don't count.
 - Need to ensure that traces that count aren't discarded
 - Compare results with complete traces & reduced traces

Instruction Emulators

- Instruction emulators execute instruction set of one ISA (target ISA) on another ISA (host ISA).
 - E.g., SimpleScalar (<u>www.simplescalar.com</u>)
- Emulators are quite useful in
 - developing software for a machine that has not been built
 - migrating to a new ISA (e.g. Pentium to Itanium)
- They are also useful for studying a new system or investigating enhancements to an existing system.

Instruction Emulators

- Typically execute instructions to provide the results of execution.
 - In general, does not simulate architectural components (e.g. pipelines, caches, etc.)
 - Some call it *execution-driven* simulation!
- Mostly a time-based simulator. The time unit is an instruction step or the clock tick.
 - Detailed simulators that take into account pipelines etc use clock tick as the time unit

Instruction Emulators

- Most emulators run as user-level processes.
- Real programs need kernel services emulators may intercept system calls and pass them onto the underlying host OS for handling
 - Performance measurement can be skewed because of system calls

Instruction Emulators

- The Java virtual machine and the CLR virtual machine are emulators the target ISA is the Java byte code/CLI assembly while the host ISA is the ISA that the VM runs on
 - Just-in-time compilation to speed up emulation
 - Compiled code fragments cached for repeated execution
- The emulators can be in hardware. E.g. Transmeta processors (<u>www.transmeta.com</u>).

Further Reading

- Uhlig, R. and Mudge, T., "Trace-driven Memory Simulation: A Survey", ACM Computing Surveys, 29 (2), pages 128-170, 1997.
- Eustace, A. and Srivastava, A., "ATOM: A flexible interface for building high performance program analysis tools", In the *Proceedings of the Usenix Conference on Unix and Advanced Computing Systems*, pages 303-314, 1995.

Further Reading

• Cmelik, B. and Keppel, D., "Shade: A fast instruction-set simulator for execution profiling", In Proceedings of the SIGMETRICS Conference on Measurement & Modeling of Computer Systems, pages 128-137, 1994.